Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Theoretical understanding of photon spectroscopies in correlated materials in and out of equilibrium

Abstract

Photon-based spectroscopies have had a significant impact on both fundamental science and applications by providing an efficient approach to investigate the microscopic physics of materials. Together with the development of synchrotron X-ray techniques, theoretical understanding of the spectroscopies themselves and the underlying physics that they reveal has progressed through advances in numerical methods and scientific computing. In this Review, we provide an overview of theories for angle-resolved photoemission spectroscopy and resonant inelastic X-ray scattering applied to quantum materials. First, we discuss methods for studying equilibrium spectroscopies, including first-principles approaches, numerical many-body methods and a few analytical advances. Second, we assess the recent development of ultrafast techniques for out-of-equilibrium spectroscopies, from characterizing equilibrium properties to generating transient or metastable states, mainly from a theoretical point of view. Finally, we identify the main challenges and provide an outlook for the future direction of the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Theoretical evaluation of spectroscopies.
Fig. 2: Ab initio evaluation of the electronic structure.
Fig. 3: Feynman diagrams for RIXS processes and approximations.
Fig. 4: Theoretical simulations of RIXS highlighting various elementary excitations in cuprates.
Fig. 5: Accessing physics out of equilibrium.
Fig. 6: Pumped-induced Floquet physics.
Fig. 7: Non-equilibrium excitations and phase change.

References

  1. 1.

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    Fadley, C. S. X-Ray photoelectron spectroscopy: progress and perspectives. J. Electron. Spectrosc. 178–179, 2–32 (2010).

    Article  CAS  Google Scholar 

  3. 3.

    Pendry, J. B. Theory of photoemission. Surf. Sci. 57, 679–705 (1976).

    CAS  Article  Google Scholar 

  4. 4.

    Borstel, G. Theoretical aspects of photoemission. Appl. Phys. A 38, 193–204 (1985).

    Article  Google Scholar 

  5. 5.

    Umari, P., Stenuit, G. & Baroni, S. GW quasiparticle spectra from occupied states only. Phys. Rev. B 81, 115104 (2010).

    Article  CAS  Google Scholar 

  6. 6.

    Lambert, H. & Giustino, F. Ab initio Sternheimer-GW method for quasiparticle calculations using plane waves. Phys. Rev. B 88, 075117 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    Liu, P., Kaltak, M., Klimeš, J. & Kresse, G. Cubic scaling GW: towards fast quasiparticle calculations. Phys. Rev. B 94, 165109 (2016).

    Article  CAS  Google Scholar 

  8. 8.

    Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    Article  Google Scholar 

  9. 9.

    Hedin, L. On correlation effects in electron spectroscopies and the GW approximation. J. Phys. Condens. Matter 489, R489–R528 (1999).

    Article  Google Scholar 

  10. 10.

    Reining, L. The GW approximation: content, successes and limitations. WIRES Comput. Mol. Sci. 8, e1344 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Bernardi, M., Vigil-Fowler, D., Lischner, J., Neaton, J. B. & Louie, S. G. Ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon. Phys. Rev. Lett. 112, 257402 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    Story, S. M., Kas, J. J., Vila, F. D., Verstraete, M. J. & Rehr, J. J. Cumulant expansion for phonon contributions to the electron spectral function. Phys. Rev. B 90, 195135 (2014).

    Article  CAS  Google Scholar 

  13. 13.

    Poncé, S., Margine, E. R., Verdi, C. & Giustino, F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Margine, E. R., Lambert, H. & Giustino, F. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene. Sci. Rep. 6, 21414 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Sanna, A. et al. Ab initio Eliashberg theory: making genuine predictions of superconducting features. J. Phys. Soc. Jpn 87, 041012 (2018).

    Article  Google Scholar 

  16. 16.

    Guzzo, M. et al. Valence electron photoemission spectrum of semiconductors: ab initio description of multiple satellites. Phys. Rev. Lett. 107, 166401 (2011).

    Article  CAS  Google Scholar 

  17. 17.

    Lischner, J., Vigil-Fowler, D. & Louie, S. G. Physical origin of satellites in photoemission of doped graphene: an ab initio GW plus cumulant study. Phys. Rev. Lett. 110, 146801 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    Kas, J. J., Rehr, J. J. & Reining, L. Cumulant expansion of the retarded one-electron Green function. Phys. Rev. B 90, 085112 (2014).

    Article  CAS  Google Scholar 

  19. 19.

    Anisimov, V. I. & Lukoyanov, A. V. Investigation of real materials with strong electronic correlations by the LDA+DMFT method. Acta Crystallogr. C 70, 137–159 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Minár, J., Braun, J., Mankovsky, S. & Ebert, H. Calculation of angle-resolved photo emission spectra within the one-step model of photo emission — recent developments. J. Electron. Spectrosc. 184, 91–99 (2011).

    Article  CAS  Google Scholar 

  22. 22.

    Biermann, S. Dynamical screening effects in correlated electron materials — a progress report on combined many-body perturbation and dynamical mean field theory: ‘GW + DMFT’. J. Phys. Condens. Matter 26, 173202 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

    CAS  Article  Google Scholar 

  24. 24.

    Foulkes, W. M. C., Mitas, L., Needs, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–314 (2005).

    Article  CAS  Google Scholar 

  26. 26.

    Sénéchal, D., Perez, D. & Pioro-Ladriere, M. Spectral weight of the Hubbard model through cluster perturbation theory. Phys. Rev. Lett. 84, 522–525 (2000).

    Article  Google Scholar 

  27. 27.

    Hettler, M. H., Mukherjee, M., Jarrell, M. & Krishnamurthy, H. R. Dynamical cluster approximation: nonlocal dynamics of correlated electron systems. Phys. Rev. B 61, 12739–12756 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    Potthoff, M., Aichhorn, M. & Dahnken, C. Variational cluster approach to correlated electron systems in low dimensions. Phys. Rev. Lett. 91, 206402 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Zemljic, M.-M., Prelovšek, P. & Tohyama, T. Temperature and doping dependence of the high-energy kink in cuprates. Phys. Rev. Lett. 100, 036402 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Macridin, A., Jarrell, M., Maier, T. & Scalapino, D. J. High-energy kink in the single-particle spectra of the two-dimensional Hubbard model. Phys. Rev. Lett. 99, 237001 (2007).

    Article  CAS  Google Scholar 

  31. 31.

    Moritz, B. et al. Effect of strong correlations on the high energy anomaly in hole-and electron-doped high-T c superconductors. New J. Phys. 11, 093020 (2009).

    Article  CAS  Google Scholar 

  32. 32.

    Wang, Y. et al. Origin of strong dispersion in Hubbard insulators. Phys. Rev. B 92, 075119 (2015).

    Article  CAS  Google Scholar 

  33. 33.

    Bansil, A. & Lindroos, M. Importance of matrix elements in the ARPES spectra of BISCO. Phys. Rev. Lett. 83, 5154–5157 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    Okuda, T. & Kimura, A. Spin- and angle-resolved photoemission of strongly spin–orbit coupled systems. J. Phys. Soc. Jpn 82, 021002 (2013).

    Article  CAS  Google Scholar 

  35. 35.

    Korringa, J. On the calculation of the energy of a Bloch wave in a metal. Physica 13, 392–400 (1947).

    Article  Google Scholar 

  36. 36.

    Kohn, W. & Rostoker, N. Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 94, 1111–1120 (1954).

    CAS  Article  Google Scholar 

  37. 37.

    Bansil, A. et al. Modeling highly resolved spectroscopies of complex materials. J. Supercond. Novel Magn. 25, 2135–2139 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Scholz, M. R. et al. Reversal of the circular dichroism in angle-resolved photoemission from Bi2Te3. Phys. Rev. Lett. 110, 216801 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Sánchez-Barriga, J. et al. Photoemission of Bi2Se3 with circularly polarized light: probe of spin polarization or means for spin manipulation? Phys. Rev. X 4, 011046 (2014).

    Google Scholar 

  40. 40.

    Derondeau, G. et al. Fermi surface and effective masses in photoemission response of the (Ba1−xKx)Fe2As2 superconductor. Sci. Rep. 7, 8787 (2017).

    Article  CAS  Google Scholar 

  41. 41.

    Ruggenthaler, M., Tancogne-Dejean, N., Flick, J., Appel, H. & Rubio, A. From a quantum-electrodynamical light–matter description to novel spectroscopies. Nat. Rev. Chem. 2, 118 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Kotani, A. & Shin, S. Resonant inelastic x-ray scattering spectra for electrons in solids. Rev. Mod. Phys. 73, 203–246 (2001).

    CAS  Article  Google Scholar 

  43. 43.

    Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Ishii, K. in Resonant X-Ray Scattering in Correlated Systems. Springer Tracts in Modern Physics Vol. 269 (eds Murakami, Y. & Ishihara, S.) 197–241 (Springer, 2017).

  45. 45.

    Hill, J. P. et al. Resonant inelastic X-ray scattering in Nd2CuO4. Phys. Rev. Lett. 80, 4967–4970 (1998).

    CAS  Article  Google Scholar 

  46. 46.

    Abbamonte, P. et al. Resonant inelastic X-ray scattering from valence excitations in insulating copper oxides. Phys. Rev. Lett. 83, 860–863 (1999).

    CAS  Article  Google Scholar 

  47. 47.

    Braicovich, L. et al. Dispersion of magnetic excitations in the cuprate La2CuO4 and CaCuO2 compounds measured using resonant X-ray scattering. Phys. Rev. Lett. 102, 167401 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Schlappa, J. et al. Collective magnetic excitations in the spin ladder Sr14Cu24O41 measured using high-resolution resonant inelastic X-ray scattering. Phys. Rev. Lett. 103, 047401 (2009).

    CAS  Article  Google Scholar 

  49. 49.

    Le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).

    Article  CAS  Google Scholar 

  50. 50.

    Schlappa, J. et al. Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3. Nature 485, 82–85 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Dean, M. P. M. et al. Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Bisogni, V. et al. Bimagnon studies in cuprates with resonant inelastic x-ray scattering at the O K edge. I. Assessment on La2CuO4 and comparison with the excitation at Cu L 3 and Cu K edges. Phys. Rev. B 85, 214527 (2012).

    Article  CAS  Google Scholar 

  53. 53.

    Kim, B. H. & van den Brink, J. Resonant inelastic x-ray scattering on single magnons at oxygen K edges. Phys. Rev. B 92, 081105 (2015).

    Article  CAS  Google Scholar 

  54. 54.

    Zhou, K.-J. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nat. Commun. 4, 1470 (2013).

    Article  CAS  Google Scholar 

  55. 55.

    Sala, M. M. et al. CaIrO3: a spin-orbit Mott insulator beyond the j eff = 1/2 ground state. Phys. Rev. Lett. 112, 176402 (2014).

    Article  CAS  Google Scholar 

  56. 56.

    Yin, W.-G. et al. Ferromagnetic exchange anisotropy from antiferromagnetic superexchange in the mixed 3d−5d transition-metal compound Sr3CuIrO6. Phys. Rev. Lett. 111, 057202 (2013).

    Article  CAS  Google Scholar 

  57. 57.

    Wray, L. A. et al. Spectroscopic determination of the atomic f-electron symmetry underlying hidden order in URu2Si2. Phys. Rev. Lett. 114, 236401 (2015).

    Article  CAS  Google Scholar 

  58. 58.

    de Groot, F. M. F. et al. 1s2p Resonant inelastic X-ray scattering of iron oxides. J. Phys. Chem. B 109, 20751–20762 (2005).

    Article  CAS  Google Scholar 

  59. 59.

    Wernet, P. et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution. Nature 520, 78–81 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Kramers, H. A. & Heisenberg, W. Über die Streuung von Strahlung durch Atome [German]. Z. Phys. 31, 681–708 (1925).

    CAS  Article  Google Scholar 

  61. 61.

    Jia, C. J., Wang, Y., Mendl, C. B., Moritz, B. & Devereaux, T. P. Paradeisos: a perfect hashing algorithm for many-body eigenvalue problems. Comput. Phys. Commun. 224, 81–89 (2018).

    CAS  Article  Google Scholar 

  62. 62.

    Tsutsui, K., Tohyama, T. & Maekawa, S. Momentum dependence of resonant inelastic X-ray scattering spectrum in insulating cuprates. Phys. Rev. Lett. 83, 3705–3708 (1999).

    CAS  Article  Google Scholar 

  63. 63.

    Tsutsui, K., Tohyama, T. & Maekawa, S. Mott gap excitations and resonant inelastic X-ray scattering in doped cuprates. Phys. Rev. Lett. 91, 117001 (2003).

    Article  CAS  Google Scholar 

  64. 64.

    Chen, C.-C. et al. Unraveling the nature of charge excitations in La2CuO4 with momentum-resolved Cu K-edge resonant inelastic X-ray scattering. Phys. Rev. Lett. 105, 177401 (2010).

    Article  CAS  Google Scholar 

  65. 65.

    Jia, C. J., Chen, C.-C., Sorini, A. P., Moritz, B. & Devereaux, T. P. Uncovering selective excitations using the resonant profile of indirect inelastic x-ray scattering in correlated materials: observing two-magnon scattering and relation to the dynamical structure factor. New J. Phys. 14, 113038 (2012).

    Article  CAS  Google Scholar 

  66. 66.

    Jia, C. J. et al. Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering. Nat. Commun. 5, 3314 (2014).

    CAS  Article  Google Scholar 

  67. 67.

    Jia, C. J., Wohlfeld, K., Wang, Y., Moritz, B. & Devereaux, T. P. Using RIXS to uncover elementary charge and spin excitations. Phys. Rev. X 6, 021020 (2016).

    Google Scholar 

  68. 68.

    Haverkort, M. W. Theory of resonant inelastic X-ray scattering by collective magnetic excitations. Phys. Rev. Lett. 105, 167404 (2010).

    CAS  Article  Google Scholar 

  69. 69.

    Kourtis, S., van den Brink, J. & Daghofer, M. Exact diagonalization results for resonant inelastic x-ray scattering spectra of one-dimensional Mott insulators. Phys. Rev. B 85, 064423 (2012).

    Article  CAS  Google Scholar 

  70. 70.

    Luo, J., Trammell, G. T. & Hannon, J. P. Scattering operator for elastic and inelastic resonant x-ray scattering. Phys. Rev. Lett. 71, 287–290 (1993).

    CAS  Article  Google Scholar 

  71. 71.

    de Groot, F. M. F., Kuiper, P. & Sawatzky, G. A. Local spin-flip spectral distribution obtained by resonant x-ray Raman scattering. Phys. Rev. B 57, 14584–14587 (1998).

    Article  Google Scholar 

  72. 72.

    Bisogni, V. et al. Bimagnon studies in cuprates with resonant inelastic x-ray scattering at the O K edge. II. Doping effect in La2−xSrxCuO4. Phys. Rev. B 85, 214528 (2012).

    Article  CAS  Google Scholar 

  73. 73.

    Butorin, S. M., Guo, J.-H., Magnuson, M., Kuiper, P. & Nordgren, J. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy. Phys. Rev. B 54, 4405–4408 (1996).

    CAS  Article  Google Scholar 

  74. 74.

    Ghiringhelli, G. et al. Low energy electronic excitations in the layered cuprates studies by copper L 3 resonant inelastic X-ray scattering. Phys. Rev. Lett. 92, 117406 (2004).

    CAS  Article  Google Scholar 

  75. 75.

    Lee, W. S. et al. Role of lattice coupling in establishing electronic and magnetic properties in quasi-one-dimensional cuprates. Phys. Rev. Lett. 110, 265502 (2013).

    CAS  Article  Google Scholar 

  76. 76.

    Peng, Y. Y. et al. Magnetic excitations and phonons simultaneously studied by resonant inelastic X-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ. Phys. Rev. B 92, 064517 (2015).

    Article  CAS  Google Scholar 

  77. 77.

    Chaix, L. et al. Dispersive charge density wave excitations in Bi2Sr2CaCu2O8+δ. Nat. Phys. 13, 952–956 (2017).

    CAS  Article  Google Scholar 

  78. 78.

    Balzer, M., Gdaniec, N. & Potthoff, M. Krylov-space approach to the equilibrium and nonequilibrium single-particle Green’s function. J. Phys. Condens. Matter 24, 035603 (2011).

    Article  CAS  Google Scholar 

  79. 79.

    Bonca, J., Trugman, S. A. & Batistic, I. Holstein polaron. Phys. Rev. B 60, 1633–1642 (1999).

    CAS  Article  Google Scholar 

  80. 80.

    Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  CAS  Google Scholar 

  81. 81.

    Aoki, H. et al. Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014).

    Article  Google Scholar 

  82. 82.

    Balzer, M. & Potthoff, M. Nonequilibrium cluster perturbation theory. Phys. Rev. B 83, 195132 (2011).

    Article  CAS  Google Scholar 

  83. 83.

    Spataru, C. D., Benedict, L. X. & Louie, S. G. Ab initio calculation of band-gap renormalization in highly excited GaAs. Phys. Rev. B 69, 205204 (2004).

    Article  CAS  Google Scholar 

  84. 84.

    Park, C. H., Giustino, F., Spataru, C. D., Cohen, M. L. & Louie, S. G. Angle-resolved photoemission spectra of graphene from first-principles calculations. Nano Lett. 9, 4234–4239 (2009).

    CAS  Article  Google Scholar 

  85. 85.

    Perfetto, E., Sangalli, D., Marini, A. & Stefanucci, G. First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra. Phys. Rev. B 94, 245303 (2016).

    Article  Google Scholar 

  86. 86.

    Braun, J., Rausch, R., Potthoff, M. & Ebert, H. One-step theory of two-photon photoemission. Phys. Rev. B 94, 125128 (2016).

    Article  Google Scholar 

  87. 87.

    Marques, M. A., Maitra, N. T., Nogueira, F. M., Gross, E. & Rubio, A. Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics. Vol. 837 (Springer, 2012).

  88. 88.

    Wopperer, P., De Giovannini, U. & Rubio, A. Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT. Eur. Phys. J. B 90, 51 (2017).

    Article  CAS  Google Scholar 

  89. 89.

    Yusupov, R. et al. Coherent dynamics of macroscopic electronic order through a symmetry breaking transition. Nat. Phys. 6, 681–684 (2010).

    CAS  Article  Google Scholar 

  90. 90.

    Smallwood, C. L. et al. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137–1139 (2012).

    CAS  Article  Google Scholar 

  91. 91.

    Dal Conte, S. et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421–426 (2015).

    CAS  Article  Google Scholar 

  92. 92.

    Vishik, I. M. et al. Ultrafast dynamics in the presence of antiferromagnetic correlations in electron-doped cuprate La2−xCexCuO4±δ. Phys. Rev. B 95, 115125 (2017).

    Article  Google Scholar 

  93. 93.

    Eckstein, M. & Werner, P. Thermalization of a pump-excited Mott insulator. Phys. Rev. B 84, 035122 (2011).

    Article  CAS  Google Scholar 

  94. 94.

    Sentef, M. et al. Examining electron-boson coupling using time-resolved spectroscopy. Phys. Rev. X 3, 041033 (2013).

    Google Scholar 

  95. 95.

    Murakami, Y., Werner, P., Tsuji, N. & Aoki, H. Interaction quench in the Holstein model: thermalization crossover from electron-to phonon-dominated relaxation. Phys. Rev. B 91, 045128 (2015).

    Article  CAS  Google Scholar 

  96. 96.

    Strand, H. U. R., Golež, D., Eckstein, M. & Werner, P. Hund’s coupling driven photocarrier relaxation in the two-band Mott insulator. Phys. Rev. B 96, 165104 (2017).

    Article  Google Scholar 

  97. 97.

    Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser. Science 357, 71–75 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Mandal, S., Cohen, R. E. & Haule, K. Strong pressure-dependent electron-phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).

    Article  CAS  Google Scholar 

  99. 99.

    Sobota, J. A. et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 117403 (2012).

    CAS  Article  Google Scholar 

  100. 100.

    Niesner, D. et al. Unoccupied topological states on bismuth chalcogenides. Phys. Rev. B 86, 205403 (2012).

    Article  CAS  Google Scholar 

  101. 101.

    Sobota, J. A. et al. Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3. Phys. Rev. Lett. 111, 136802 (2013).

    CAS  Article  Google Scholar 

  102. 102.

    Sobota, J. A. et al. Distinguishing bulk and surface electron-phonon coupling in the topological insulator Bi2Se3 using time-resolved photoemission spectroscopy. Phys. Rev. Lett. 113, 157401 (2014).

    CAS  Article  Google Scholar 

  103. 103.

    Sobota, J. A. et al. Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy. J. Electron. Spectrosc. 195, 249–257 (2014).

    CAS  Article  Google Scholar 

  104. 104.

    Jozwiak, C. et al. Spin-polarized surface resonances accompanying topological surface state formation. Nat. Commun. 7, 13143 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Sonoda, Y. & Munakata, T. Unoccupied electronic states of the high-temperature superconductor Bi2Sr2CaCu2O8 investigated by two-photon photoemission spectroscopy. Phys. Rev. B 70, 134517 (2004).

    Article  CAS  Google Scholar 

  106. 106.

    Yang, S.-L. et al. Revealing the Coulomb interaction strength in a cuprate superconductor. Phys. Rev. B 96, 245112 (2017).

    Article  Google Scholar 

  107. 107.

    Hellmann, S. et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 3, 1069 (2012).

    CAS  Article  Google Scholar 

  108. 108.

    Conte, S. D. et al. Disentangling the electronic and phononic glue in a high-T c superconductor. Science 335, 1600–1603 (2012).

    Article  CAS  Google Scholar 

  109. 109.

    Yang, S. et al. Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films. Nano Lett. 15, 4150–4154 (2015).

    CAS  Article  Google Scholar 

  110. 110.

    Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

    Article  CAS  Google Scholar 

  111. 111.

    Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    CAS  Article  Google Scholar 

  112. 112.

    Sherman, D. et al. The Higgs mode in disordered superconductors close to a quantum phase transition. Nat. Phys. 11, 188–192 (2015).

    CAS  Article  Google Scholar 

  113. 113.

    Bittner, N., Einzel, D., Klam, L. & Manske, D. Leggett modes and the Anderson-Higgs mechanism in superconductors without inversion symmetry. Phys. Rev. Lett. 115, 227002 (2015).

    Article  CAS  Google Scholar 

  114. 114.

    Krull, H., Bittner, N., Uhrig, G. S., Manske, D. & Schnyder, A. P. Coupling of Higgs and Leggett modes in non-equilibrium superconductors. Nat. Commun. 7, 11921 (2016).

    CAS  Article  Google Scholar 

  115. 115.

    Nosarzewski, B., Moritz, B., Freericks, J. K., Kemper, A. F. & Devereaux, T. P. Amplitude mode oscillations in pump-probe photoemission spectra from a d-wave superconductor. Phys. Rev. B 96, 184518 (2017).

    Article  Google Scholar 

  116. 116.

    Kemper, A. F., Sentef, M. A., Moritz, B., Freericks, J. K. & Devereaux, T. P. Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors. Phys. Rev. B 92, 224517 (2015).

    Article  CAS  Google Scholar 

  117. 117.

    Wang, Y. et al. Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system. Phys. Rev. Lett. 116, 086401 (2016).

    CAS  Article  Google Scholar 

  118. 118.

    Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    CAS  Article  Google Scholar 

  119. 119.

    Mahmood, F., Chan, C. K., Alpichshev, Z. & Gardner, D. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    CAS  Article  Google Scholar 

  120. 120.

    Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    Article  CAS  Google Scholar 

  121. 121.

    Inoue, J. & Tanaka, A. Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105, 017401 (2010).

    Article  CAS  Google Scholar 

  122. 122.

    Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).

    Article  CAS  Google Scholar 

  123. 123.

    Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    CAS  Article  Google Scholar 

  124. 124.

    Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    CAS  Article  Google Scholar 

  125. 125.

    Claassen, M., Jia, C., Moritz, B. & Devereaux, T. P. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nat. Commun. 7, 13074 (2016).

    CAS  Article  Google Scholar 

  126. 126.

    Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).

    Article  CAS  Google Scholar 

  127. 127.

    D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

    Google Scholar 

  128. 128.

    Lazarides, A., Das, A. & Moessner, R. Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E 90, 012110 (2014).

    Article  CAS  Google Scholar 

  129. 129.

    D’Alessio, L. & Polkovnikov, A. Many-body energy localization transition in periodically driven systems. Ann. Phys. 333, 19–33 (2013).

    Article  CAS  Google Scholar 

  130. 130.

    Ponte, P., Papic, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

    Article  CAS  Google Scholar 

  131. 131.

    Lazarides, A., Das, A. & Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 115, 030402 (2015).

    Article  CAS  Google Scholar 

  132. 132.

    Canovi, E., Kollar, M. & Eckstein, M. Stroboscopic prethermalization in weakly interacting periodically driven system. Phys. Rev. E 93, 012130 (2016).

    Article  CAS  Google Scholar 

  133. 133.

    Kuwahara, T., Mori, T. & Saito, K. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. 367, 96–124 (2016).

    CAS  Article  Google Scholar 

  134. 134.

    Mori, T., Kuwahara, T. & Saito, K. Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems. Phys. Rev. Lett. 116, 120401 (2016).

    Article  CAS  Google Scholar 

  135. 135.

    Bukov, M., Gopalakrishnan, S., Knap, M. & Demler, E. Prethermal Floquet steady states and instabilities in the periodically driven, weakly interacting Bose-Hubbard Model. Phys. Rev. Lett. 115, 205301 (2015).

    Article  CAS  Google Scholar 

  136. 136.

    Abanin, D. A., Roeck, De, W. & Huveneers, F. Exponentially slow heating in periodically driven many-body systems. Phys. Rev. Lett. 115, 256803 (2015).

    Article  CAS  Google Scholar 

  137. 137.

    Ho, W. W. & Abanin, D. A. Quasi-adiabatic dynamics and state preparation in Floquet many-body systems. Preprint at https://arxiv.org/abs/1611.05024 (2016).

  138. 138.

    Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in Mott insulators. Nat. Commun. 6, 6708 (2015).

    CAS  Article  Google Scholar 

  139. 139.

    Itin, A. P. & Katsnelson, M. I. Effective Hamiltonians for rapidly driven many-body lattice systems: induced exchange interactions and density-dependent hoppings. Phys. Rev. Lett. 115, 075301 (2015).

    CAS  Article  Google Scholar 

  140. 140.

    Claassen, M., Jiang, H.-C., Moritz, B. & Devereaux, T. P. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators. Nat. Commun. 8, 1192 (2017).

    Article  CAS  Google Scholar 

  141. 141.

    Bukov, M., Kolodrubetz, M. & Polkovnikov, A. Schrieffer-Wolff transformation for periodically driven systems: strongly correlated systems with artificial gauge fields. Phys. Rev. Lett. 116, 125301 (2016).

    Article  CAS  Google Scholar 

  142. 142.

    Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

    Article  Google Scholar 

  143. 143.

    Coulthard, J., Clark, S. R., Al-Assam, S., Cavalleri, A. & Jaksch, D. Enhancement of super-exchange pairing in the periodically-driven Hubbard model. Preprint at https://arxiv.org/abs/1608.03964 (2016).

  144. 144.

    Bukov, M., Heyl, M., Huse, D. A. & Polkovnikov, A. Heating and many-body resonances in a periodically driven two-band system. Phys. Rev. B 93, 155132 (2016).

    Article  CAS  Google Scholar 

  145. 145.

    Wang, Y., Claassen, M., Moritz, B. & Devereaux, T. P. Producing coherent excitations in pumped Mott antiferromagnetic insulators. Phys. Rev. B 96, 235142 (2017).

    Article  Google Scholar 

  146. 146.

    Perfetti, L. et al. Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy. New J. Phys. 10, 053019 (2008).

    Article  CAS  Google Scholar 

  147. 147.

    Liu, M., Hwang, H. Y., Tao, H., Strikwerda, A. C. & Fan, K. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    CAS  Article  Google Scholar 

  148. 148.

    Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 1649–1652 (2008).

    CAS  Article  Google Scholar 

  149. 149.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    CAS  Article  Google Scholar 

  150. 150.

    Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    CAS  Article  Google Scholar 

  151. 151.

    Wegkamp, D. et al. Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping. Phys. Rev. Lett. 113, 216401 (2014).

    Article  CAS  Google Scholar 

  152. 152.

    Werner, P., Tsuji, N. & Eckstein, M. Nonthermal symmetry-broken states in the strongly interacting Hubbard model. Phys. Rev. B 86, 205101 (2012).

    Article  CAS  Google Scholar 

  153. 153.

    Moeckel, M. & Kehrein, S. Interaction quench in the Hubbard model. Phys. Rev. Lett. 100, 175702 (2008).

    Article  CAS  Google Scholar 

  154. 154.

    Balzer, K., Wolf, F. A., McCulloch, I. P., Werner, P. & Eckstein, M. Nonthermal melting of Néel order in the Hubbard model. Phys. Rev. X 5, 031039 (2015).

    Google Scholar 

  155. 155.

    Mankowsky, R., Subedi, A., Först, M. & Mariager, S. O. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    CAS  Article  Google Scholar 

  156. 156.

    Denny, S. J., Clark, S. R., Laplace, Y., Cavalleri, A. & Jaksch, D. Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation. Phys. Rev. Lett. 114, 137001 (2015).

    CAS  Article  Google Scholar 

  157. 157.

    Hoeppner, R., Zhu, B., Rexin, T., Cavalleri, A. & Mathey, L. Redistribution of phase fluctuations in a periodically driven cuprate superconductor. Phys. Rev. B 91, 104507 (2015).

    Article  CAS  Google Scholar 

  158. 158.

    Nava, A., Giannetti, C., Georges, A., Tosatti, E. & Fabrizio, M. Cooling quasiparticles in A3C60 fullerides by excitonic mid-infrared absorption. Nat. Phys. 14, 154–159 (2018).

    CAS  Article  Google Scholar 

  159. 159.

    Werner, P. & Eckstein, M. Field-induced polaron formation in the Holstein-Hubbard model. Europhys. Lett. 109, 37002 (2015).

    Article  CAS  Google Scholar 

  160. 160.

    Babadi, M., Knap, M., Martin, I., Refael, G. & Demler, E. Theory of parametrically amplified electron-phonon superconductivity. Phys. Rev. B 96, 014512 (2017).

    Article  Google Scholar 

  161. 161.

    Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

    CAS  Article  Google Scholar 

  162. 162.

    Murakami, Y., Tsuji, N., Eckstein, M. & Werner, P. Nonequilibrium steady states and transient dynamics of conventional superconductors under phonon driving. Phys. Rev. B 96, 045125 (2017).

    Article  Google Scholar 

  163. 163.

    Sentef, M. A. Light-enhanced electron-phonon coupling from nonlinear electron-phonon coupling. Phys. Rev. B 95, 205111 (2017).

    Article  Google Scholar 

  164. 164.

    Knap, M., Babadi, M., Refael, G., Martin, I. & Demler, E. Dynamical Cooper pairing in nonequilibrium electron-phonon systems. Phys. Rev. B 94, 214504 (2016).

    Article  Google Scholar 

  165. 165.

    Komnik, A. & Thorwart, M. BCS theory of driven superconductivity. Euro. Phys. J. B 89, 244 (2016).

    Article  CAS  Google Scholar 

  166. 166.

    Sentef, M. A., Kemper, A. F., Georges, A. & Kollath, C. Theory of light-enhanced phonon-mediated superconductivity. Phys. Rev. B 93, 144506 (2016).

    Article  CAS  Google Scholar 

  167. 167.

    Kim, M. et al. Enhancing superconductivity in A3C60 fullerides. Phys. Rev. B 94, 155152 (2016).

    Article  CAS  Google Scholar 

  168. 168.

    Mazza, G. & Georges, A. Nonequilibrium superconductivity in driven alkali-doped fullerides. Phys. Rev. B 96, 064515 (2017).

    Article  Google Scholar 

  169. 169.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Article  Google Scholar 

  170. 170.

    Raines, Z. M., Stanev, V. & Galitski, V. M. Enhancement of superconductivity via periodic modulation in a three-dimensional model of cuprates. Phys. Rev. B 91, 184506 (2015).

    Article  CAS  Google Scholar 

  171. 171.

    Patel, A. A. & Eberlein, A. Light-induced enhancement of superconductivity via melting of competing bond-density wave order in underdoped cuprates. Phys. Rev. B 93, 195139 (2016).

    Article  CAS  Google Scholar 

  172. 172.

    Sentef, M. A., Tokuno, A., Georges, A. & Kollath, C. Theory of laser-controlled competing superconducting and charge orders. Phys. Rev. Lett. 118, 087002 (2017).

    CAS  Article  Google Scholar 

  173. 173.

    Wang, Y., Chen, C.-C., Moritz, B. & Devereaux, T. P. Light-enhanced spin fluctuations and d-wave superconductivity at a phase boundary. Phys. Rev. Lett. 120, 246402 (2018).

    Article  Google Scholar 

  174. 174.

    Ido, K., Ohgoe, T. & Imada, M. Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation. Sci. Adv. 3, e1700718 (2017).

    Article  CAS  Google Scholar 

  175. 175.

    Mor, S. et al. Ultrafast electronic band gap control in an excitonic insulator. Phys. Rev. Lett. 119, 086401 (2017).

    Article  Google Scholar 

  176. 176.

    Murakami, Y., Golež, D., Eckstein, M. & Werner, P. Photoinduced enhancement of excitonic order. Phys. Rev. Lett. 119, 247601 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

C.D.P., C.J., B.M. and T.P.D. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. Y.W. is supported by a Postdoctoral Fellowship in Quantum Science from the Harvard–Max Planck Institute of Quantum Optics. M.C. is supported by the Flatiron Institute, a division of the Simons Foundation.

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion of content, researched data for the article and edited the manuscript prior to submission. C.D.P., C.J. and Y.W. wrote the Theoretical evaluation of equilibrium spectroscopies section. Y.W. and M.C. wrote the Non-equilibrium spectroscopy theory section. The introduction and conclusion were written by T.P.D., Y.W. and M.C.

Corresponding author

Correspondence to Thomas P. Devereaux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Claassen, M., Pemmaraju, C.D. et al. Theoretical understanding of photon spectroscopies in correlated materials in and out of equilibrium. Nat Rev Mater 3, 312–323 (2018). https://doi.org/10.1038/s41578-018-0046-3

Download citation

Further reading

Search

Quick links