Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy

Abstract

Electronic structures are critical characteristics that determine the electrical, magnetic and optical properties of materials. With the capability of directly visualizing band dispersions and Fermi surfaces, angle-resolved photoemission spectroscopy (ARPES) has emerged as a powerful experimental tool to extract the electronic structures of materials and the coupling of these electronic structures to different degrees of freedom in crystal lattices. In the past three decades, advances in instrumentation and light sources have significantly improved the accuracy and efficiency of ARPES experiments. These advances have enabled the application of ARPES in novel material systems to aid our understanding of their physical properties and behaviours. In this Review, we give a brief introduction to the principles of ARPES and outline its applications in different material systems, with a focus on topological quantum materials and transition metal dichalcogenides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: An introduction to the ARPES technique.
Fig. 2: ARPES studies of topological insulators.
Fig. 3: ARPES studies of topological Dirac semimetals.
Fig. 4: ARPES studies of topological Weyl semimetals.
Fig. 5: ARPES studies of transition metal dichalcogenides.
Fig. 6: Micro-ARPES studies of exfoliated MoS2 thin flakes.
Fig. 7: ARPES studies of transition metal dichalcogenide heterostructures and CDWs.

References

  1. 1.

    Damascelli, A., Hussain, Z. & Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    CAS  Google Scholar 

  2. 2.

    Lu, D. et al. Angle-resolved photoemission studies of quantum materials. Annu. Rev. Condens. Matter Phys. 3, 129–167 (2012).

    CAS  Google Scholar 

  3. 3.

    Elder, F., Gurewitsch, A., Langmuir, R. & Pollock, H. Radiation from electrons in a synchrotron. Phys. Rev. 71, 829 (1947).

    CAS  Google Scholar 

  4. 4.

    Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 013106 (2017).

    CAS  Google Scholar 

  5. 5.

    Koralek, J. D. et al. Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 78, 05390500 (2007).

    CAS  Google Scholar 

  6. 6.

    Kiss, T. et al. A versatile system for ultrahigh resolution, low temperature, and polarization dependent Laser-angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 79, 023106 (2008).

    CAS  Google Scholar 

  7. 7.

    Zhou, X. J. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 062101 (2018).

    Google Scholar 

  8. 8.

    Pellegrini, C. X-Ray free-electron lasers: from dreams to reality. Phys. Scr. T169, 014004 (2016).

    Google Scholar 

  9. 9.

    Hashimoto, M., Vishik, I. M., He, R. H., Devereaux, T. P. & Shen, Z. X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

    CAS  Google Scholar 

  10. 10.

    Gedik, N. & Vishik, I. Photoemission of quantum materials. Nat. Phys. 13, 1029–1033 (2017).

    CAS  Google Scholar 

  11. 11.

    Kordyuk, A. A. Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity. Low Temp. Phys. 41, 319 (2015).

    CAS  Google Scholar 

  12. 12.

    Richard, P., Sato, T., Nakayama, K., Takahashi, T. & Ding, H. Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective. Rep. Prog. Phys. 74, 124512 (2011).

    Google Scholar 

  13. 13.

    Ye, Z. R., Zhang, Y., Xie, B. P. & Feng, D. L. Angle-resolved photoemission spectroscopy study on iron-based superconductors. Chin. Phys. B 22, 087407 (2013).

    Google Scholar 

  14. 14.

    Richard, P., Qian, T. & Ding, H. ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism. J. Phys. Condens. Matter 27, 293203 (2015).

    CAS  Google Scholar 

  15. 15.

    Becquerel, A. E. Memoire sur les effects d’electriques produits sous l’influence des rayons solaires. C. R. Acad. Sci. 9, 561–567 (1839).

    Google Scholar 

  16. 16.

    Hertz, H. R. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann. Phys. Chem. 31, 421–428 (1887).

    Google Scholar 

  17. 17.

    Einstein, A. On a heuristic point of view concerning the production and transformation of light. Ann. Phys. 17, 132–148 (1905).

    CAS  Google Scholar 

  18. 18.

    Hufner, S. Photoelectron spectroscopy: principles and applications (Springer, Berlin, 1996). This is an informative textbook on photoemission spectroscopy.

    Google Scholar 

  19. 19.

    Anderson, P. W. Basic notions of condensed matter physics (Perseus, 1997).

  20. 20.

    Klitzing, K.v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).

    Google Scholar 

  21. 21.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    CAS  Google Scholar 

  22. 22.

    Bellissard, J., van Elst, A. & Schulz-Baldes, H. The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373 (1994).

    Google Scholar 

  23. 23.

    Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    CAS  Google Scholar 

  24. 24.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    CAS  Google Scholar 

  25. 25.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Google Scholar 

  26. 26.

    Chen, Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy. Front. Phys. 7, 175–192 (2012).

    Google Scholar 

  27. 27.

    Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    CAS  Google Scholar 

  28. 28.

    Xie, Z. et al. Orbital-selective spin texture and its manipulation in a topological insulator. Nat. Commun. 5, 3382 (2014).

    Google Scholar 

  29. 29.

    Jozwiak, C. et al. Photoelectron spin-flipping and texture manipulation in a topological insulator. Nat. Phys. 9, 293–298 (2013).

    CAS  Google Scholar 

  30. 30.

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Google Scholar 

  31. 31.

    Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Google Scholar 

  32. 32.

    Konig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).This is an experimental demonstration of the QSH state in HgTe quantum wells.

    Google Scholar 

  33. 33.

    Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Google Scholar 

  34. 34.

    Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195321 (2009).

    Google Scholar 

  35. 35.

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Google Scholar 

  36. 36.

    Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).This is an ARPES study of a 3D topological insulator, Bi x Sb 1− x alloy, showing an odd number of Fermi crossings of the surface bands.

    CAS  Google Scholar 

  37. 37.

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    CAS  Google Scholar 

  38. 38.

    Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator Bi2Te3. Science 325, 178–181 (2009).This is an ARPES study on the large-gap topological insulator Bi 2 Te 3 , showing a clear single surface Dirac cone in the bulk energy gap.

    CAS  Google Scholar 

  39. 39.

    Yan, B. H. et al. Theoretical prediction of topological insulators in thallium-based III-V-VI2 ternary chalcogenides. EPL 90, 37002 (2010).

    Google Scholar 

  40. 40.

    Lin, H. et al. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 105, 036404 (2010).

    Google Scholar 

  41. 41.

    Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 9, 541–545 (2010).

    CAS  Google Scholar 

  42. 42.

    Lin, H. et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9, 546–549 (2010).

    CAS  Google Scholar 

  43. 43.

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Google Scholar 

  44. 44.

    Statz, H., deMars, G. A., Davis, L. Jr & Adams, A. Jr Surface states on silicon and germanium surfaces. Phys. Rev. 101, 1272 (1956).

    CAS  Google Scholar 

  45. 45.

    Chen, Y. L. et al. Massive Dirac Fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    CAS  Google Scholar 

  46. 46.

    R., Y. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Google Scholar 

  47. 47.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Google Scholar 

  48. 48.

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Google Scholar 

  49. 49.

    Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

    CAS  Google Scholar 

  50. 50.

    Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

    CAS  Google Scholar 

  51. 51.

    Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat. Mater. 11, 1023–1027 (2012).

    CAS  Google Scholar 

  52. 52.

    Tanaka, Y. et al. Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb1−xSnxTe. Phys. Rev. B 87, 155105 (2013).

    Google Scholar 

  53. 53.

    Xu, S. Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3, 1192 (2012).

    Google Scholar 

  54. 54.

    Liu, J. W. et al. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 13, 178–183 (2014).

    CAS  Google Scholar 

  55. 55.

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Google Scholar 

  56. 56.

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    Google Scholar 

  57. 57.

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal Na3Bi. Science 343, 864–867 (2014).This is an ARPES study on a TDS, showing linear dispersions of the bulk band along all three momentum directions.

    CAS  Google Scholar 

  58. 58.

    Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

    CAS  Google Scholar 

  59. 59.

    Xu, S. Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

    CAS  Google Scholar 

  60. 60.

    Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5, 3786 (2014).

    CAS  Google Scholar 

  61. 61.

    Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Google Scholar 

  62. 62.

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

    CAS  Google Scholar 

  63. 63.

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Google Scholar 

  64. 64.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).This is a theoretical proposal of a TWS phase with bulk Weyl points connected by a surface Fermi arc.

    Google Scholar 

  65. 65.

    Balents, L. Weyl electrons kiss. Physics 4, 36 (2011).

    Google Scholar 

  66. 66.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    CAS  Google Scholar 

  67. 67.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  68. 68.

    Huang, S. M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    CAS  Google Scholar 

  69. 69.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Google Scholar 

  70. 70.

    Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Google Scholar 

  71. 71.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    CAS  Google Scholar 

  72. 72.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  73. 73.

    Jia, S., Xu, S. Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    CAS  Google Scholar 

  74. 74.

    Yan, B. H. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Google Scholar 

  75. 75.

    Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    CAS  Google Scholar 

  76. 76.

    Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  77. 77.

    Ishizuka, H., Hayata, T., Ueda, M. & Nagaosa, N. Emergent electromagnetic induction and adiabatic charge pumping in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 216601 (2016).

    Google Scholar 

  78. 78.

    Baireuther, P., Tworzydło, J., Breitkreiz, M., Adagideli, I. & Beenakker, C. W. J. Weyl-Majorana solenoid. New J. Phys. 19, 025006 (2017).

    Google Scholar 

  79. 79.

    Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Google Scholar 

  80. 80.

    Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2016).This ARPES study is on TWS family compounds, showing systematic band evolution (including Fermi arcs).

    CAS  Google Scholar 

  81. 81.

    Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    CAS  Google Scholar 

  82. 82.

    Huang, X. C. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  83. 83.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    CAS  Google Scholar 

  84. 84.

    Sun, Y. et al. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    Google Scholar 

  85. 85.

    Wang, Z. J. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Google Scholar 

  86. 86.

    Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    CAS  Google Scholar 

  87. 87.

    Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

    CAS  Google Scholar 

  88. 88.

    Deng, K. et al. Experimental obsrvation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    CAS  Google Scholar 

  89. 89.

    Haubold, E. et al. Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe4. Phys. Rev. B 95, 241108 (2017).

    Google Scholar 

  90. 90.

    Razzoli, E. et al. Stable Weyl points, trivial surface states, and particle-hole compensation in WP2. Phys. Rev. B 97, 201103 (2018).

    Google Scholar 

  91. 91.

    Kim, Y. et al. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Google Scholar 

  92. 92.

    Yu, R. et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

    Google Scholar 

  93. 93.

    Bzdusek, T. et al. Nodal-chain metals. Nature 538, 75–78 (2016).

    CAS  Google Scholar 

  94. 94.

    Fang, C. et al. Topological nodal line semimetals. Chin. Phys. B 25, 117106 (2016).

    Google Scholar 

  95. 95.

    Burkov, A. A. et al. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Google Scholar 

  96. 96.

    Yang, S.-Y. et al. Symmetry-demanded topological nodal-line materials. Adv. Phys. 3, 1414631 (2018).

    Google Scholar 

  97. 97.

    Kopnin, N. B. et al. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83, 220503 (2011).

    Google Scholar 

  98. 98.

    Huh, Y. et al. Long-range Coulomb interaction in nodal-ring semimetals. Phys. Rev. B 93, 035138 (2016).

    Google Scholar 

  99. 99.

    Ramamurthy, S. T. et al. Quasitopological electromagnetic response of line-node semimetals. Phys. Rev. B 95, 075138 (2017).

    Google Scholar 

  100. 100.

    Chan, C.-K. et al. When chiral photons meet chiral Fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    Google Scholar 

  101. 101.

    Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).

    CAS  Google Scholar 

  102. 102.

    Wu, Y. et al. Dirac node arcs in PtSn4. Nat. Phys. 12, 667–671 (2016).

    CAS  Google Scholar 

  103. 103.

    Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

    CAS  Google Scholar 

  104. 104.

    Chen, C. et al. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M = Hf. Zr). Phys. Rev. B 95, 125126 (2017).

    Google Scholar 

  105. 105.

    Ekahana, S. A. et al. Observation of nodal line in non-symmorphic topological semimetal InBi. New J. Phys. 19, 065007 (2017).

    Google Scholar 

  106. 106.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Google Scholar 

  107. 107.

    Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    CAS  Google Scholar 

  108. 108.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    CAS  Google Scholar 

  109. 109.

    Zhang, H. et al. Quantized Majorana conductance. Nature 556, 74–79 (2018).

    CAS  Google Scholar 

  110. 110.

    Wang, M. X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

    CAS  Google Scholar 

  111. 111.

    He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357, 294–299 (2017).

    CAS  Google Scholar 

  112. 112.

    Wang, E. Y. et al. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 9, 621–625 (2013).

    CAS  Google Scholar 

  113. 113.

    Xu, X.-Y. et al. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943–950 (2014).

    CAS  Google Scholar 

  114. 114.

    Sasaki, S. et al. Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001 (2011).

    Google Scholar 

  115. 115.

    Wray, L. A. et al. Observation of topological order in a superconducting doped topological insulator. Nat. Phys. 6, 855–859 (2010).

    CAS  Google Scholar 

  116. 116.

    Sato, T. et al. Fermiology of the strongly spin-orbit coupled superconductor Sn1−xInxTe: implications for topological superconductivity. Phys. Rev. Lett. 110, 206804 (2013).

    CAS  Google Scholar 

  117. 117.

    Chen, Y. L. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010).

    CAS  Google Scholar 

  118. 118.

    Zhang, J. L. et al. Pressure-induced superconductivity in topological parent compound Bi2Te3. Proc. Natl Acad. Sci. USA 108, 24–28 (2011).

    CAS  Google Scholar 

  119. 119.

    Tafti, F. F. et al. Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: a candidate for topological superconductivity. Phys. Rev. B 87, 184504 (2013).

    Google Scholar 

  120. 120.

    Tsutsumi, Y. et al. UPt3 as a topological crystalline superconductor. J. Phys. Soc. Jpn 82, 113707 (2013).

    Google Scholar 

  121. 121.

    Frigeri, P. A. et al. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

    CAS  Google Scholar 

  122. 122.

    Yuan, H. Q. et al. <ts> S-Wave spin-triplet order in superconductors without inversion symmetry: Li2Pd3B and Li2Pt3B. Phys. Rev. Lett. 97, 017006 (2006).

    CAS  Google Scholar 

  123. 123.

    Xu, G. et al. Topological superconductivity on the surface of Fe-based superconductors. Phys. Rev. Lett. 117, 047001 (2016).

    Google Scholar 

  124. 124.

    Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Google Scholar 

  125. 125.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  126. 126.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  127. 127.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  128. 128.

    Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Google Scholar 

  129. 129.

    Wang, H. T. et al. Physcial and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664 (2015).

    CAS  Google Scholar 

  130. 130.

    Mo, S.-K. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials. Nano Covergence. 4, 6 (2017).

    Google Scholar 

  131. 131.

    Lin, Y.-C. et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    CAS  Google Scholar 

  132. 132.

    Xu, D.-Y. et al. Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites. Nanotechnol. 27, 385604 (2016).

    Google Scholar 

  133. 133.

    Mouri, S. et al. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013).

    CAS  Google Scholar 

  134. 134.

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    CAS  Google Scholar 

  135. 135.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    CAS  Google Scholar 

  136. 136.

    Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  137. 137.

    Yuan, H. et al. Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Lett. 16, 4738–4745 (2016).This is a comprehensive ARPES study on typical transition metal chalcogenide compounds and the evolution of their band structure from bulk crystals to monolayer thin films.

    CAS  Google Scholar 

  138. 138.

    Jin, W. C. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

    Google Scholar 

  139. 139.

    Alidoust, N. et al. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat. Commun. 5, 4673 (2014).

    CAS  Google Scholar 

  140. 140.

    Riley, J. M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 10, 835–839 (2014).

    CAS  Google Scholar 

  141. 141.

    Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    CAS  Google Scholar 

  142. 142.

    Razzoli, E. et al. Selective probing of hidden spin-solarized states in inversion-symmetric bulk MoS2. Phys. Rev. Lett. 118, 086402 (2017).

    CAS  Google Scholar 

  143. 143.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS  Google Scholar 

  144. 144.

    Komesu, T. et al. Occupied and unoccupied electronic structure of Na doped MoS2 (0001). Appl. Phys. Lett. 105, 241602 (2014).

    Google Scholar 

  145. 145.

    Gao, S. Y. & Yang, L. Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations. Phys. Rev. B 96, 155410 (2017).

    Google Scholar 

  146. 146.

    Ye, Z. L. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    CAS  Google Scholar 

  147. 147.

    Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014).

    CAS  Google Scholar 

  148. 148.

    Avila, J. et al. ANTARES, a scanning photoemission microscopy beamline at SOLEIL. J. Phys. Conf. Ser. 425, 192023 (2013).

    Google Scholar 

  149. 149.

    Dudin, P. et al. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra. J. Synchrotron Radiat. 17, 445–450 (2010).

    CAS  Google Scholar 

  150. 150.

    Rotenberg, E. & Bostwick, A. microARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains. J. Synchrotron Radiat. 21, 1048–1056 (2014).

    CAS  Google Scholar 

  151. 151.

    Cattelan, M. & Fox, N. A. A perspective on the application of spatially resolved ARPES for 2D materials. Nanomaterials 8, 284 (2018).

    Google Scholar 

  152. 152.

    Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Google Scholar 

  153. 153.

    Pierucci, D. et al. Band Alignment and Minigaps in Monolayer MoS2 -graphene van der Waals heterostructures. Nano Lett. 16, 4054–4061 (2016).

    CAS  Google Scholar 

  154. 154.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  155. 155.

    Lian, C. et al. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett. 18, 2924–2929 (2018).

    CAS  Google Scholar 

  156. 156.

    Kusmartseva, A. F. et al. Pressure induced superconductivity in pristine 1T−TiSe2. Phys. Rev. Lett. 103, 236401 (2009).

    CAS  Google Scholar 

  157. 157.

    Wei, M. J. et al. Manipulating charge density wave order in monolayer 1T−TiSe2 by strain and charge doping: a first-principles investigation. Phys. Rev. B 96, 165404 (2017).

    Google Scholar 

  158. 158.

    Yokota, K. et al. Superconductivity in the quasi-two-dimensional conductor 2H-TaSe2. Physica B Condens. Matter 284–288, 551–552 (2000).

    Google Scholar 

  159. 159.

    Calandra, M. et al. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2. Phys. Rev. B 80, 241108 (2009).

    Google Scholar 

  160. 160.

    Chen, P. et al. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 6, 8943 (2015).

    CAS  Google Scholar 

  161. 161.

    Yan, J. et al. Structural, electronic and vibrational properties of few-layer 2H- and 1T-TaSe2. Sci. Rep. 5, 16646 (2015).

    CAS  Google Scholar 

  162. 162.

    Ugeda, M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2016).

    CAS  Google Scholar 

  163. 163.

    Terashima, K. et al. Charge-density wave transition of 1T-VSe2 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 68, 155108 (2003).

    Google Scholar 

  164. 164.

    Li, Y. W. et al. Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2H-TaSe2. Phys. Rev. B 97, 115118 (2018).

    Google Scholar 

  165. 165.

    Rahn, D. et al. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1K. Phys. Rev. B 85, 224532 (2012).

    Google Scholar 

  166. 166.

    Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).

    CAS  Google Scholar 

  167. 167.

    Nakata, Y. et al. Anisotropic band splitting in monolayer NbSe2: implications for superconductivity and charge density wave. NPJ 2D Mater. Appl. 2, 12 (2018).

    Google Scholar 

  168. 168.

    Yan, M. Z. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 8, 257 (2017).

    Google Scholar 

  169. 169.

    Li, Y. W. et al. Topological origin of the type-II Dirac fermions in PtSe2. Phys. Rev. Mater. 1, 074202 (2017).

    Google Scholar 

  170. 170.

    Liu, Y. et al. Identification of topological surface state in PdTe2 superconductor by angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 32, 067303 (2015).

    Google Scholar 

  171. 171.

    Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    CAS  Google Scholar 

  172. 172.

    Qian, X. F., Liu, J. W., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Google Scholar 

  173. 173.

    Tang, S. et al. Quantum spin Hall state in monolayer 1Tʹ-WTe2. Nat. Phys. 13, 683–687 (2017).This ARPES study shows topological non-trivial electronic structures in a monolayer of the transition metal chalcogenide compound WTe 2.

    CAS  Google Scholar 

  174. 174.

    Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    CAS  Google Scholar 

  175. 175.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 Kelvin in a Monolayer crystal. Science 359, 76–79 (2018).

    CAS  Google Scholar 

  176. 176.

    Riley, J. et al. Negative electronic compressibility and tunable spin splitting in WSe2. Nat. Nanotechnol. 10, 1043–1047 (2015).

    CAS  Google Scholar 

  177. 177.

    Ali, M. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    CAS  Google Scholar 

  178. 178.

    Borisenko, S. V. et al. Angle-resolved photoemission spectroscopy at ultra-low temperatures. J. Vis. Exp. 68, 50129 (2012).

    Google Scholar 

  179. 179.

    Zhou, Y. et al. Sixth harmonic of a Nd: YVO4 laser generation in KBBF for ARPES. Chin. Phys. Lett. 25, 963 (2008).

    CAS  Google Scholar 

  180. 180.

    Okazaki, K. et al. Octet-line node structure of superconducting order parameter in KFe2As2. Science 337, 1314–1317 (2012).

    CAS  Google Scholar 

  181. 181.

    [No authors listed]. ARTOF-2 for angle-resolved photoemission spectroscopy. Scienta Omicron. https://www.scientaomicron.com/en/products/358/1215 (2018).

  182. 182.

    Zhou, X. J. et al. Space charge effect and mirror charge effect in photoemission spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 142, 27–38 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

Y.L.C. acknowledges support from the Engineering and Physical Sciences Research Council Platform Grant (Grant No. EP/M020517/1). H.F.Y. acknowledges support from China Postdoctoral Science Foundation (Grant No. 2017M611635) and the National Science Foundation of China (Grant No. 11227902). C.F.Z. acknowledges support from the National Science Foundation of China (Grant No. 11774427).

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Yulin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liang, A., Chen, C. et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat Rev Mater 3, 341–353 (2018). https://doi.org/10.1038/s41578-018-0047-2

Download citation

Further reading