Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation

Abstract

Solid catalysts are the workhorses that convert feedstock molecules into fuels, chemicals and materials. Solid catalysts are highly complex, porous, multi-elemental and often hierarchically structured materials. Scientists are therefore confronted with a formidable challenge to understand the functioning of solid catalysts and, based on this knowledge, to design and make materials with superior performance and overall stability. In this Review, we summarize the latest developments in the spatial and temporal characterization of solid catalysts using synchrotron radiation to uncover their structure and function. Attention is focused on applications using either X-rays or infrared light available from synchrotron radiation sources. In these applications, microscopy and microspectroscopy are used to study heterogeneous catalysts under working conditions and at different length scales, more specifically, from the level of a microreactor down to a single catalyst particle. Finally, we offer a perspective on what instrumental developments at synchrotron radiation sources may bring to realize the dream of recording a molecular movie of a solid catalyst at high temperature and pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizing solid catalysts in space, time and function.
Fig. 2: Timeline showing key developments in synchrotron-radiation-based X-ray microscopy of solid catalysts.
Fig. 3: Timeline showing key developments in in situ and operando synchrotron-radiation-based X-ray spectroscopy of solid catalysts combined with other spectroscopic methods.
Fig. 4: Operando X-ray microspectroscopy of Fischer–Tropsch synthesis catalysts.
Fig. 5: Synchrotron-radiation-based X-ray microspectroscopy of fluid catalytic cracking catalysts.
Fig. 6: Examples of synchrotron-based infrared microspectroscopy and nanospectroscopy of solid catalysts.
Fig. 7: Future synchrotron-radiation-based operando microspectroscopy of solid catalysts.

Similar content being viewed by others

References

  1. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  2. Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry And Catalysis (John Wiley & Sons, Hoboken, 2010).

    Google Scholar 

  3. Che, M., Védrine, J. C. (eds) Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, Volume 1 (Wiley-VCH, Weinheim, 2012).

    Google Scholar 

  4. Che, M., Védrine, J. C. (eds) Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, Volume 2 (Wiley-VCH, Weinheim, 2012).

    Google Scholar 

  5. Niemantsverdriet, J. W. Spectroscopy in Catalysis – An Introduction (Wiley-VCH, Weinheim, 2007).

    Book  Google Scholar 

  6. Haw, J. F. (ed.) In-Situ Spectroscopy in Heterogeneous Catalysis (Wiley-VCH, Weinheim, 2002).

    Google Scholar 

  7. Weckhuysen, B. M. (ed.) In-situ Spectroscopy of Catalysts (American Scientific Publishers, Stevenson Ranch, 2004).

    Google Scholar 

  8. Whiting, G. T., Meirer, F. & Weckhuysen, B. M. in XAFS Techniques for Catalysts, Nanomaterials, and Surfaces (Eds, Yasuhiro, I., Kiyotaka, A. & Mizuki, T.) 167–191 (Springer, Berlin, 2017).

  9. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  10. Beale, A. M., Jacques, S. D. M. & Weckhuysen, B. M. Chemical imaging of catalytic solids with synchrotron radiation. Chem. Soc. Rev. 39, 4656–4672 (2010).

    Article  CAS  Google Scholar 

  11. Grunwaldt, J. D. & Schroer, C. G. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem. Soc. Rev. 39, 4741–4753 (2010).

    Article  CAS  Google Scholar 

  12. Andrews, J. C. & Weckhuysen, B. M. Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. ChemPhysChem 14, 3655–3666 (2013).

    Article  CAS  Google Scholar 

  13. Grunwaldt, J. D., Wagner, J. B. & Dunin-Borkowski, R. E. Imaging catalysts at work: a hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5, 62–80 (2013).

    Article  CAS  Google Scholar 

  14. de Groot, F. M. F., de Smit, E., van Schooneveld, M. M., Aramburo, L. R. & Weckhuysen, B. M. In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. ChemPhysChem 11, 951–962 (2010).

    Article  CAS  Google Scholar 

  15. Grunwaldt, J.-D. et al. Catalysts at work: from integral to spatially resolved X-ray absorption spectroscopy Catal. Today 145, 267–278 (2009).

    Article  CAS  Google Scholar 

  16. Stavitski, E. & Weckhuysen, B. M. Infrared and Raman imaging of heterogeneous catalysts. Chem. Soc. Rev. 39, 4615–4625 (2010).

    Article  CAS  Google Scholar 

  17. Thomas, J. M. & Hernandez-Garrido, J.-C. Probing solid catalysts under operating conditions: electrons or X-rays? Angew. Chem. Int. Ed. 48, 3904–3907 (2009).

    Article  CAS  Google Scholar 

  18. Schroer, C. G. & Grunwaldt, J.-D. X-ray absorption spectroscopic microscopy: from the micro- to the nanoscale. Synchrotron Radiat. News 22, 23–28 (2009).

    Google Scholar 

  19. Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).

    Article  CAS  Google Scholar 

  20. Tao, F. & Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 116, 3487–3539 (2016).

    Article  CAS  Google Scholar 

  21. Newton, M. A. Time resolved operando X-ray Techniques in catalysis, a case study: CO oxidation by O2 over Pt surfaces and alumina supported Pt catalysts. Catalysts 7, 58 (2017).

    Article  CAS  Google Scholar 

  22. Maier, W. F. Reaction mechanisms in heterogeneous catalysis; C-H activation as a case study. Angew. Chem. Int. Ed. 28, 135–145 (1989).

    Article  Google Scholar 

  23. Boldyrev, V. V. et al. Experience in use of synchrotron radiation in solid state chemistry studies. Nucl. Instr. Meth. Phys. Res. A 261, 192–199 (1987).

    Article  Google Scholar 

  24. Epple, M. Applications of temperature-resolved diffraction methods in thermal analysis. J. Therm. Anal. 42, 559–593 (1994).

    Article  CAS  Google Scholar 

  25. Finger, L. W. Synchrotron power diffraction. Rev. Mineral. 20, 309–332 (1989).

    Google Scholar 

  26. Hewat, A. High-resolution neutron and synchrotron powder diffraction. Chem. Scr. 26A, 119–130 (1985).

    Google Scholar 

  27. Bennet, J. M. & Kirchner, R. M. The structure of as-synthesized AIPO4-16 determined by a new framework modeling method and Rietveld refinement of synchrotron powder diffraction data. Zeolites 11, 502–506 (1991).

    Article  Google Scholar 

  28. Lengeler, B. X-ray techniques using synchrotron radiation in materials analysis. Adv. Mater. 2, 123–131 (1990).

    Article  CAS  Google Scholar 

  29. Furlani, C. XPS of heterogeneous catalysts: structure and reactivity. J. Electron. Spectrosc. Relat. Phenom. 68C, 569–578 (1994).

    Article  Google Scholar 

  30. Bordiga, S., Groppo, E., Agostini, G., van Bokhoven, J. A. & Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113, 1736–1850 (2013).

    Article  CAS  Google Scholar 

  31. Attwood, D. T. & Sakdinawat, A. Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge Univ. Press, Cambridge, 2016).

    Book  Google Scholar 

  32. Weckhuysen, B. M. Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. 2002, 97–110 (2002).

    Article  CAS  Google Scholar 

  33. Topsøe, H. Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catal. 216, 155–164 (2003).

    Article  CAS  Google Scholar 

  34. Weckert, E. The potential of future light sources to explore the structure and function of matter. IUCrJ 2, 230–245 (2015).

    Article  CAS  Google Scholar 

  35. Ice, G. E., Budai, J. D. & Pang, J. W. L. The race to X-ray microbeam and nanobeam science. Science 334, 1234–1239 (2011).

    Article  CAS  Google Scholar 

  36. Sakdinawat, A. & Attwood, D. Nanoscale X-ray imaging. Nat. Photonics 4, 840–848 (2010).

    Article  CAS  Google Scholar 

  37. Holt, M., Harder, R., Winarski, R. & Rose, V. Nanoscale hard X-ray microscopy methods for materials studies. Annu. Rev. Mater. Res. 43, 183–211 (2013).

    Article  CAS  Google Scholar 

  38. Abbey, B. From grain boundaries to single defects: a review of coherent methods for materials imaging in the X-ray sciences. JOM 65, 1183–1201 (2013).

    Article  CAS  Google Scholar 

  39. Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science 348, 530–535 (2015).

    Article  CAS  Google Scholar 

  40. Liu, Y., Kiss, A. M., Larsson, D. H., Yang, F. & Pianetta, P. To get the most out of high resolution X-ray tomography: a review of the post-reconstruction analysis. Spectrochim. Acta B 117, 29–41 (2016).

    Article  CAS  Google Scholar 

  41. Mimura, H. et al. Breaking the 10 nm barrier in hard-X-ray focusing. Nat. Phys. 6, 122–125 (2010).

    Article  CAS  Google Scholar 

  42. Chao, W., Kim, J., Rekawa, S., Fischer, P. & Anderson, E. H. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy. Opt. Express 17, 17669–17677 (2009).

