Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmonic polymer nanocomposites

Abstract

The optical properties of metal nanoparticles, particularly their localized surface plasmon effects, are well established. These plasmonic nanoparticles can respond to their surroundings or even influence the optical processes (for example, absorption, fluorescence and Raman scattering) of molecules located at their surface. As a result, plasmonic nanoparticles have been developed for multiple purposes, ranging from the detection of chemicals and biological molecules to light-harvesting enhancement in solar cells. By dispersing the nanoparticles in polymers and creating a hybrid material, the robustness, responsiveness and flexibility of the system are enhanced while preserving the intrinsic properties of the nanoparticles. In this Review, we discuss the fabrication and applications of plasmonic polymer nanocomposites, focusing on applications in optical data storage, sensing and imaging and photothermal gels for in vivo therapy. Within the nanocomposites, the nanoporosity of the matrix, the overall mechanical stability and the dispersion of the nanoparticles are important parameters for achieving the best performance. In the future, translation of these materials into commercial products rests on the ability to scale up the production of plasmonic polymer nanocomposites with tailored optical features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative approaches for the fabrication of polymer nanocomposites.
Fig. 2: Reversible self-assembly of nanoparticles within hydrogels.
Fig. 3: Optical recording.
Fig. 4: Creation of ordered plasmonic polymer nanocomposites by nanoparticle-directed assembly.
Fig. 5: Localized surface plasmon resonance-based sensing.
Fig. 6: Plasmonic gels for SERS-based imaging.
Fig. 7: Applications of plasmonic (hydro)gels for photothermal therapy.
Fig. 8: Applications of plasmonic (hydro)gels for photothermally reprogrammable systems.

Similar content being viewed by others

References

  1. Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996).

    CAS  Google Scholar 

  2. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    CAS  Google Scholar 

  3. Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007).

    CAS  Google Scholar 

  4. Rahim, F. A. & Dong-Hwan, K. Nanoparticle polymer composites on solid substrates for plasmonic sensing applications. Nano Today 11, 415–434 (2016).

    Google Scholar 

  5. Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22, 32–41 (2006).

    CAS  Google Scholar 

  6. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).

  7. Myroshnychenko, V. et al. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008).

    CAS  Google Scholar 

  8. Zhang, C. L. et al. Highly stimuli-responsive Au nanorods/poly(N-isopropylacrylamide) (PNIPAM) composite hydrogel for smart switch. ACS Appl. Mater. Interfaces 9, 24857–24863 (2017).

    CAS  Google Scholar 

  9. Jain, P. K., Huang, X. H., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    CAS  Google Scholar 

  10. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    CAS  Google Scholar 

  11. Abadeer, N. S. & Murphy, C. J. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 120, 4691–4716 (2016).

    CAS  Google Scholar 

  12. Wang, Y. F. & Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2, 17020 (2017).

    CAS  Google Scholar 

  13. Sutton, A. et al. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nat. Commun. 8, 14700 (2017). This study describes the development of an advanced nanostructured material that offers a new methodology to mechanically perturb cells.

    Google Scholar 

  14. Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    CAS  Google Scholar 

  15. Syed, A. M. et al. Three-dimensional imaging of transparent tissues via metal nanoparticle labeling. J. Am. Chem. Soc. 139, 9961–9971 (2017).

    CAS  Google Scholar 

  16. Sepulveda, B., Angelome, P. C., Lechuga, L. M. & Liz-Marzan, L. M. LSPR-based nanobiosensors. Nano Today 4, 244–251 (2009).

    CAS  Google Scholar 

  17. Cialla-May, D., Zheng, X. S., Weber, K. & Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 46, 3945–3961 (2017).

    CAS  Google Scholar 

  18. Wang, Z. Y. et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem. Rev. 117, 7910–7963 (2017).

    CAS  Google Scholar 

  19. Zhang, S. D. et al. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 117, 12942–13038 (2017).

    CAS  Google Scholar 

  20. Olson, J. et al. Vivid, full-color aluminum plasmonic pixels. Proc. Natl Acad. Sci. USA 111, 14348–14353 (2014).

    CAS  Google Scholar 

  21. James, T. D., Mulvaney, P. & Roberts, A. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett. 16, 3817–3823 (2016).

    CAS  Google Scholar 

  22. Thoniyot, P. et al. Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010 (2015).

    Google Scholar 

  23. Paul, D. R. & Robeson, L. M. Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008).

    CAS  Google Scholar 

  24. Heilmann, A. Polymer Films with Embedded Metal Nanoparticles (Springer, 2003).

  25. Willner, I. Stimuli-controlled hydrogels and their applications. Acc. Chem. Res. 50, 657–658 (2017).

    CAS  Google Scholar 

  26. Wei, M. L., Gao, Y. F., Li, X. & Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 8, 127–143 (2017).

    CAS  Google Scholar 

  27. Urban, D. A. et al. Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf. B 137, 39–49 (2016).

    CAS  Google Scholar 

  28. Hirsch, V. et al. Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale 5, 3723–3732 (2013).

    CAS  Google Scholar 

  29. Hirsch, V. et al. In vitro dosimetry of agglomerates. Nanoscale 6, 7325–7331 (2014).

    CAS  Google Scholar 

  30. Klajn, R., Wesson, P. J., Bishop, K. J. M. & Grzybowski, B. A. Writing self-erasing images using metastable nanoparticle “inks”. Angew. Chem. Int. Ed. 48, 7035–7039 (2009).

    CAS  Google Scholar 

  31. Kundu, P. K. et al. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 7, 646–652 (2015). This paper is the first description of the assembly of non-photoresponsive plasmonic nanoparticles with pH-sensitive ligands in a photoresponsive polymer.

    CAS  Google Scholar 

  32. Xerox Corp. Dual-layer protected transient document. US Patent 7432027B2 (2008).

  33. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    CAS  Google Scholar 

  34. Ditlbacher, H. et al. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 25, 563–565 (2000).

    CAS  Google Scholar 

  35. Kamat, P. V., Flumiani, M. & Hartland, G. V. Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J. Phys. Chem. B 102, 3123–3128 (1998).

    CAS  Google Scholar 

  36. Hu, M. & Hartland, G. V. Heat dissipation for Au particles in aqueous solution: relaxation time versus size. J. Phys. Chem. B 106, 7029–7033 (2002).

    CAS  Google Scholar 

  37. Link, S. et al. Laser Photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A 103, 1165–1170 (1999).

    CAS  Google Scholar 

  38. Taylor, A. B., Siddiquee, A. M. & Chon, J. W. M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 8, 12071–12079 (2014).

    CAS  Google Scholar 

  39. Pérez-Juste, J., Rodríguez-González, B., Mulvaney, P. & Liz-Marzán, L. M. Optical control and patterning of gold-nanorod–poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065–1071 (2005).

    Google Scholar 

  40. Wilson, O., Wilson, G. J. & Mulvaney, P. Laser writing in polarized silver nanorod films. Adv. Mater. 14, 1000–1004 (2002).

    CAS  Google Scholar 

  41. Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). This study is the first demonstration of 5D data recording within the spectral response of plasmonic Au nanorods embedded in polymer films.

    CAS  Google Scholar 

  42. DeSantis, C. J. et al. Laser-induced spectral hole-burning through a broadband distribution of Au nanorods. J. Phys. Chem. C 120, 20518–20524 (2016).

    CAS  Google Scholar 

  43. Taylor, A. B., Chow, T. T. Y. & Chon, J. W. M. Alignment of gold nanorods by angular photothermal depletion. App. Phys. Lett. 104, 083118 (2014).

    Google Scholar 

  44. Taylor, A. B., Michaux, P., Mohsin, A. S. M. & Chon, J. W. M. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt. Express 22, 13234–13243 (2014).

    CAS  Google Scholar 

  45. Taylor, A. B. & Chon, J. W. M. Angular photothermal depletion of randomly oriented gold nanorods for polarization-controlled multilayered optical storage. Adv. Opt. Mater. 3, 695–703 (2015).

    CAS  Google Scholar 

  46. Taylor, A. B., Kim, J. & Chon, J. W. M. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout. Opt. Express 20, 5069–5081 (2012).

    CAS  Google Scholar 

  47. Panchenko, E., Cadusch, J. J., James, T. D. & Roberts, A. Plasmonic metasurface-enabled differential photodetectors for broadband optical polarization characterization. ACS Photonics 3, 1833–1839 (2016).

    CAS  Google Scholar 

  48. Ren, H. R., Li, X. P., Zhang, Q. M. & Gu, M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016).

    CAS  Google Scholar 

  49. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009).

    CAS  Google Scholar 

  50. Zhang, Q. M., Xia, Z. L., Cheng, Y. B. & Gu, M. High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat. Commun. 9, 1183 (2018).

    Google Scholar 

  51. Gu, M., Li, X. P. & Cao, Y. Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e177 (2014).

    CAS  Google Scholar 

  52. Zhang, P. et al. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation. Sci. Rep. 5, 11447 (2015).

    Google Scholar 

  53. Chu, S. W. et al. Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope. Phys. Rev. Lett. 112, 117402 (2014).

    Google Scholar 

  54. Willets, K. A., Wilson, A. J., Sundaresan, V. & Joshi, P. B. Super-resolution imaging and plasmonics. Chem. Rev. 117, 7538–7582 (2017).

    CAS  Google Scholar 

  55. Mulvaney, P. et al. Direct assembly of large area nanoparticle arrays. ACS Nano 12, 7529–7537 (2018). This paper describes the use of electrophoretic deposition to fabricate large arrays of single plasmonic nanoparticles, enabling their manufacturing for optical data storage applications.

    Google Scholar 

  56. Kinnear, C. et al. Directed chemical assembly of single and clustered nanoparticles with silanized templates. Langmuir 34, 7355–7363 (2018).

    CAS  Google Scholar 

  57. Wang, Y. H. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA 103, 2026–2031 (2006).

    CAS  Google Scholar 

  58. Nepal, D. et al. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. ACS Nano 6, 5693–5701 (2012).

    CAS  Google Scholar 

  59. Flauraud, V. et al. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12, 73–80 (2017).

    CAS  Google Scholar 

  60. Hamon, C. et al. Hierarchical self-assembly of gold nanoparticles into patterned plasmonic nanostructures. ACS Nano 8, 10694–10703 (2014).

    CAS  Google Scholar 

  61. Malaquin, L. et al. Controlled particle placement through convective and capillary assembly. Langmuir 23, 11513–11521 (2007).

    CAS  Google Scholar 

  62. Pinedo Rivera, T. et al. Assisted convective-capillary force assembly of gold colloids in a microfluidic cell: plasmonic properties of deterministic nanostructures. J. Vac. Sci. Technol. B 26, 2513–2519 (2008).

    CAS  Google Scholar 

  63. Fu, S. C. et al. Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory. Sci. Rep. 6, 36701 (2016).

    CAS  Google Scholar 

  64. Montelongo, Y. et al. Plasmonic nanoparticle scattering for color holograms. Proc. Natl Acad. Sci. USA 111, 12679–12683 (2014).

    CAS  Google Scholar 

  65. Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016).

    Google Scholar 

  66. Hansen, P. M., Bhatia, V. K., Harrit, N. & Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5, 1937–1942 (2005).

    CAS  Google Scholar 

  67. Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

    CAS  Google Scholar 

  68. Yetisen, A. K., Montelongo, Y. & Butt, H. Rewritable three-dimensional holographic data storage via optical forces. Appl. Phys. Lett. 109, 061106 (2016).

    Google Scholar 

  69. Montelongo, Y., Yetisen, A. K., Butt, H. & Yun, S. H. Reconfigurable optical assembly of nanostructures. Nat. Commun. 7, 12002 (2016). This paper describes a relatively simple and fast process to record holographic images in the 3D position of Ag nanoparticles in polymer films through the interference light reflected off an object.

    CAS  Google Scholar 

  70. Ament, I. et al. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012).

    CAS  Google Scholar 

  71. Haes, A. J. & Van Duyne, R. P. A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596–10604 (2002).

    CAS  Google Scholar 

  72. Gupta, S. et al. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules 41, 2874–2879 (2008).

    CAS  Google Scholar 

  73. Lee, S. & Pérez-Luna, V. H. Surface-grafted hybrid material consisting of gold nanoparticles and dextran exhibits mobility and reversible aggregation on a surface. Langmuir 23, 5097–5099 (2007).

    CAS  Google Scholar 

  74. Hu, M. et al. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 18, 1949–1960 (2008).

    CAS  Google Scholar 

  75. Collins, S. S. E. et al. Single gold nanorod charge modulation in an ion gel device. Nano Lett. 16, 6863–6869 (2016).

    CAS  Google Scholar 

  76. Wang, P. et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing. Nano Lett. 12, 3145–3150 (2012).

    CAS  Google Scholar 

  77. Bukasov, R. & Shumaker-Parry, J. S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 7, 1113–1118 (2007).

    CAS  Google Scholar 

  78. Jiang, H., Markowski, J. & Sabarinathan, J. Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array. Opt. Express 17, 21802–21807 (2009).

    CAS  Google Scholar 

  79. Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379–382 (2012). This study reports how a Au nanorod can detect single molecules by using shifts in the LSPR of the nanorod.

    CAS  Google Scholar 

  80. Mesch, M., Zhang, C. J., Braun, P. V. & Giessen, H. Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2, 475–480 (2015).

    CAS  Google Scholar 

  81. Yetisen, A. K. et al. Light-directed writing of chemically tunable narrow-band holographic sensors. Adv. Opt. Mater. 2, 250–254 (2014).

    Google Scholar 

  82. Yetisen, A. K. et al. Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett. 14, 3587–3593 (2014).

    CAS  Google Scholar 

  83. Kozlovskaya, V. et al. Ultrathin layer-by-layer hydrogels with incorporated gold nanorods as pH-sensitive optical materials. Chem. Mater. 20, 7474–7485 (2008).

    CAS  Google Scholar 

  84. Endo, T., Ikeda, R., Yanagida, Y. & Hatsuzawa, T. Stimuli-responsive hydrogel–silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal. Chim. Acta 611, 205–211 (2008).

    CAS  Google Scholar 

  85. Saa, L., Coronado-Puchau, M., Pavlov, V. & Liz-Marzan, L. M. Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale 6, 7405–7409 (2014).

    CAS  Google Scholar 

  86. Tokareva, I., Minko, S., Fendler, J. H. & Hutter, E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance Spectroscopy. J. Am. Chem. Soc. 126, 15950–15951 (2004).

    CAS  Google Scholar 

  87. Culver, H. R., Clegg, J. R. & Peppas, N. A. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50, 170–178 (2017).

    CAS  Google Scholar 

  88. Tokareva, I. et al. Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. Chem. Commun. 3343–3345 (2006).

  89. Tokarev, I. et al. Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. Adv. Mater. 22, 1412–1416 (2010).

    CAS  Google Scholar 

  90. Aroca, R. Surface Enhanced Vibrational Spectroscopy (Wiley-Hoboken, 2006).

  91. Schlücker, S. Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley-VCH, Weinheim, 2011).

    Google Scholar 

  92. Wang, Y. Q., Yan, B. & Chen, L. X. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113, 1391–1428 (2013).

    CAS  Google Scholar 

  93. Henry, A. I. et al. Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal. Chem. 88, 6638–6647 (2016).

    CAS  Google Scholar 

  94. Abalde-Cela, S. et al. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J. R. Soc. Interface 7, S435–S450 (2010).

    CAS  Google Scholar 

  95. Zhou, J. et al. Electrochromic tuning of transparent gold nanorods with poly[(3,4-propylenedioxy)pyrrole] shells in the near-infrared region. J. Mater. Chem. C 5, 12571–12584 (2017).

    CAS  Google Scholar 

  96. Aldeanueva-Potel, P. et al. Recyclable molecular trapping and SERS detection in silver-loaded agarose gels with dynamic hot spots. Anal. Chem. 81, 9233–9238 (2009).

    CAS  Google Scholar 

  97. Abalde-Cela, S. et al. Microdroplet fabrication of silver-agarose nanocomposite beads for SERS optical accumulation. Soft Matter 7, 1321–1325 (2011).

    CAS  Google Scholar 

  98. Jiang, C. Y. et al. In situ controllable preparation of gold nanorods in thermo-responsive hydrogels and their application in surface enhanced Raman scattering. J. Mater. Chem. 20, 8711–8716 (2010).

    CAS  Google Scholar 

  99. Bodelon, G. et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat. Mater. 15, 1203–1211 (2016). This paper demonstrates the potential of plasmonics and SERRS for non-invasive monitoring and imaging of biological processes, such as quorum sensing, in live microbial populations.

    CAS  Google Scholar 

  100. Bodelon, G. et al. Imaging bacterial interspecies chemical interactions by surface-enhanced Raman scattering. ACS Nano 11, 4631–4640 (2017).

    CAS  Google Scholar 

  101. Lv, S. W. et al. Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells. ACS Nano 10, 6201–6210 (2016). This paper describes a NIR light-responsive hydrogel platform for the highly efficient immunocapture and release of specific individual CTCs from the whole blood of patients with cancer.

    CAS  Google Scholar 

  102. Xing, R. T. et al. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 28, 3669–3676 (2016).

    CAS  Google Scholar 

  103. Schild, H. G. Poly (N-isopropylacrylamide) — experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992).

    CAS  Google Scholar 

  104. Sershen, S. R. et al. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv. Mater. 17, 1366–1368 (2005).

    CAS  Google Scholar 

  105. Zhou, Y. et al. Waveguiding microactuators based on a photothermally responsive nanocomposite hydrogel. Adv. Funct. Mater. 26, 5447–5452 (2016).

    CAS  Google Scholar 

  106. Shi, Q. et al. Photothermal surface plasmon resonance and interband transition-enhanced nanocomposite hydrogel actuators with hand-like dynamic manipulation. Adv. Opt. Mater. 5, 1700442 (2017).

    Google Scholar 

  107. Hauser, A. W., Evans, A. A., Na, J. H. & Hayward, R. C. Photothermally reprogrammable buckling of nanocomposite gel sheets. Angew. Chem. Int. Ed. 54, 5434–5437 (2015).

    CAS  Google Scholar 

  108. Zhu, Z. C., Senses, E., Akcora, P. & Sukhishvili, S. A. Programmable light-controlled shape changes in layered polymer nanocomposites. ACS Nano 6, 3152–3162 (2012).

    CAS  Google Scholar 

  109. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    CAS  Google Scholar 

  110. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    CAS  Google Scholar 

  111. Zhang, H. J. et al. Light-healable hard hydrogels through photothermally induced melting-crystallization phase transition. J. Mater. Chem. A 2, 13373–13379 (2014).

    CAS  Google Scholar 

  112. Zhang, H. J. & Zhao, Y. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Appl. Mater. Interfaces 5, 13069–13075 (2013).

    CAS  Google Scholar 

  113. Altuna, F. I. et al. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks. Mater. Res. Lett. 3, 045003 (2016).

    Google Scholar 

  114. Gonzalez-Rubio, G. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358, 640–644 (2017).

    CAS  Google Scholar 

  115. Zhao, Z., Fang, R., Rong, Q. & Liu, M. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv. Mater. 29, 1703045 (2017).

    Google Scholar 

  116. Draper, E. R. & Adams, D. J. Low-molecular-weight gels: the state of the art. Chem 3, 390–410 (2017).

    CAS  Google Scholar 

  117. Mapperson, T. Towards large scale fabrication of plasmonic nanomaterials by fluid-mediated forces. Thesis, Univ. Melbourne (2018).

Download references

Acknowledgements

I.P-S. and J.P-J. acknowledge funding from the Spanish MINECO (Grant # MAT2016-77809-R). C.K. and P.M. acknowledge funding from the Australian Research Council through CE170100026. L.M.L-M. acknowledges funding from the European Research Council (Advanced Grant Plasmaquo) and the Spanish MINECO (Grant # MAT2017-86659-R).

Author information

Authors and Affiliations

Authors

Contributions

C.K. prepared the section on data storage and LSPR sensing. I.P-S. and J.P-J. prepared the sections on sensing, imaging and photothermal applications. P.M. and L.M.L-M. selected topics and coordinated manuscript preparation. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Paul Mulvaney or Luis M. Liz-Marzán.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Seagate: www.seagate.com/es/es/our-story/data-age-2025

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastoriza-Santos, I., Kinnear, C., Pérez-Juste, J. et al. Plasmonic polymer nanocomposites. Nat Rev Mater 3, 375–391 (2018). https://doi.org/10.1038/s41578-018-0050-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0050-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing