Review Article | Published:

Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy

Nature Reviews Materialsvolume 3pages341353 (2018) | Download Citation

Abstract

Electronic structures are critical characteristics that determine the electrical, magnetic and optical properties of materials. With the capability of directly visualizing band dispersions and Fermi surfaces, angle-resolved photoemission spectroscopy (ARPES) has emerged as a powerful experimental tool to extract the electronic structures of materials and the coupling of these electronic structures to different degrees of freedom in crystal lattices. In the past three decades, advances in instrumentation and light sources have significantly improved the accuracy and efficiency of ARPES experiments. These advances have enabled the application of ARPES in novel material systems to aid our understanding of their physical properties and behaviours. In this Review, we give a brief introduction to the principles of ARPES and outline its applications in different material systems, with a focus on topological quantum materials and transition metal dichalcogenides.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Damascelli, A., Hussain, Z. & Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

  2. 2.

    Lu, D. et al. Angle-resolved photoemission studies of quantum materials. Annu. Rev. Condens. Matter Phys. 3, 129–167 (2012).

  3. 3.

    Elder, F., Gurewitsch, A., Langmuir, R. & Pollock, H. Radiation from electrons in a synchrotron. Phys. Rev. 71, 829 (1947).

  4. 4.

    Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 013106 (2017).

  5. 5.

    Koralek, J. D. et al. Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 78, 05390500 (2007).

  6. 6.

    Kiss, T. et al. A versatile system for ultrahigh resolution, low temperature, and polarization dependent Laser-angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 79, 023106 (2008).

  7. 7.

    Zhou, X. J. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 062101 (2018).

  8. 8.

    Pellegrini, C. X-Ray free-electron lasers: from dreams to reality. Phys. Scr. T169, 014004 (2016).

  9. 9.

    Hashimoto, M., Vishik, I. M., He, R. H., Devereaux, T. P. & Shen, Z. X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

  10. 10.

    Gedik, N. & Vishik, I. Photoemission of quantum materials. Nat. Phys. 13, 1029–1033 (2017).

  11. 11.

    Kordyuk, A. A. Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity. Low Temp. Phys. 41, 319 (2015).

  12. 12.

    Richard, P., Sato, T., Nakayama, K., Takahashi, T. & Ding, H. Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective. Rep. Prog. Phys. 74, 124512 (2011).

  13. 13.

    Ye, Z. R., Zhang, Y., Xie, B. P. & Feng, D. L. Angle-resolved photoemission spectroscopy study on iron-based superconductors. Chin. Phys. B 22, 087407 (2013).

  14. 14.

    Richard, P., Qian, T. & Ding, H. ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism. J. Phys. Condens. Matter 27, 293203 (2015).

  15. 15.

    Becquerel, A. E. Memoire sur les effects d’electriques produits sous l’influence des rayons solaires. C. R. Acad. Sci. 9, 561–567 (1839).

  16. 16.

    Hertz, H. R. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann. Phys. Chem. 31, 421–428 (1887).

  17. 17.

    Einstein, A. On a heuristic point of view concerning the production and transformation of light. Ann. Phys. 17, 132–148 (1905).

  18. 18.

    Hufner, S. Photoelectron spectroscopy: principles and applications (Springer, Berlin, 1996). This is an informative textbook on photoemission spectroscopy.

  19. 19.

    Anderson, P. W. Basic notions of condensed matter physics (Perseus, 1997).

  20. 20.

    Klitzing, K.v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).

  21. 21.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

  22. 22.

    Bellissard, J., van Elst, A. & Schulz-Baldes, H. The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373 (1994).

  23. 23.

    Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

  24. 24.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

  25. 25.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

  26. 26.

    Chen, Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy. Front. Phys. 7, 175–192 (2012).

  27. 27.

    Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

  28. 28.

    Xie, Z. et al. Orbital-selective spin texture and its manipulation in a topological insulator. Nat. Commun. 5, 3382 (2014).

  29. 29.

    Jozwiak, C. et al. Photoelectron spin-flipping and texture manipulation in a topological insulator. Nat. Phys. 9, 293–298 (2013).

  30. 30.

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

  31. 31.

    Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  32. 32.

    Konig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).This is an experimental demonstration of the QSH state in HgTe quantum wells.

  33. 33.

    Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

  34. 34.

    Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195321 (2009).

  35. 35.

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

  36. 36.

    Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).This is an ARPES study of a 3D topological insulator, Bi x Sb 1− x alloy, showing an odd number of Fermi crossings of the surface bands.

  37. 37.

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

  38. 38.

    Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator Bi2Te3. Science 325, 178–181 (2009).This is an ARPES study on the large-gap topological insulator Bi 2 Te 3 , showing a clear single surface Dirac cone in the bulk energy gap.

  39. 39.

    Yan, B. H. et al. Theoretical prediction of topological insulators in thallium-based III-V-VI2 ternary chalcogenides. EPL 90, 37002 (2010).

  40. 40.

    Lin, H. et al. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 105, 036404 (2010).

  41. 41.

    Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 9, 541–545 (2010).

  42. 42.

    Lin, H. et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9, 546–549 (2010).

  43. 43.

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

  44. 44.

    Statz, H., deMars, G. A., Davis, L. Jr & Adams, A. Jr Surface states on silicon and germanium surfaces. Phys. Rev. 101, 1272 (1956).

  45. 45.

    Chen, Y. L. et al. Massive Dirac Fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

  46. 46.

    R., Y. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

  47. 47.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

  48. 48.

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

  49. 49.

    Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

  50. 50.

    Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

  51. 51.

    Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat. Mater. 11, 1023–1027 (2012).

  52. 52.

    Tanaka, Y. et al. Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb1−xSnxTe. Phys. Rev. B 87, 155105 (2013).

  53. 53.

    Xu, S. Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3, 1192 (2012).

  54. 54.

    Liu, J. W. et al. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 13, 178–183 (2014).

  55. 55.

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

  56. 56.

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

  57. 57.

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal Na3Bi. Science 343, 864–867 (2014).This is an ARPES study on a TDS, showing linear dispersions of the bulk band along all three momentum directions.

  58. 58.

    Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

  59. 59.

    Xu, S. Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

  60. 60.

    Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5, 3786 (2014).

  61. 61.

    Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

  62. 62.

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

  63. 63.

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

  64. 64.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).This is a theoretical proposal of a TWS phase with bulk Weyl points connected by a surface Fermi arc.

  65. 65.

    Balents, L. Weyl electrons kiss. Physics 4, 36 (2011).

  66. 66.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  67. 67.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  68. 68.

    Huang, S. M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

  69. 69.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  70. 70.

    Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

  71. 71.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

  72. 72.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

  73. 73.

    Jia, S., Xu, S. Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

  74. 74.

    Yan, B. H. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

  75. 75.

    Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

  76. 76.

    Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

  77. 77.

    Ishizuka, H., Hayata, T., Ueda, M. & Nagaosa, N. Emergent electromagnetic induction and adiabatic charge pumping in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 216601 (2016).

  78. 78.

    Baireuther, P., Tworzydło, J., Breitkreiz, M., Adagideli, I. & Beenakker, C. W. J. Weyl-Majorana solenoid. New J. Phys. 19, 025006 (2017).

  79. 79.

    Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

  80. 80.

    Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2016).This ARPES study is on TWS family compounds, showing systematic band evolution (including Fermi arcs).

  81. 81.

    Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

  82. 82.

    Huang, X. C. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

  83. 83.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

  84. 84.

    Sun, Y. et al. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

  85. 85.

    Wang, Z. J. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

  86. 86.

    Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

  87. 87.

    Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

  88. 88.

    Deng, K. et al. Experimental obsrvation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

  89. 89.

    Haubold, E. et al. Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe4. Phys. Rev. B 95, 241108 (2017).

  90. 90.

    Razzoli, E. et al. Stable Weyl points, trivial surface states, and particle-hole compensation in WP2. Phys. Rev. B 97, 201103 (2018).

  91. 91.

    Kim, Y. et al. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

  92. 92.

    Yu, R. et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

  93. 93.

    Bzdusek, T. et al. Nodal-chain metals. Nature 538, 75–78 (2016).

  94. 94.

    Fang, C. et al. Topological nodal line semimetals. Chin. Phys. B 25, 117106 (2016).

  95. 95.

    Burkov, A. A. et al. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

  96. 96.

    Yang, S.-Y. et al. Symmetry-demanded topological nodal-line materials. Adv. Phys. 3, 1414631 (2018).

  97. 97.

    Kopnin, N. B. et al. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83, 220503 (2011).

  98. 98.

    Huh, Y. et al. Long-range Coulomb interaction in nodal-ring semimetals. Phys. Rev. B 93, 035138 (2016).

  99. 99.

    Ramamurthy, S. T. et al. Quasitopological electromagnetic response of line-node semimetals. Phys. Rev. B 95, 075138 (2017).

  100. 100.

    Chan, C.-K. et al. When chiral photons meet chiral Fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

  101. 101.

    Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).

  102. 102.

    Wu, Y. et al. Dirac node arcs in PtSn4. Nat. Phys. 12, 667–671 (2016).

  103. 103.

    Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

  104. 104.

    Chen, C. et al. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M = Hf. Zr). Phys. Rev. B 95, 125126 (2017).

  105. 105.

    Ekahana, S. A. et al. Observation of nodal line in non-symmorphic topological semimetal InBi. New J. Phys. 19, 065007 (2017).

  106. 106.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

  107. 107.

    Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

  108. 108.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

  109. 109.

    Zhang, H. et al. Quantized Majorana conductance. Nature 556, 74–79 (2018).

  110. 110.

    Wang, M. X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

  111. 111.

    He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357, 294–299 (2017).

  112. 112.

    Wang, E. Y. et al. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 9, 621–625 (2013).

  113. 113.

    Xu, X.-Y. et al. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943–950 (2014).

  114. 114.

    Sasaki, S. et al. Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001 (2011).

  115. 115.

    Wray, L. A. et al. Observation of topological order in a superconducting doped topological insulator. Nat. Phys. 6, 855–859 (2010).

  116. 116.

    Sato, T. et al. Fermiology of the strongly spin-orbit coupled superconductor Sn1−xInxTe: implications for topological superconductivity. Phys. Rev. Lett. 110, 206804 (2013).

  117. 117.

    Chen, Y. L. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010).

  118. 118.

    Zhang, J. L. et al. Pressure-induced superconductivity in topological parent compound Bi2Te3. Proc. Natl Acad. Sci. USA 108, 24–28 (2011).

  119. 119.

    Tafti, F. F. et al. Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: a candidate for topological superconductivity. Phys. Rev. B 87, 184504 (2013).

  120. 120.

    Tsutsumi, Y. et al. UPt3 as a topological crystalline superconductor. J. Phys. Soc. Jpn 82, 113707 (2013).

  121. 121.

    Frigeri, P. A. et al. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

  122. 122.

    Yuan, H. Q. et al. <ts> S-Wave spin-triplet order in superconductors without inversion symmetry: Li2Pd3B and Li2Pt3B. Phys. Rev. Lett. 97, 017006 (2006).

  123. 123.

    Xu, G. et al. Topological superconductivity on the surface of Fe-based superconductors. Phys. Rev. Lett. 117, 047001 (2016).

  124. 124.

    Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

  125. 125.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

  126. 126.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  127. 127.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  128. 128.

    Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

  129. 129.

    Wang, H. T. et al. Physcial and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664 (2015).

  130. 130.

    Mo, S.-K. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials. Nano Covergence. 4, 6 (2017).

  131. 131.

    Lin, Y.-C. et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

  132. 132.

    Xu, D.-Y. et al. Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites. Nanotechnol. 27, 385604 (2016).

  133. 133.

    Mouri, S. et al. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013).

  134. 134.

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

  135. 135.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

  136. 136.

    Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  137. 137.

    Yuan, H. et al. Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Lett. 16, 4738–4745 (2016).This is a comprehensive ARPES study on typical transition metal chalcogenide compounds and the evolution of their band structure from bulk crystals to monolayer thin films.

  138. 138.

    Jin, W. C. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

  139. 139.

    Alidoust, N. et al. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat. Commun. 5, 4673 (2014).

  140. 140.

    Riley, J. M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 10, 835–839 (2014).

  141. 141.

    Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

  142. 142.

    Razzoli, E. et al. Selective probing of hidden spin-solarized states in inversion-symmetric bulk MoS2. Phys. Rev. Lett. 118, 086402 (2017).

  143. 143.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

  144. 144.

    Komesu, T. et al. Occupied and unoccupied electronic structure of Na doped MoS2 (0001). Appl. Phys. Lett. 105, 241602 (2014).

  145. 145.

    Gao, S. Y. & Yang, L. Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations. Phys. Rev. B 96, 155410 (2017).

  146. 146.

    Ye, Z. L. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

  147. 147.

    Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014).

  148. 148.

    Avila, J. et al. ANTARES, a scanning photoemission microscopy beamline at SOLEIL. J. Phys. Conf. Ser. 425, 192023 (2013).

  149. 149.

    Dudin, P. et al. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra. J. Synchrotron Radiat. 17, 445–450 (2010).

  150. 150.

    Rotenberg, E. & Bostwick, A. microARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains. J. Synchrotron Radiat. 21, 1048–1056 (2014).

  151. 151.

    Cattelan, M. & Fox, N. A. A perspective on the application of spatially resolved ARPES for 2D materials. Nanomaterials 8, 284 (2018).

  152. 152.

    Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

  153. 153.

    Pierucci, D. et al. Band Alignment and Minigaps in Monolayer MoS2 -graphene van der Waals heterostructures. Nano Lett. 16, 4054–4061 (2016).

  154. 154.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

  155. 155.

    Lian, C. et al. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett. 18, 2924–2929 (2018).

  156. 156.

    Kusmartseva, A. F. et al. Pressure induced superconductivity in pristine 1T−TiSe2. Phys. Rev. Lett. 103, 236401 (2009).

  157. 157.

    Wei, M. J. et al. Manipulating charge density wave order in monolayer 1T−TiSe2 by strain and charge doping: a first-principles investigation. Phys. Rev. B 96, 165404 (2017).

  158. 158.

    Yokota, K. et al. Superconductivity in the quasi-two-dimensional conductor 2H-TaSe2. Physica B Condens. Matter 284–288, 551–552 (2000).

  159. 159.

    Calandra, M. et al. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2. Phys. Rev. B 80, 241108 (2009).

  160. 160.

    Chen, P. et al. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 6, 8943 (2015).

  161. 161.

    Yan, J. et al. Structural, electronic and vibrational properties of few-layer 2H- and 1T-TaSe2. Sci. Rep. 5, 16646 (2015).

  162. 162.

    Ugeda, M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2016).

  163. 163.

    Terashima, K. et al. Charge-density wave transition of 1T-VSe2 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 68, 155108 (2003).

  164. 164.

    Li, Y. W. et al. Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2H-TaSe2. Phys. Rev. B 97, 115118 (2018).

  165. 165.

    Rahn, D. et al. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1K. Phys. Rev. B 85, 224532 (2012).

  166. 166.

    Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).

  167. 167.

    Nakata, Y. et al. Anisotropic band splitting in monolayer NbSe2: implications for superconductivity and charge density wave. NPJ 2D Mater. Appl. 2, 12 (2018).

  168. 168.

    Yan, M. Z. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 8, 257 (2017).

  169. 169.

    Li, Y. W. et al. Topological origin of the type-II Dirac fermions in PtSe2. Phys. Rev. Mater. 1, 074202 (2017).

  170. 170.

    Liu, Y. et al. Identification of topological surface state in PdTe2 superconductor by angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 32, 067303 (2015).

  171. 171.

    Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

  172. 172.

    Qian, X. F., Liu, J. W., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

  173. 173.

    Tang, S. et al. Quantum spin Hall state in monolayer 1Tʹ-WTe2. Nat. Phys. 13, 683–687 (2017).This ARPES study shows topological non-trivial electronic structures in a monolayer of the transition metal chalcogenide compound WTe 2.

  174. 174.

    Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

  175. 175.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 Kelvin in a Monolayer crystal. Science 359, 76–79 (2018).

  176. 176.

    Riley, J. et al. Negative electronic compressibility and tunable spin splitting in WSe2. Nat. Nanotechnol. 10, 1043–1047 (2015).

  177. 177.

    Ali, M. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

  178. 178.

    Borisenko, S. V. et al. Angle-resolved photoemission spectroscopy at ultra-low temperatures. J. Vis. Exp. 68, 50129 (2012).

  179. 179.

    Zhou, Y. et al. Sixth harmonic of a Nd: YVO4 laser generation in KBBF for ARPES. Chin. Phys. Lett. 25, 963 (2008).

  180. 180.

    Okazaki, K. et al. Octet-line node structure of superconducting order parameter in KFe2As2. Science 337, 1314–1317 (2012).

  181. 181.

    [No authors listed]. ARTOF-2 for angle-resolved photoemission spectroscopy. Scienta Omicron. https://www.scientaomicron.com/en/products/358/1215 (2018).

  182. 182.

    Zhou, X. J. et al. Space charge effect and mirror charge effect in photoemission spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 142, 27–38 (2005).

Download references

Acknowledgements

Y.L.C. acknowledges support from the Engineering and Physical Sciences Research Council Platform Grant (Grant No. EP/M020517/1). H.F.Y. acknowledges support from China Postdoctoral Science Foundation (Grant No. 2017M611635) and the National Science Foundation of China (Grant No. 11227902). C.F.Z. acknowledges support from the National Science Foundation of China (Grant No. 11774427).

Author information

Affiliations

  1. School of Physical Science and Technology, ShanghaiTech University, Shanghai, China

    • Haifeng Yang
    • , Aiji Liang
    •  & Yulin Chen
  2. Department of Physics, University of Oxford, Oxford, UK

    • Haifeng Yang
    • , Cheng Chen
    • , Chaofan Zhang
    • , Niels B. M. Schroeter
    •  & Yulin Chen
  3. College of Advanced Interdisciplinary Studies and Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha, China

    • Chaofan Zhang

Authors

  1. Search for Haifeng Yang in:

  2. Search for Aiji Liang in:

  3. Search for Cheng Chen in:

  4. Search for Chaofan Zhang in:

  5. Search for Niels B. M. Schroeter in:

  6. Search for Yulin Chen in:

Contributions

All authors contributed to the discussion and writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Yulin Chen.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41578-018-0047-2