    Article  CAS  Google Scholar 

  43. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. An extension of the methods of X-ray crystallography to allow imaging of micron-size non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  CAS  Google Scholar 

  44. Niemann, B., Rudolph, D. & Schmahl, G. X-ray microscopy with synchrotron radiation. Appl. Opt. 15, 1883–1884 (1976).

    Article  CAS  Google Scholar 

  45. Andrews, J. C., Meirer, F., Liu, Y., Mester, Z. & Pianetta, P. Transmission X-ray microscopy for full-field nano imaging of biomaterials. Microsc. Res. Tech. 74, 671–681 (2011).

  46. Wise, A. M. et al. Nanoscale chemical imaging of an individual catalyst particle with soft X-ray ptychography. ACS Catal. 6, 2178–2181 (2016).

    Article  CAS  Google Scholar 

  47. Creemer, J. F. et al. W., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993–998 (2008).

    Article  CAS  Google Scholar 

  48. Drake, I. J. et al. T., An in situ cell for characterization of solids by soft X-ray absorption. Rev. Sci. Instrum. 75, 3242–3247 (2004).

    Article  CAS  Google Scholar 

  49. de Smit, E. et al. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456, 222–239 (2008).

    Article  CAS  Google Scholar 

  50. de Smit, E. et al. Nanoscale chemical imaging of the reduction behavior of a single catalyst particle. Angew. Chem. Int. Ed. 48, 3632–3636 (2009).

    Article  CAS  Google Scholar 

  51. Gonzalez-Jimenez, I. et al. Hard X-ray nanotomography of catalytic solids at work. Angew. Chem. Int. Ed. 51, 11986–11990 (2012).

    Article  CAS  Google Scholar 

  52. Cats, K. H. et al. X-ray nanoscopy of cobalt Fischer–Tropsch catalysts at work. Chem. Commun. 49, 4622–4624 (2013).

    Article  CAS  Google Scholar 

  53. Cats, K. H. et al. Active phase distribution changes within a catalyst particle during Fischer–Tropsch synthesis as revealed by multi-scale microscopy. Catal. Sci. Technol. 6, 4438–4449 (2016).

    Article  CAS  Google Scholar 

  54. van Ravenhorst et al. Capturing the genesis of an active Fischer–Tropsch synthesis catalyst with operando X-ray nano-spectroscopy. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201806354 (2018).

  55. Cats, K. H. & Weckhuysen, B. M. Combined operando X-ray diffraction/Raman spectroscopy of catalytic solids in the laboratory: the Co/TiO2 Fischer–Tropsch synthesis catalyst showcase. ChemCatChem 8, 1531–1542 (2016).

    Google Scholar 

  56. Herbert, J. J. et al. X-ray spectroscopic and scattering methods applied to the characterisation of cobalt-based Fischer–Tropsch synthesis catalysts. Catal. Sci. Technol. 6, 5773–5791 (2016).

    Article  CAS  Google Scholar 

  57. Price, S. W. et al. Chemical imaging of Fischer-Tropsch catalysts under operating conditions. Sci. Adv. 3, e1602838 (2017).

    Article  CAS  Google Scholar 

  58. Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).

    Article  CAS  Google Scholar 

  59. Wu, J. et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28, 9686–9712 (2016).

    Article  CAS  Google Scholar 

  60. Taheri, M. L. et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86–95 (2016).

    Article  CAS  Google Scholar 

  61. de Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011).

    Article  CAS  Google Scholar 

  62. Browning, N. D. et al. Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci. 16, 23–30 (2012).

    Article  CAS  Google Scholar 

  63. Liao, H.-G. & Zheng, H. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 67, 719–747 (2016).

    Article  CAS  Google Scholar 

  64. Kobayashi, R. et al. Double mold imprinting of micro fluidic device with ultra-thin PDMS window for in-vitro X-ray microscopy observation. Digest of Papers Microprocesses and Nanotechnology 2005, 254–255, https://doi.org/10.1109/IMNC.2005.203834 (2005).

    Article  Google Scholar 

  65. Creemer, J. F. et al. An all-in-one nanoreactor for high-resolution microscopy on nanomaterials at high pressures. MEMS 2011, Cancun, Mexico January 23–27, 1103–1106 (2011).

    Google Scholar 

  66. Mele, L. et al. MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc. Res. Tech. 79, 239–250 (2016).

    Article  Google Scholar 

  67. Guo, J. & Crumlin, E. In-situ and in-operando experiments. Synchrotron Radiat. News 30, 2 (2017).

    Article  Google Scholar 

  68. Li, Y. et al. Complex structural dynamics of nanocatalysts revealed in operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6, 7583 (2015).

    Article  CAS  Google Scholar 

  69. Xin, H. L., Niu, K., Alsem, D. H. & Zheng, H. In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 19, 1558–1568 (2013).

    Article  CAS  Google Scholar 

  70. Jung, U. et al. Comparative in operando studies in heterogeneous catalysis: atomic and electronic structural features in the hydrogenation of ethylene over supported Pd and Pt catalysts. ACS Catal. 5, 1539–1551 (2015).

    Article  CAS  Google Scholar 

  71. Høydalsvik, K. et al. W. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates. Appl. Phys. Lett. 104, 241909 (2014).

    Article  CAS  Google Scholar 

  72. Baier, S. et al. In situ ptychography of heterogeneous catalysts using hard X-rays: high resolution imaging at ambient pressure and elevated temperature. Microsc. Microanal. 22, 178–188 (2016).

    Article  CAS  Google Scholar 

  73. Baier, S. et al. Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography. RSC Adv. 6, 83031–83043 (2016).

    Article  CAS  Google Scholar 

  74. Reinhardt, J. et al. Beamstop-based low-background ptychography to image weakly scattering objects. Ultramicroscopy 173, 52–57 (2017).

    Article  CAS  Google Scholar 

  75. Conner, W. C., Webb, S. W., Spanne, P. & Jones, K. W. Use of X-ray microscopy and synchrotron microtomography to characterize polyethylene polymerization particles. Macromolecules 23, 4742–4747 (1990).

    Article  CAS  Google Scholar 

  76. Jones, K. W. et al. Catalyst analysis using synchrotron X-ray microscopy. Nucl. Instrum. Meth. B 56–57, 427–432 (1991).

    Article  Google Scholar 

  77. Schroer, C. G. et al. Mapping the chemical states of an element inside a sample using tomographic X-ray absorption spectroscopy. Appl. Phys. Lett. 82, 3360–3362 (2003).

    Article  CAS  Google Scholar 

  78. Beale, A. M., Jacques, S. D. M., Bergwerff, J. A., Barnes, P. & Weckhuysen, B. M. Tomographic energy dispersive diffraction imaging as a tool to profile in three dimensions the distribution and composition of metal oxide species in catalyst bodies. Angew. Chem. Int. Ed. 46, 8832–8835 (2007).

    Article  CAS  Google Scholar 

  79. Ruiz-Martínez, J. et al. Correlating metal poisoning with zeolite deactivation in an individual catalyst particle by chemical and phase-sensitive X-ray microscopy. Angew. Chem. Int. Ed. 52, 5983–5987 (2013).

    Article  CAS  Google Scholar 

  80. Bare, S. R. et al. Characterization of a fluidized catalytic cracking catalyst on ensemble and individual particle level by X-ray micro- and nanotomography, micro-X-ray fluorescence, and micro-X-ray diffraction. ChemCatChem 6, 1427–1437 (2014).

    Article  CAS  Google Scholar 

  81. Meirer, F. et al. Mapping metals incorporation of a whole single catalyst particle using element specific X-ray nanotomography. J. Am. Chem. Soc. 137, 102–105 (2015).

    Article  CAS  Google Scholar 

  82. Meirer, F. et al. Life and death of a single catalytic cracking particle. Sci. Adv. 1, e1400199 (2015).

    Article  CAS  Google Scholar 

  83. Kalirai, S., Boesenberg, U., Falkenberg, G., Meirer, F. & Weckhuysen, B. M. X-ray fluorescence tomography of aged fluid-catalytic- cracking catalyst particles reveals insight into metal deposition processes. ChemCatChem 7, 3674–3682 (2015).

    Article  CAS  Google Scholar 

  84. da Silva, J. C. et al. Assessment of the 3D pore structure and individual components of preshaped catalyst bodies by X-ray imaging. ChemCatChem 7, 413–416 (2015).

    Article  CAS  Google Scholar 

  85. Kalirai, S., Paalanen, P. P., Wang, J., Meirer, F. & Weckhuysen, B. M. Visualizing dealumination of a single zeolite domain in a real-life catalytic cracking particle. Angew. Chem. Int. Ed. 55, 11134-11138 (2016).

    Article  CAS  Google Scholar 

  86. Liu, Y., Meirer, F., Krest, C. M., Webb, S. & Weckhuysen, B. M. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy. Nat. Commun. 7, 12634 (2016).

    Article  CAS  Google Scholar 

  87. Ihli, J. et al. A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts. Nat. Commun. 8, 809 (2017).

    Article  CAS  Google Scholar 

  88. Ihli, J. et al. Localization and speciation of iron impurities within a fluid catalytic cracking catalyst. Angew. Chem. Int. Ed. 56, 14031–14035 (2017).

    Article  CAS  Google Scholar 

  89. Vimont, A., Thibault-Starzyk, F. & Daturi, M. Analysing and understanding the actives site by IR spectroscopy. Chem. Soc. Rev. 39, 4928–4950 (2010).

    Article  CAS  Google Scholar 

  90. Lamberti, C., Zecchina, A., Groppo, E. & Bordiga, S. Probing the surfaces of heterogeneous catalysts by in-situ IR spectroscopy. Chem. Soc. Rev. 39, 4951–5001 (2010).

    Article  CAS  Google Scholar 

  91. Stavitski, E., Kox, M. H. F., Swart, I., de Groot, F. M. F. & Weckhuysen, B. M. In situ synchrotron-based IR microscopy to study catalytic reactions in zeolite crystals. Angew. Chem. Int. Ed. 47, 3543–3547 (2008).

    Article  CAS  Google Scholar 

  92. Kox, M. H. F. et al. Label-free chemical imaging of catalytic solics by coherent anti-stokes Raman scattering and synchrotron-based infrared microscopy. Angew. Chem. Int. Ed. 48, 8990–8994 (2009).

    Article  CAS  Google Scholar 

  93. Aramburo, L. R. et al. The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: the influence of the zeolite architecture. Chem. Eur. J. 17, 13773–13781 (2011).

    Article  CAS  Google Scholar 

  94. Qian, Q. et al. Single-particle spectroscopy on large SAPO-34 crystals at work: methanol-to-olefin versus ethanol-to-olefin processes. Chem. Eur. J. 19, 11204–11215 (2013).

    Article  CAS  Google Scholar 

  95. Qian, Q. et al. Single-catalyst particle spectroscopy of alcohol-to-olefins conversions: comparison between SAPO-34 and SSZ-13. Catal. Today 226, 14–24 (2014).

    Article  CAS  Google Scholar 

  96. Buurmans, I. L. C., Soulimani, F., Ruiz-Martinez, J., van der Bij, H. E. & Weckhuysen, B. M. Structure and acidity of individual fluid catalytic cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy. Micropor. Mesopor. Mater. 166, 86–92 (2013).

    Article  CAS  Google Scholar 

  97. Gross, E. et al. In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformations in flow microreactor catalyzed by au nanoclusters. J. Am. Chem. Soc. 136, 3624–3629 (2014).

    Article  CAS  Google Scholar 

  98. Wu, C. Y. et al. High spatial resolution mapping of catalytic reactions on single particles. Nature 541, 511–516 (2017).

    Article  CAS  Google Scholar 

  99. Levratovsky, Y. & Gross, E. High spatial resolution mapping of chemically-active self-assembled n-heterocyclic carbenes on Pt nanoparticles. Faraday Discuss. 188, 345–353 (2016).

    Article  CAS  Google Scholar 

  100. Takahashi, Y. et al. High-resolution projection image reconstruction of thick objects by hard x-ray diffraction microscopy. Phys. Rev. B 82, 214102 (2010).

    Article  CAS  Google Scholar 

  101. Schroer, C. G. et al. Coherent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101, 090801 (2008).

    Article  CAS  Google Scholar 

  102. Holler, M. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017).

    Article  CAS  Google Scholar 

  103. Shapiro, D. A. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photonics 8, 765–769 (2014).

    Article  CAS  Google Scholar 

  104. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    Article  CAS  Google Scholar 

  105. Hasegawa, K. et al. Development of a dose-limiting data collection strategy for serial synchrotron rotation crystallography. J. Synchrotron Radiat. 24, 29–41 (2017).

    Article  CAS  Google Scholar 

  106. Müller, O., Nachtegaal, Just, M. J., Lützenkirchen-Hecht, D. & Frahm, R. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J. Synchrotron Radiat. 23, 260–266 (2016).

    Article  CAS  Google Scholar 

  107. Bonino, F. et al. in Synchrotron Radiation: Basics, Methods and Applications (eds Mobilio, S., Boscherini, F. & Meneghini, C.) 717–736 (Springer, Heidelberg, 2015).

  108. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    Article  CAS  Google Scholar 

  109. Meirer, F. et al. Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography. Chem. Commun. 51, 8097–8100 (2015).

    Article  CAS  Google Scholar 

  110. Ruffino, L. et al. Using X-ray microtomography for characterisation of catalyst particle pore structure. Can. J. Chem. Eng. 83, 132–139 (2005).

    Article  CAS  Google Scholar 

  111. Newton, M. A. et al. Catalytic adventures in space and time using high energy X-rays. Catal. Surv. Asia 18, 134–148 (2014).

    Article  Google Scholar 

  112. Vamvakeros, A. et al. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane. Chem. Commun. 51, 12752–12755 (2015).

    Article  CAS  Google Scholar 

  113. Price, S. W. T. et al. Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT. Phys. Chem. Chem. Phys. 17, 521–529 (2015).

    Article  CAS  Google Scholar 

  114. Jones, K. W., Feng, H., Lanzirotti, A. & Mahajan, D. Mapping metal catalysts using synchrotron computed microtomography (CMT) and micro-X-ray fluorescence (μXRF). Top. Catal. 32, 263–272 (2005).

    Article  CAS  Google Scholar 

  115. Grunwaldt, J.-D., Hannemann, S., Schroer, C. G. & Baiker, A. 2D-mapping of the catalyst structure inside a catalytic microreactor at work: partial oxidation of methane over Rh/Al2O3 J. Phys. Chem. B 110, 8674–8680 (2006).

    Article  CAS  Google Scholar 

  116. Hannemann, S. et al. Distinct spatial changes of the catalyst structure inside a fixed-bed microreactor during the partial oxidation of methane over Rh/Al2O3 Catal. Today 126, 54–63 (2007).

    Article  CAS  Google Scholar 

  117. Nachtegaal, M., Hartfelder, U. & van Bokhoven, J. A. in Operando Research in Heterogeneous Catalysis (eds Frenken, J. & Groot, I.) 89–109 (Springer Nature, 2017).

  118. Navarro, V., van Spronsen, M. A. & Frenken, J. W. M. In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nat. Chem. 8, 929–934 (2016).

    Article  CAS  Google Scholar 

  119. Pfisterer, J. H. K., Liang, Y., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).

    Article  CAS  Google Scholar 

  120. Jacoby, M. Hunting for the hidden chemistry in heterogeneous catalysts. Chem. Eng. News 95, 28–32 (2017).

    Google Scholar 

  121. Weckhuysen, B. M. Catalysts live and up close. Nature 439, 548 (2006).

    Article  CAS  Google Scholar 

  122. Elder, F. R., Gurewitsch, A. M., Langmuir, R. V. & Pollock, H. C. Radiation from electrons in a synchrotron. Phys. Rev. 71, 829–830 (1947).

    Article  CAS  Google Scholar 

  123. Cox, M. P., Boussier, B., Bryan, S., Macdonald, B. F. & Shiers, H. S. Commissioning of the diamond light source storage ring vacuum system. J. Phys. Conf. Ser. 100, 092011 (2008).

    Article  CAS  Google Scholar 

  124. Mobilio, S., Boscherini, F. & Meneghini, C. (eds) Synchrotron Radiation: Basics, Methods and Applications (Springer, Heidelberg, 2015).

  125. Dry, M. E. The Fischer-Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).

    Article  CAS  Google Scholar 

  126. Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).

    Article  CAS  Google Scholar 

  127. Iglesia, E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A: General 161, 59–78 (1997).

    Article  CAS  Google Scholar 

  128. Hensen, E. J. M., Wang, P. & Xu, W. Research trends in Fischer—Tropsch catalysis for coal to liquids technology. Front. Eng. 3, 321–330 (2016).

    Article  Google Scholar 

  129. de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37, 2758–2781 (2008).

    Article  CAS  Google Scholar 

  130. Henrici-Olivé, G. & Olivé, S. The Fischer-Tropsch synthesis: molecular weight distribution of primary products and reaction mechanism. Angew. Chem. Int. Ed. Engl. 15, 136–141 (1976).

    Article  Google Scholar 

  131. Davis, B. H. Fischer-Tropsch synthesis: reaction mechanisms for iron catalysts. Catal. Today 141, 25–33 (2009).

    Article  CAS  Google Scholar 

  132. Jahangiri, H., Bennet, J., Marjoubi, P., Wilson, K. & Gu, S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 4, 2210–2229 (2014).

    Article  CAS  Google Scholar 

  133. Gnanamani, M. K., Jacobs, G., Shafer, W. D. & Davis, B. H. Fischer-Tropsch synthesis: activity of metallic phases of cobalt supported on silica. Catal. Today 215, 13–17 (2013).

    Article  CAS  Google Scholar 

  134. Tsakoumis, N. E., Rønning, M., Borg, Ø., Rytter, E. & Holmen, A. Deactivation of cobalt based Fischer–Tropsch catalysts: a review. Catal. Today 154, 162–182 (2010).

    Article  CAS  Google Scholar 

  135. Torres Galvis, H. M. et al. Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 134, 16207–16215 (2012).

    Article  CAS  Google Scholar 

  136. den Breejen, J. P. et al. On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 131, 7197–7203 (2009).

    Article  CAS  Google Scholar 

  137. Bezemer, G. L. et al. Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006).

    Article  CAS  Google Scholar 

  138. Hansen, J. B. & Hojlund Nielsen, P. E. in Handbook of Heterogeneous Catalysis 2nd edn (eds Ertl, G., Knözinger, H., Schuth, F. & Weitkamp, J.) 2920 (Wiley-VCH, 2008).

  139. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    Article  CAS  Google Scholar 

  140. Perego, C. & Millini, R. Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 42, 3956–3976 (2013).

    Article  CAS  Google Scholar 

  141. Rouquerol, J. et al. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66, 1739–1758 (1994).

    Article  CAS  Google Scholar 

  142. Cerqueira, H. S., Caeiro, G., Costa, L. & Ramöa Ribeiro, F. Deactivation of FCC catalysts. J. Mol. Catal. A Chem. 292, 1–13 (2008).

    Article  CAS  Google Scholar 

  143. Scherzer, J. & Ritter, R. E. Ion-exchanged ultrastable Y zeolites. 3. Gas oil cracking over rare earth-exchanged ultrastable Y zeolites. Ind. Eng. Chem. Prod. Res. Dev. 17, 219–223 (1978).

    Article  CAS  Google Scholar 

  144. Psarras, A. C., Iliopoulou, E. F., Nalbandian, L., Lappas, A. A. & Pouwels, C. Study of the accessibility effect on the irreversible deactivation of FCC catalysts from contaminant feed metals. Catal. Today 127, 44–53 (2007).

    Article  CAS  Google Scholar 

  145. Yaluris, G., Cheng, W.-C., Peters, M., McDowell, L. T. & Hunt, L. Mechanism of fluid cracking catalysts deactivation by Fe. Stud. Surf. Sci. Catal. 149, 139–163 (2004).

    Article  CAS  Google Scholar 

  146. Yuxia, Z., Quansheng, D., Wei, L., Liwen, T. & Jun, L. Chapter 13. Studies of iron effects on FCC catalysts. Stud. Surf. Sci. Catal. 166, 201–212 (2007).

    Article  Google Scholar 

  147. Rautiainen, E. & van Krugten, P. Iron contamination on FCC catalysts. Catalyst Courier 40 (2000).

  148. Bayraktar, O. & Kugler, E. Visualization of the equilibrium FCC catalyst surface by AFM and SEM–EDS. Catal. Lett. 90, 155–160 (2003).

    Article  CAS  Google Scholar 

  149. Wieland, W. S. & Chung, D. Simulation of iron contamination. Hydrocarbon Eng. 3, 55–65 (2002).

    Google Scholar 

  150. Sadeghbeigi, R. Fluid Catalytic Cracking Handbook 3rd edn (Elsevier, Amsterdam, 2012).

  151. Takao, S. et al. Mapping platinum species in polymer electrolyte fuel cells by spatially resolved XAFS techniques. Angew. Chem. Int. Ed. 53, 14110–14114 (2014).

    Article  CAS  Google Scholar 

  152. Ristanovic, Z. et al. X-ray excited optical fluorescence and diffraction imaging of reactivity and crystallinity in a zeolite crystal: crystallography and molecular spectroscopy in one. Angew. Chem. Int. Ed. 55, 7496–7500 (2016).

    Article  CAS  Google Scholar 

  153. Couves, J. W. et al. Tracing the conversion of aurichalcite to a copper catalyst by combined X-ray absorption and diffraction. Nature 354, 465–468 (1991).

    Article  CAS  Google Scholar 

  154. Clausen, B. S. et al. In situ cell for combined XRD and on-line catalysis tests: Studies of Cu-based water gas shift and methanol catalysts. J. Catal. 132, 524–535 (1991).

    Article  CAS  Google Scholar 

  155. Dent, A. J. et al. Combined energy dispersive EXAFS and X-ray diffraction. Rev. Sci. Instr. 63, 903 (1992).

    Article  CAS  Google Scholar 

  156. Sankar, G. et al. Combined QuEXAFS-XRD: a new technique in high-temperature materials chemistry. an illustrative in situ study of the zinc oxide-enhanced solid-state production of cordierite from a precursor zeolite. J. Phys. Chem. 97, 9550–9554 (1993).

    Article  CAS  Google Scholar 

  157. Heijboer, W. M. et al. Kβ-Detected XANES of framework-substituted FeZSM-5 zeolites. J. Phys. Chem. B 108, 10002–10011 (2004).

    Article  CAS  Google Scholar 

  158. Newton, M. A., Jyoti, B., Dent, A. J., Fiddy, S. G. & Evans, J. Synchronous, time resolved, diffuse reflectance FT-IR, energy dispersive EXAFS (EDE) and mass spectrometric investigation of the behaviour of Rh catalysts during NO reduction by CO. Chem. Commun., 2382–2383 (2004).

    Article  CAS  Google Scholar 

  159. Beale, A. M., van der Eerden, A. M. J., Kervinen, K., Newton, M. A. & Weckhuysen, B. M. Adding a third dimension to operando spectroscopy: a combined UV-Vis, Raman and XAFS setup to study heterogeneous catalysts under working conditions. Chem. Commun. 0, 3015–3017 (2005).

    Article  CAS  Google Scholar 

  160. van Bokhoven, J. A. et al. Activation of oxygen on gold/alumina catalysts: in situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. Angew. Chem. Int. Ed. 45, 4651–4654 (2006).

    Article  CAS  Google Scholar 

  161. Safonova, O. V. et al. Identification of CO adsorption sites in supported Pt catalysts using high-energy-resolution fluorescence detection X-ray spectroscopy. J. Phys. Chem. B 110, 16162–16164 (2006).

    Article  CAS  Google Scholar 

  162. Beale, A. M. et al. Combined SAXS/WAXS/XAFS setup capable of observing concurrent changes across the nano-to-micrometer size range in inorganic solid crystallization processes. J. Am. Chem. Soc. 128, 12386–12387 (2006).

    Article  CAS  Google Scholar 

  163. O’Brien, M. G., Beale, A. M., Jacques, S. D. M., Di Michiel, M. & Weckhuysen, B. M. Spatiotemporal multitechnique imaging of a catalytic solid in action: phase variation and volatilization during molybdenum oxide reduction. ChemCatChem 1, 99–102 (2009).

    Article  CAS  Google Scholar 

  164. Ferri, D. et al. First steps in combining modulation excitation spectroscopy with synchronous dispersive EXAFS/DRIFTS/mass spectrometry for in situ time resolved study of heterogeneous catalysts. Phys. Chem. Chem. Phys. 12, 5634–5646 (2010).

    Article  CAS  Google Scholar 

  165. Tsakoumis, N. E. et al. Fischer–Tropsch synthesis: an XAS/XRPD combined in situ study from catalyst activation to deactivation. J. Catal. 291,138–148 (2012).

    Google Scholar 

  166. Tsakoumis, N. E. et al. A combined in situ XAS-XRPD-Raman study of Fischer–Tropsch synthesis over a carbon supported Co catalyst. Catal. Today 205, 86–93 (2013).

    Article  CAS  Google Scholar 

  167. Newton, M. A., Ferri, D., Smolentsev, G., Marchionni, V. & Nachtegaal, M. Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nat. Commun. 6, 8675 (2015).

    Article  CAS  Google Scholar 

  168. Liu, B. et al. In-situ 2p3d resonant inelastic X-ray scattering tracking cobalt nanoparticle reduction. J. Phys. Chem. C 121, 17450–17456 (2017).

    Article  CAS  Google Scholar 

  169. Timoshenko, J., Lu, D., Lin, Y. & Frenkel, A. I. Supervised machine-learning-based determination of three- dimensional structure of metallic nanoparticles. J. Phys. Chem. Lett. 8, 5091–5098 (2017).

    Article  CAS  Google Scholar 

  170. Vogt, C. et al. Unraveling structure sensitivity in CO2 hydrogenation over Ni. Nat. Catal. 1, 127–134 (2018).

    Google Scholar 

  171. Karwacki, L. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nat. Mater. 8, 959–965 (2009).

    Article  CAS  Google Scholar 

  172. De Andrade, V. et al. Nanoscale 3D imaging at the advanced photon source. SPIE Newsroom https://doi.org/10.1117/2.1201604.006461 (12 May 2016).

Download references

Acknowledgements

This work is supported by a Netherlands Organisation for Scientific Research (NWO) VIDI Grant to F.M. and a grant from the NWO Gravitation programme, Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), to B.M.W.

Author information

Authors and Affiliations

Authors

Contributions

F.M. and B.M.W. contributed equally to the concept of the article, researching the literature, writing the text and preparing the figures.

Corresponding author

Correspondence to Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meirer, F., Weckhuysen, B.M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat Rev Mater 3, 324–340 (2018). https://doi.org/10.1038/s41578-018-0044-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0044-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing