Review Article | Published:

Graphene-based integrated photonics for next-generation datacom and telecom

Nature Reviews Materialsvolume 3pages392414 (2018) | Download Citation

Abstract

Graphene is an ideal material for optoelectronic applications. Its photonic properties give several advantages and complementarities over Si photonics. For example, graphene enables both electro-absorption and electro-refraction modulation with an electro-optical index change exceeding 10−3. It can be used for optical add–drop multiplexing with voltage control, eliminating the current dissipation used for the thermal detuning of microresonators, and for thermoelectric-based ultrafast optical detectors that generate a voltage without transimpedance amplifiers. Here, we present our vision for graphene-based integrated photonics. We review graphene-based transceivers and compare them with existing technologies. Strategies for improving power consumption, manufacturability and wafer-scale integration are addressed. We outline a roadmap of the technological requirements to meet the demands of the datacom and telecom markets. We show that graphene-based integrated photonics could enable ultrahigh spatial bandwidth density, low power consumption for board connectivity and connectivity between data centres, access networks and metropolitan, core, regional and long-haul optical communications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CLR4: https://www.clr4-alliance.org/

Ethernet Alliance: http://www.ethernetalliance.org/

Information and Communication Technologies, Environmental Sustainability and Climate Change: http://www.itu.int/en/action/climate/Pages/default.aspx

International Technology Roadmap for Semiconductors 2.0, 2013 Edition, Design: http://www.itrs2.net/2013-itrs.html

International Telecommunications Union: Interfaces for the optical transport network: https://www.itu.int/rec/T-REC-G.709/en

International Telecommunications Union: Support of IP-based services using IP transfer capabilities: https://www.itu.int/rec/T-REC-Y.1241/en

Internet of Everything: https://newsroom.cisco.com/ioe

New 2018 Ethernet roadmap looks to future speeds of 1.6 terabits/s. inside HPC: https://insidehpc.com/2018/03/new-2018-ethernet-roadmap-looks-future-speeds-1-6-terabits-s/

Photonics Component & Circuit Design Software: https://www.lumerical.com/tcad-products/

Si-on-insulator (SOI): https://order.universitywafer.com/default.aspx?cat=Silicon%20on%20Insulator%20(SOI)%20wafers

The ethernet roadmap: https://newsroom.cisco.com/ioe

Xilinx: https://www.xilinx.com/publications/about/3-D_Architectures.pdf

References

  1. 1.

    Harrison, B. Amplifiers boost regeneration distance. Lightwave http://www.lightwaveonline.com/articles/1995/11/amplifiers-boost-regeneration-distance-53663947.html (1995).

  2. 2.

    Berners-Lee, T. & Fischetti, M. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor (Harper Collins, 2000).

  3. 3.

    Bangerter, B., Talwar, S., Arefi, R. & Stewart, K. Networks and devices for the 5G era. IEEE Commun. Mag. 52, 90–96 (2014).

  4. 4.

    Next generation mobile networks. 5G white paper by the NGMN Alliance. nmgn https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf (2015).

  5. 5.

    Atzori, L., Iera, A. & Morabito, G. The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010).

  6. 6.

    Rohling, G. Facts and forecasts: billions of things, trillions of dollars. Siemens https://www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/internet-of-things-facts-and-forecasts.html (2014).

  7. 7.

    Press, G. Internet of things by the numbers: market estimates and forecasts. Forbes https://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/#5115644b9194 (2014).

  8. 8.

    Scheck, H. O. ICT & wireless networks and their impact on global warming. Europ. Wireless Conf. https://doi.org/10.1109/EW.2010.5483413 (2010).

  9. 9.

    van Huden, R. G. H. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865–870 (2014).

  10. 10.

    Arakawa, Y., Nakamura, T., Urino, Y. & Fujita, T. Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72–77 (2013).

  11. 11.

    Pavesi, L. & Lockwood, D. J. Silicon Photonics III (Springer, Berlin, 2016).

  12. 12.

    [no authors listed]. Luxtera ships one millionth transceiver product. Photonics Media http://www.photonics.com/Article.aspx?AID=61153 (2016).

  13. 13.

    [no authors listed]. Cisco Visual Networking index: global mobile data traffic forecast update, 2016–2021 White Paper. Cisco https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html (2017).

  14. 14.

    [no authors listed]. White paper on technological developments and trends of optical networks. Huawei http://www-file.huawei.com/~/media/CORPORATE/PDF/white%20paper/White-Paper-on-Technological-Developments-of-Optical-Networks.pdf?source=corp_comm (2016).

  15. 15.

    The European Commission. The leverage effect of photonics technologies: the European perspective. https://ec.europa.eu/digital-agenda/en/news/leverage-effect-photonics-technologies-european-perspective (2009).

  16. 16.

    Doerr, C. R. Silicon photonic integration in telecommunications. Front. Phys. 3, 37 (2015).

  17. 17.

    Marketsandmarkets.com. Optical transceiver market by form factor, data rate, distance, wavelength, application, & geography — global forecast to 2022. Markets and markets http://www.marketsandmarkets.com/Market-Reports/optical-transceiver-market-161339599.html (2016).

  18. 18.

    The Institute of Electrical and Electronics Engineers. IEEE P802.3ba, 40 Gb/s and 100 Gb/s ethernet task force. IEEE http://www.ieee802.org/3/ba/ (2010).

  19. 19.

    The Institute of Electrical and Electronics Engineers. IEEE P802.3bs, 200 Gb/s and 400 Gb/s ethernet task force. IEEE http://www.ieee802.org/3/bs/ (2018).

  20. 20.

    Marketsandmarkets.com. Optical transceiver market worth 6.87 billion USD by 2022. Markets and markets https://www.marketsandmarkets.com/PressReleases/optical-transceiver.asp (2018).

  21. 21.

    [no authors listed]. Ericsson Mobility Report. Ericsson https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf (2016).

  22. 22.

    Kallmann, M. & Thalmann, D. in Computer Animation and Simulation ’98 (eds Arnaldi, B., Hégron, G.) (Springer, Vienna, 1999).

  23. 23.

    Huitema, C. IPv6: The New Internet Protocol 2nd edn (Prentice Hall, 1998).

  24. 24.

    [no authors listed]. Global sensors in Internet of Things (IoT) devices market 2016–2022: 100 billion IoT connected devices will be installed by 2025 to generate revenue of close to $10 trillion. Globe newswire https://globenewswire.com/news-release/2017/03/10/934261/0/en/Global-Sensors-in-Internet-of-Things-IoT-Devices-Market-2016-2022-100-billion-IoT-Connected-Devices-will-be-Installed-by-2025-to-Generate-Revenue-of-Close-to-10-Trillion.html (2017).

  25. 25.

    Manyika, J. et al. The Internet of Things: mapping the value beyond the hype. McKinsey Global Institute http://docplayer.net/1730229-The-internet-of-things-mapping-the-value-beyond-the-hype.html (2015).

  26. 26.

    O’Mahony, M. J., Politi, C., Klonidis, D., Nejabati, R. & Simeonidou, D. Future optical networks. J. Lightwave Technol. 24, 4684–4696 (2006).

  27. 27.

    Green, P. E. Optical networking update. IEEE J. Sel. Areas Commun. 14, 764–779 (1996).

  28. 28.

    De La Oliva, A. et al. Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wirel. Commun. 22, 32–40 (2015).

  29. 29.

    [no authors listed]. Ericsson White Paper. 5G radio access. Ericsson http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf (2016).

  30. 30.

    Brahmi, N., Yilmaz, O. N. C., Helmersson, K. W., Ashraf, S. A. & Torsner, J. Deployment strategies for ultra-reliable and low-latency communication in factory automation. IEEE Globecom Workshops 1–6 (2015).

  31. 31.

    Shokri-Ghadikolaei, H., Fischione, C., Popovski, P. & Zorzi, M. Design aspects of short-range millimeter-wave networks: a MAC layer perspective. IEEE Netw. 30, 88–96 (2016).

  32. 32.

    [no authors listed]. Optical communications market forecast. Lightcounting https://www.lightcounting.com/Forecast.cfm (2018).

  33. 33.

    Merritt, R. Facebook likes 100G at 1$/G. EETimes www.eetimes.com/document.asp?doc_id=1327552 (2015).

  34. 34.

    Hardy, S. Consortium for on-board optics targets specs for higher data center faceplate density. Lightwave online http://www.lightwaveonline.com/articles/2015/03/consortium-for-on-board-optics-targets-specs-for-higher-data-center-faceplate-density.html (2015).

  35. 35.

    Lefebvre, K. R. Optical components market: market share ECOC 2016. The ECOC Exhibition http://www.ecocexhibition.com/sites/default/files/files/Kevin_Ovum_Informa.pdf (2016).

  36. 36.

    Betts, G. E. in RF Photonic Technology in Optical Fiber Links (ed. Chang, W. S. C.) 81–132 (Cambridge Univ. Press, 2002).

  37. 37.

    Wang, C., Zhang, M., Stern, B., Lipson, M. & Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

  38. 38.

    Juodawlkis, P. W. et al. InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vπ. Proc. SPIE 5435 (2004).

  39. 39.

    Letal, G. et al. Low loss InP C-band IQ Modulator with 40 GHz bandwidth and 1.5 V Vπ. Optical Fiber Commun. Conf. http://remapnetwork.org/wp-content/uploads/2015/11/ReMAP-O8-Low_Loss_InP_C-Band_IQ_Modulator_with_40_GHz_….pdf (2015).

  40. 40.

    Coldren, L. A. Indium-phosphide photonic integrated circuits. OSA Technical Digest https://doi.org/10.1364/OFC.2017.W4G.1 (2017).

  41. 41.

    Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527–534 (2010).

  42. 42.

    Shiue, R. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

  43. 43.

    Salamin, Y. et al. 100 GHz Plasmonic Photodetector, ACS Photonics, June 2018.

  44. 44.

    Bennett, G. The right material for the job: finding the best fit for InP and silicon. Infinera https://www.infinera.com/the-right-material-for-the-job-findingthe-best-fit-for-inp-and-silicon/ (2015).

  45. 45.

    [no authors listed]. Silicon photonics for data centers and other applications 2016. i-Micronews https://www.i-micronews.com/report/product/silicon-photonicsfor-data-centers-and-other-applications-2016.html?utm_source=PR&utm_medium=email&utm_campaign=SiliconPhotonics_Markets_Applications_Yole_Nov2016 (2016).

  46. 46.

    Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166 (2009).

  47. 47.

    Kleinert, M. et al. Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform. Opt. Mater. Expr. 6, 1800–1807 (2016).

  48. 48.

    Pérez, D., Domenech, D., Munoz, P. & Capmany, J. Electro-refraction modulation predictions for silicon graphene waveguides in the 1540–1560 nm region. IEEE Photon. J. 8, 4501613 (2016).

  49. 49.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two- dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

  50. 50.

    Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

  51. 51.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

  52. 52.

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

  53. 53.

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

  54. 54.

    Kim, K., Choi, J., Kim, T., Cho, S. & Chung, H. A role for graphene in silicon based semiconductor devices. Nature 479, 338–344 (2011).

  55. 55.

    Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

  56. 56.

    Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

  57. 57.

    Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

  58. 58.

    Phare, C. T., Lee, Y. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

  59. 59.

    Reed, G. T. & Png, C. E. J. Silicon optical modulators. Mater. Today 8, 40–50 (2005).

  60. 60.

    Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photon. 2, 433–437 (2008).

  61. 61.

    Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

  62. 62.

    Gardes, F. Y., Thomson, D. J., Emerson, N. G. & Reed, G. T. 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express 19, 11804–11814 (2011).

  63. 63.

    Snyder, A. W. Optical Waveguide Theory (Springer Verlag, 1983).

  64. 64.

    Keldysh, L. V. Behaviour of non-metallic crystals in strong electric fields. J. Exptl. Theor. Phys. 33, 994–1003 (1957).

  65. 65.

    Keldish, L. V. Ionization in the field of a strong electromagnetic wave. J. Exptl. Theor. Phys. 47, 1945–1957 (1964).

  66. 66.

    Feng, D. et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt. Express 20, 22224–22232 (2012).

  67. 67.

    Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

  68. 68.

    Dumas, D. C. S. et al. Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm. Opt. Express 22, 19284–19292 (2014).

  69. 69.

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

  70. 70.

    Sorianello, V., Midrio, M. & Romagnoli, M. Design optimization of single and double layer graphene phase modulators in SOI. Opt. Express 23, 6478–6490 (2015).

  71. 71.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

  72. 72.

    Liu, M., Yin, X. & Zhang, X. Double layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

  73. 73.

    Hanson, G. W. Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008).

  74. 74.

    Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008).

  75. 75.

    Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007).

  76. 76.

    Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

  77. 77.

    Midrio, M., Galli, P., Romagnoli, M., Kimerling, L. C. & Michel, J. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon. Res. 2, A34–A40 (2014).

  78. 78.

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top- gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

  79. 79.

    Sorianello, V. et al. Complex effective index in graphene-silicon waveguide. Opt. Express 24, 29984–29993 (2016).

  80. 80.

    Chang, Y. C., Liu, C. H., Liu, C. H., Zhong, Z. & Norris, T. B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 104, 261909 (2014).

  81. 81.

    Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

  82. 82.

    Stauber, T., Peres, N. M. R. & Geim, A. K. Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008).

  83. 83.

    Mak, K. F., Ju, L. F., Wang, F. & Heinz, T. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012).

  84. 84.

    Moss, T. S., Burrell, G. J. & Ellis, B. Semiconductor Opto-Electronics (Butterworth, London, 1973).

  85. 85.

    Agrawal, G. P. Fiber-Optic Communication Systems 4th edn (John Wiley & Sons, Hoboken, 2014).

  86. 86.

    Sorianello, V. et al. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

  87. 87.

    Gnauck, A. H. & Winzer, P. J. Optical phase-shift-keyed transmission. IEEE J. Lightwave Technol. 23, 115 (2005).

  88. 88.

    Xu, C. & Liu, X. Differential phase-shift keying for high spectral efficiency optical transmissions. IEEE J. Sel. Top. Quantum Electron. 10, 281–293 (2004).

  89. 89.

    Proakis, J. G. Digital Communications (McGraw Hill, Singapore, 1995).

  90. 90.

    Kramer, G. Ashikhmin, van Wijngaarden, A., A. & Wei, X. Spectral efficiency of coded phase-shift keying for fiber optic communications. IEEE J. Lightwave Technol. 21, 2438–2445 (2003).

  91. 91.

    Yan, L.-S., Liu, X. & Shieh, W. Toward the Shannon limit of spectral efficiency. IEEE Photon. J. 3, 325–330 (2011).

  92. 92.

    Lotz, T. H., Sauer-Greff, W. & Urbansky, R. Spectral efficient coding schemes in optical communications. Int. J. Optoelectron. Eng. 2, 18–25 (2012).

  93. 93.

    Webster, M. A. et al. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers. Optical Fiber Commun. Conf. https://doi.org/10.1364/OFC.2015.W4H.3 (2015).

  94. 94.

    Thomson, D. J. et al. High performance Mach–Zehnder-based silicon optical modulators. IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).

  95. 95.

    Xiao, X. et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express 21, 4116–4125 (2013).

  96. 96.

    Ding, J., Ji, R., Zhang, L. & Yang, L. Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator. IEEE J. Lightwave Technol. 31, 2434–2440 (2013).

  97. 97.

    Yang, Y. et al. High-efficiency Si optical modulator using Cu travelling-wave electrode. Opt. Express 22, 29978–29985 (2014).

  98. 98.

    Ding, R. et al. Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator. Opt. Commun. 321, 124–133 (2014).

  99. 99.

    Xiong, C. et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 3, 1060–1065 (2016).

  100. 100.

    Streshinsky, M. et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt. Express 21, 30350–30357 (2013).

  101. 101.

    Tu, X. et al. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 21, 12776–12782 (2013).

  102. 102.

    Azadeh, S. S. et al. Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express 23, 23526–23550 (2015).

  103. 103.

    Gill, D. M. et al. Demonstration of a high extinction ratio monolithic CMOS integrated nanophotonic transmitter and 16 Gb/s optical link. IEEE J. Sel. Top. Quantum Electron. 21, 3400311 (2015).

  104. 104.

    Milivojevic, B. et al. 112 Gb/s DP-QPSK transmission over 2427 km SSMF using small size silicon photonics IQ modulator and low power CMOS driver. Optical Fiber Commun. Conf. https://doi.org/10.1364/OFC.2013.OTh1D.1 (2013).

  105. 105.

    Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photon. 11, 482–485 (2017).

  106. 106.

    Han, J.-H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

  107. 107.

    Abraham, A., Olivier, S., Marris-Morini, D. & Vivien, L. Evaluation of the performances of a silicon optical modulator based on a silicon-oxide-silicon capacitor. 11th Inter. Conf. Group IV Photonics (GFP) https://doi.org/10.1109/Group4.2014.6961999 (2014).

  108. 108.

    Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

  109. 109.

    Denoyer, G. et al. Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber. Europ. Conf. Optical Communication https://doi.org/10.1109/ECOC.2014.6964262 (2014).

  110. 110.

    Gupta, S. et al. 50 GHz Ge waveguide electro-absorption modulator integrated in a 220 nm SOI photonics platform. Optical Fiber Commun. Conf. https://doi.org/10.1364/OFC.2015.Tu2A.4 (2015).

  111. 111.

    Feng, N. N. et al. 30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide. Opt. Express 19, 7062–7067 (2011).

  112. 112.

    Feng, D. et al. High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J. Sel. Top. Quantum Electron. 19, 3401710 (2013).

  113. 113.

    Sorianello, V. et al. Chirp management in silicon-graphene electro absorption modulators. Opt. Express 25, 19371–19381 (2017).

  114. 114.

    Colinge, J.-P. Silicon-on-Insulator Technology: Materials to VLSI. (Springer Science & Business Media LLC, 2013).

  115. 115.

    Liow, T.-Y. et al. Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization. IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).

  116. 116.

    Romagnoli, M. Graphene integrated photonics for next generation optical communications [abstract]. Graphene Conf. http://www.phantomsnet.net/Graphene_Conf/2016/Abstracts/a_Romagnoli_Marco.pdf (2016).

  117. 117.

    Philipp, H. R. Optical properties of silicon nitride. ECS J. Solid State Sci. Technol. 120, 295–300 (1973).

  118. 118.

    Rahim, A. et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. IEEE J. Lightwave Technol. 35, 639–649 (2016).

  119. 119.

    Barwicz, T. et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat. Photon. 1, 57–60 (2007).

  120. 120.

    Plummer, J. D., Deal, M. & Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).

  121. 121.

    Muzio, E. Optical lithography cost of ownership (COO) – final report for LITG501. Int. SEMATECH http://www.sematech.org/docubase/document/4014atr.pdf (2000).

  122. 122.

    [no authors listed]. The problem with packaging. Fibre Systems https://www.fibre-systems.com/feature/problem-packaging (2015).

  123. 123.

    Kawachi, M. Silica waveguides on silicon and their application to integrated-optic components. Opt. Quantum Electron. 22, 391–416 (1990).

  124. 124.

    Reed, G. T. & Knights, A. P. Silicon Photonics: An Introduction (John Wiley & Sons, 2004).

  125. 125.

    Gill, D. M. et al. Demonstration of error-free 32 Gb/s operation from mono lithic CMOS nanophotonic transmitters. IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).

  126. 126.

    Liu, J. M. Photonic Devices (Cambridge Univ. Press, 2005).

  127. 127.

    Josephs, H. C. A figure of merit for digital systems. Microelectron. Reliab. 4, 345–350 (1965).

  128. 128.

    Hinton, K. et al. Power consumption and energy efficiency in the internet. IEEE Netw. 25, 6–12 (2011).

  129. 129.

    Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

  130. 130.

    Leuthold, J. et al. High-speed, low-power optical modulators in silicon. 15th Int. Conf. Transparent Optical Networks https://doi.org/10.1109/ICTON.2013.6603001 (2013).

  131. 131.

    Li, G. L., Mason, T. G. B. & Yu, P. K. L. Analysis of segmented traveling- wave optical modulators. IEEE J. Lightwave Technol. 22, 1789–1796 (2004).

  132. 132.

    Tekin, T. & Pleros, N. Optical Interconnects for Data Centers (Elsevier, 2016).

  133. 133.

    Seimetz, M. High-Order Modulation for Optical Fiber Transmission (Springer, 2009).

  134. 134.

    Webster, M. et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. 11th Int. Conf. Group IV Photonics (GFP) https://doi.org/10.1109/Group4.2014.6961998 (2014).

  135. 135.

    Rajagopalan, B., Pendarakis, D., Saha, D., Ramamoorthy, R. S. & Bala, K. IP over optical networks: architectural aspects. IEEE Commun. Mag. 38, 94–102 (2000).

  136. 136.

    Kachris, C., Kanonakis, K. & Tomkos, I. Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Commun. Mag. 51, 39–45 (2013).

  137. 137.

    Singh, A. et al. Jupiter rising: a decade of Clos topologies and centralized control in Google’s datacenter network. Computer Commun. Rev. 45, 183–197 (2015).

  138. 138.

    Liu, X. & Effenberger, F. Emerging optical access network technologies for 5G wireless. J. Opt. Commun. Netw. 8, B70–B79 (2016).

  139. 139.

    El-Bawab, T. S. Optical Switching (Springer, 2006).

  140. 140.

    Papagiannaki, K. et al. A pragmatic definition of elephants in internet backbone traffic. Proc. ACM Sigcomm Internet Measurement Workshop http://www.academia.edu/620709/A_pragmatic_definition_of_elephants_in_internet_backbone_traffic (2002).

  141. 141.

    Idzikowski, F., Orlowski, S., Raack, C., Woesner, H. & Wolisz, A. Dynamic routing at different layers in IP-over-WDM networks – maximizing energy savings. Opt. Switch. Netw. 8, 181–200 (2011).

  142. 142.

    Zang, H., Jue, J. P. & Mukherjee, B. A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000).

  143. 143.

    Friedman, L., Soref, R. A. & Lorenzo, J. P. Silicon double-injection electro-optic modulator with junction gate-control. J. Appl. Phys. 63, 1831–1839 (1988).

  144. 144.

    Kuroyanagi, S. & Nishi, T. Optical path restoration schemes and cross-connect architectures for photonic transport networks. IEEE GLOBECOM https://doi.org/10.1109/GLOCOM.1998.775938 (1998).

  145. 145.

    McKeown, N. Software-defined networking. Proc. IEEE Infocom https://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf (2009).

  146. 146.

    Cugini, F. et al. Toward plug-and-play software-defined elastic optical networks. IEEE J. Lightwave Technol. 34, 1494–1500 (2016).

  147. 147.

    Tombaz, S. et al. Energy performance of 5G-NX wireless access utilizing massive beamforming and an ultra-lean system design. IEEE GLOBECOM https://doi.org/10.1109/GLOCOM.2015.7417240 (2015).

  148. 148.

    Fiorani, M. et al. Modeling energy performance of C-RAN with optical transport in 5G network scenarios. J. Opt. Commun. Netw. 8, B21–B34 (2016).

  149. 149.

    Kitayama, K. et al. Photonic network vision 2020—toward smart photonic cloud. IEEE J. Lightwave Technol. 32, 2760–2770 (2014).

  150. 150.

    Stabile, R., Albores-Mejia, A., Rohit, A. & Williams, K. A. Integrated optical switch matrices for packet data networks. Microsyst. Nanoeng. 2, 15042 (2016).

  151. 151.

    Neyer, A. Electro-optic switch using single-mode Ti:LiNbO3 channel waveguides. Electron. Lett. 19, 553–554 (1983).

  152. 152.

    Okayama, H. & Kawahara, M. Prototype 32 × 32 optical switch matrix. Electron. Lett. 30, 1128–1129 (1994).

  153. 153.

    Doerr, C. R. Proposed WDM cross connect using a planar arrangement of waveguide grating routers and phase shifters. IEEE Photon. Technol. Lett. 10, 528–530 (1998).

  154. 154.

    Okayama, H. Lithium niobate: electro-optic guided-wave optical switch. Proc. SPIE 4532, 73–85 (2001).

  155. 155.

    Krähenbühl, R., Dubinger, J. & Greenblatt, A. S. Performance and modeling of advanced Ti: LiNbO3 digital optical switches. IEEE J. Lightwave Technol. 20, 92–99 (2002).

  156. 156.

    Smith, D. A. et al. Evolution of the acousto-optic wavelength routing switch. IEEE J. Lightwave Technol. 14, 1005–1019 (1996).

  157. 157.

    Smith, D. A. et al. Multiwavelength performance of an apodized acousto-optic switch. IEEE J. Lightwave Technol. 14, 2044–2051 (2002).

  158. 158.

    Sapriel, J., Molchanov, V., Aubin, G. & Gosselin, S. Acousto-optic switch for telecommunication networks. Proc. SPIE 5828, 68–75 (2005).

  159. 159.

    Goh, T. et al. Low loss and high extinction ratio strictly nonblocking 16 × 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology. IEEE J. Lightwave Technol. 19, 371–379 (2001).

  160. 160.

    Ji, R. et al. Five-port optical router based on microring switches for photonic networks-on-chip. Opt. Express 21, 20258–20268 (2011).

  161. 161.

    Das Mahapatra, P., Stabile, R., Rohit, A. & Williams, K. A. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).

  162. 162.

    Suzuki, K. et al. Ultra-compact 8 × 8 strictly non-blocking Si-wire PILOSS switch. Opt. Express 22, 3887–3894 (2014).

  163. 163.

    Tanizawa, K. et al. Ultra-compact 32 × 32 strictly non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express 23, 17599–17606 (2015).

  164. 164.

    Johnson, K. M., McKnight, D. J. & Underwood, I. Smart spatial light modulators using liquid crystals on silicon. IEEE J. Quant. Electron. 23, 699–710 (1993).

  165. 165.

    Riza, N. A. & Yuan, S. Low optical interchannel crosstalk, fast switching speed, polarisation independent 2 × 2 fiber optic switch using ferroelectric liquid crystals. Electron. Lett. 34, 1341–1342 (1998).

  166. 166.

    Baxter, G. et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements. Proc. Optical Fiber Commun. https://doi.org/10.1109/OFC.2006.215365 (2006).

  167. 167.

    Wall, P., Colbourne, P., Reimer, C. & McLaughlin, S. WSS switching engine technologies. Optical Fiber Commun. Conf. https://doi.org/10.1109/OFC.2008.4528672 (2008).

  168. 168.

    Ford, J. E., Aksyuk, V. A., Bishop, D. J. & Walker, J. A. Wavelength add-drop switching using tilting micromirrors. IEEE J. Lightwave Technol. 17, 904–911 (1999).

  169. 169.

    Ollier, E. Optical MEMS devices based on moving waveguides. IEEE J. Sel. Top. Quantum Elect. 8, 155–162 (2002).

  170. 170.

    Yamamoto, T. et al. A three-dimensional MEMS optical switching module having 100 input and 100 output ports. IEEE Photon. Technol. Lett. 15, 1360–1362 (2003).

  171. 171.

    Zheng, X. et al. Three-dimensional MEMS photonic crossconnect switch design and performance. IEEE J. Sel. Top. Quantum Electron. 9, 571–578 (2003).

  172. 172.

    Wu, M. C., Solgaard, O. & Ford, J. E. Optical MEMS for lightwave communication. IEEE J. Lightwave Technol. 24, 4433–4454 (2006).

  173. 173.

    Han, S., Seok, T. J., Quack, N., Yoo, B.-W. & Wu, M. C. Large-scale silicon photonic switches with movable directional couplers. Optica 2, 370–375 (2015).

  174. 174.

    Varrazza, R., Djordjevic, I. B. & Y., S. Active vertical-coupler-based optical crosspoint switch matrix for optical packet-switching applications. IEEE J. Lightwave Technol. 22, 2034–2042 (2004).

  175. 175.

    Wang, H., Wonfor, A., Williams, K. A., Penty, R. V. & White, I. H. Demonstration of a lossless monolithic 16 × 16 QW SOA switch. Proc. 35th Europ. Con. Optical Communication https://pure.tue.nl/ws/files/2817777/Metis234139.pdf (2009).

  176. 176.

    Nicholes, S. C. et al. An 8 × 8 InP monolithic tunable optical router (MOTOR) packet forwarding chip. IEEE J. Lightwave Technol. 2, 641–650 (2012).

  177. 177.

    Soganci, I. M., Tanemura, T. & Nakano, Y. Integrated phased-array switches for largescale photonic routing on chip. Laser Photon. Rev. 6, 549–563 (2012).

  178. 178.

    Stabile, R., Albores-Mejia, A. & Williams, K. A. Monolithic active-passive 16 × 16 optoelectronic switch. Opt. Lett. 37, 4666–4668 (2012).

  179. 179.

    Stabile, R., Rohit, A. & Williams, K. A. Monolithically integrated 8 × 8 space and wavelength selective cross-connect. IEEE J. Lightwave Technol. 32, 201–207 (2013).

  180. 180.

    Smit, M., van der Tol, J. & Hill, M. Moore’s law in photonics. Laser Photon. Rev. 6, 1–13 (2012).

  181. 181.

    Doerr, C. in Optical Fiber Telecommunications IV-A Components (Eds Kaminov, I. P. & Li, T.) (Academic Press, Cambridge, MA, 2002).

  182. 182.

    Suzuki, S., Shuto, S. & Hibino, Y. Integrated-optic ring resonators with two stacked layers of silica waveguide on Si. IEEE Photon. Technol. Lett. 4, 1256–1258 (1992).

  183. 183.

    Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. & Laine, J. P. Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 998–1005 (1997).

  184. 184.

    Little, B. E. et al. Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998).

  185. 185.

    Little, B. E., Chu, S. T., Hryniewicz, J. V. & Absil, P. P. Filter synthesis of periodically coupled microring resonators. Opt. Lett. 5, 344–346 (2000).

  186. 186.

    Little, B. E., Chu, S. T., Pan, W. & Kokobun, Y. Microring resonator arrays for VLSI photonics. IEEE Photon. Technol. Lett. 12, 323–325 (2000).

  187. 187.

    Grover, R. et al. Parallel-cascaded semiconductor microring resonators for high-order and wide FSR-filters. IEEE J. Lightwave Technol. 20, 900–905 (2002).

  188. 188.

    Vorckel, A., Monster, M., Henschel, W., Bolivar, P. H. & Kurz, H. Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers. IEEE Photon. Technol. Lett. 15, 921–923 (2003).

  189. 189.

    Klein, E. J. et al. Reconfigurable optical add–drop multiplexer using microring resonators. IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).

  190. 190.

    Yangfang, L., Yonghui, T. & Lin, Y. Integrated reconfigurable optical add-drop multiplexers based on cascaded microring resonators. J. Semicond. 34, 094012 (2013).

  191. 191.

    Xiao, X. et al. Eight-channel optical add-drop multiplexer with cascaded parent-sub microring resonators. IEEE Photon. J. 7, 7801307 (2015).

  192. 192.

    Brackett, C. A. Dense wavelength division multiplexing networks: principles and applications. IEEE J. Sel. Areas Commun. 8, 948–964 (1990).

  193. 193.

    Ramaswami, R. & Sivarajan, K. N. Optical Networks (Morgan Kaufmann, San Francisco, 1998).

  194. 194.

    Kaminow, I. P. & Koch, T. L. Optical Fiber Communications IIIA (Academic Press, San Diego, 1997).

  195. 195.

    Laude, J.-P. DWDM Fundamentals, Components and Applications (Artech House, Norwood MA, 2002).

  196. 196.

    Internatinal Telecommunication Union. Optical Fibres, Cables and Systems (ITU, 2009).

  197. 197.

    Geuzebroek, D. H. et al. Thermally tuneable, wide FSR switch based on micro-ring resonators. Proc. Symposium IEEE/LEOS https://ris.utwente.nl/ws/portalfiles/portal/6149675 (2002).

  198. 198.

    Kiyat, I., Aydinli, A. & Dagli, N. Low-power thermo optical tuning of SOI resonator switch. IEEE Photon. Technol. Lett. 18, 364–366 (2006).

  199. 199.

    Gan, F. et al. Maximizing the thermo-optic tuning range of silicon photonic structures. Photonics in Switching https://doi.org/10.1109/PS.2007.4300747 (2007).

  200. 200.

    Dai, D., Yang, L. & He, S. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. IEEE J. Lightwave Technol. 26, 704–709 (2008).

  201. 201.

    Atabaki, A. H., Shah Hosseini, E., Eftekhar, A. A., Yegnanarayanan, S. & Adibi, A. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 18, 18312–18323 (2010).

  202. 202.

    Bogaerts, W. et al. Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012).

  203. 203.

    Cocorullo, G. & Rendina, I. Thermo-optical modulation at 1.5 μm in silicon etalon. Electron. Lett. 28, 83–84 (1992).

  204. 204.

    Cocorullo, G., Della Corte, F. G., Rendina, I. & Sarro, P. M. Thermo-optic effect exploitation in silicon microstructures. Sens. Actuators A. 71, 19–26 (1998).

  205. 205.

    Clark, S. A., Culshaw, B., Dawnay, E. J. C. & Day, I. E. Thermo-optic phase modulation in SIMOX structures. Proc. SPIE 3936, 16–24 (2000).

  206. 206.

    Cassese, T. et al. Capacitive actuation and switching of add-drop graphene-silicon micro-ring filters. Photon Res. 5, 762–766 (2017).

  207. 207.

    Mukherjee, B. Optical Communication Networks (McGraw-Hill, New York, 1997).

  208. 208.

    Chinni, V. Crosstalk in a lossy directional coupler switch. IEEE J. Lightwave Technol. 13, 1530–1535 (1995).

  209. 209.

    Prati, G. E. Photonic Networks, Advances in Optical Communications (Springer, 1997).

  210. 210.

    Hinton, H. S. An Introduction to Photonic Switching Fabrics (Plenum, New York, 1998).

  211. 211.

    Gyselings, T., Morthier, G. & Baets, R. Crosstalk analysis of multiwavelength optical cross connect. IEEE J. Lightwave Technol. 17, 1273–1283 (1999).

  212. 212.

    Lin, B.-C. & Lea, C.-T. Crosstalk analysis for microring based optical interconnection networks. IEEE J. Lightwave Technol. 30, 2415–2420 (2012).

  213. 213.

    Gautam, R. et al. Thermo-optically driven silicon microring-resonator-loaded Mach–Zehnder modulator for low power consumption and multiple-wavelength modulation. Jpn J. Appl. Phys. 53, 022201 (2014).

  214. 214.

    Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

  215. 215.

    Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

  216. 216.

    Echtermeyer, T. J. et al. Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. Nano Lett. 14, 3733–3742 (2014).

  217. 217.

    Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

  218. 218.

    Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nat. Photon. 7, 53–59 (2012).

  219. 219.

    Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

  220. 220.

    Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

  221. 221.

    Tielrooij, K. J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015).

  222. 222.

    Dawlaty, J. M. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).

  223. 223.

    Schuler, S. et al. Controlled generation of a pn-junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107–7112 (2016).

  224. 224.

    Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

  225. 225.

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

  226. 226.

    Song, J. C. W. Hot Carriers in Graphene. Thesis, Harvard Univ. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070076 (2014).

  227. 227.

    Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

  228. 228.

    Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41 (2018).

  229. 229.

    Basko, D. A. Photothermoelectric effect in graphene. Science 334, 610–611 (2011).

  230. 230.

    Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

  231. 231.

    Liu, C. H., Dissanayake, N. M., Lee, S., Lee, K. & Zhong, Z. H. Evidence for extraction of photoexcited hot carriers from graphene. ACS Nano 6, 7172–7176 (2012).

  232. 232.

    Zhang, B. Y., Liu, T., Mengo, B. & Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).

  233. 233.

    Chang, H. L., Chang, Y.-C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

  234. 234.

    Lemme, M. et al. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 11, 4134–4137 (2011).

  235. 235.

    Gan, X., Shiue, R.-J., Gao, Y. & Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 888–891 (2013).

  236. 236.

    Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 7, 892–896 (2013).

  237. 237.

    Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 1, 781–784 (2014).

  238. 238.

    Alexander, S. B. Optical Communication Receiver Design (SPIE Press, 1997).

  239. 239.

    Goykhman, I. et al. On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 16, 3005–3013 (2016).

  240. 240.

    [no authors listed]. Basics of microstructuring. MicroChemicals https://www.microchemicals.com/technical_information/lift_off_photoresist.pdf (2013).

  241. 241.

    Gupta, T. Copper Interconnect Technology (Springer-Verlag, New York, 2009).

  242. 242.

    Smith, A. D., Vaziri, S., Rodriguez, S., Östling, M. & Lemme, M. C. Wafer scale graphene transfer for back end of the line device integration. 15th Int. Conf. Ultimate Integration on Silicon (2014).

  243. 243.

    Heo, J. et al. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. Nano Lett. 13, 5967–5971 (2013).

  244. 244.

    Rizzi, L. G. et al. Cascading wafer-scale integrated graphene complementary inverters under ambient conditions. Nano Lett. 12, 3948–3953 (2012).

  245. 245.

    Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

  246. 246.

    [no authors listed]. International technology roadmap for semiconductors 2.0. https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2015/0_2015%20ITRS%202.0%20Executive%20Report%20(1).pdf (2015).

  247. 247.

    Kobayashi, N. in Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications (eds Shacham-Diamond, Y., Osaka, T., Dataa, M. & Ohba, T.) 263–273 (Springer-Verlag, New York, 2009).

  248. 248.

    Singer, P. Making the move to dual damascene processing. Semicond. Int. 20, 79–82 (1997).

  249. 249.

    Gelatos, A. V. & Fiordalice, R. W. Process for forming copper interconnect structure. US Patent US5391517A (1993).

  250. 250.

    Chen, H. T. et al. 25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode. IEEE Photon. J. 7, 7902909 (2015).

  251. 251.

    Srinivasan, A. S. et al. 56 Gb/s germanium waveguide electro-absorption modulator. IEEE J. Lightwave Technol. 34, 419–424 (2015).

  252. 252.

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2015).

  253. 253.

    Simoen, E. et al. On the temperature and field dependence of trap-assisted tunneling current in Ge pn junctions. IEEE Electron. Device Lett. 30, 562 (2009).

  254. 254.

    DiLello, N. A. & Hoyt, J. L. Impact of post-metallization annealing on Ge-on-Si photodiodes passivated with silicon dioxide. Appl. Phys. Lett. 99, 033508 (2011).

  255. 255.

    Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

  256. 256.

    Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

  257. 257.

    Gao, L. et al. Face-to-face transfer of wafer-scale graphene films. Nature 505, 190–194 (2014).

  258. 258.

    Zhang, Y., Zhang, L. & Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013).

  259. 259.

    Inohara, M. et al. Copper contamination induced degradation of MOSFET characteristics and reliability. Proc. IEEE 2000 Symposium of VLSI (2000).

  260. 260.

    Istratov, A. A. & Weber, E. R. Physics of copper in silicon. J. Electrochem. Soc. 149, G21–G30 (2002).

  261. 261.

    Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

  262. 262.

    Gao, L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).

  263. 263.

    Vikas, B. Impermeability of graphene and its applications. Carbon 62, 1–10 (2013).

  264. 264.

    Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 041019 (2014).

  265. 265.

    Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nat. Phys. 4, 144–148 (2008).

  266. 266.

    Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).

  267. 267.

    Gao, W., Xiao, P., Henkelman, G., Liechti, K. M. & Huang, R. Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. J. Phys. D 47, 255301 (2014).

  268. 268.

    Banszerus, L. et al. Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett. 16, 1387–1391 (2016).

  269. 269.

    Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. arXiv, 1803.00912 (2018).

  270. 270.

    Xue, J. et al. STM spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

  271. 271.

    Dean, C. R. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

  272. 272.

    Jang, A. R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

  273. 273.

    Shautsova, K., Gilbertson, A. M., Black, N. C. G., Maier, S. A. & Cohen, L. F. Hexagonal boron nitride assisted transfer and encapsulation of large area CVD graphene. Sci. Rep. 6, 30210 (2016).

  274. 274.

    Chen, C.-T., Casu, E. A., Gajek, M. & Raoux, S. Low-damage high-throughput grazing-angle sputter deposition on graphene. Appl. Phys. Lett. 103, 033109 (2013).

  275. 275.

    Tang, X. et al. Damage evaluation in graphene underlying atomic layer deposition dielectrics. Sci. Rep. 5, 13523 (2015).

  276. 276.

    George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

  277. 277.

    Green, M. L. et al. Nucleation and growth of atomic layer deposited HfO2 gate dielectric layers on chemical oxide (Si–O–H) and thermal oxide (SiO2 or Si–O–N) underlayers. J. Appl. Phys. 92, 7168–7174 (2002).

  278. 278.

    Puurunen, R. L. & Vandervorst, W. Island growth as a growth mode in atomic layer deposition. J. Appl. Phys. 96, 7686–7695 (2004).

  279. 279.

    Oh, I. L. et al. Nucleation and growth of the HfO2 dielectric layer for graphene-based devices. Chem. Mater. 27, 5868–5877 (2015).

  280. 280.

    Young, M. J., Musgrave, C. B. & George, S. M. Growth characterization of Al2O3 atomic layer deposition films on sp(2)-graphitic carbon substrates using NO2/trimethylaluminum pretreatment. ACS Appl. Mater. Interfaces 7, 12030–12037 (2015).

  281. 281.

    Chen, W. K. (ed.) The VLSI Handbook 2nd edn (CRC Press, 2007).

  282. 282.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  283. 283.

    Miseikis, V. et al. Deterministic patterned growth of high-mobility large-crystal graphene: a path towards wafer scale integration. 2D Mater. 4, 021004 (2017).

  284. 284.

    Song, J. et al. General method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8, 356–362 (2013).

  285. 285.

    Ma, P. et al. Plasmonically enhanced graphene photodetector featuring 100 GBd, high-responsivity and compact size. ArXiv preprint at https://arxiv.org/abs/1808.10823 (2018).

  286. 286.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

  287. 287.

    Liu, J.-M. Principles of Photonics (Cambridge Univ. Press, 2016).

  288. 288.

    Tamir, T. Integrated Optics (Springer-Verlag, 1975).

  289. 289.

    Nakazawa, M., Kikuchi, K. & Miyazaki, T. High Spectral Density Optical Communication Technologies (Springer-Verlag, 2010).

  290. 290.

    Reed, G. T. Silicon Photonics (John Wiley & Sons, Chichester, 2008).

  291. 291.

    Hu, Y. T. et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photon. Rev. 10, 307–316 (2016).

  292. 292.

    [no authors listed]. Extinction ratio and power penalty. Maxin Integrated https://pdfserv.maximintegrated.com/en/an/AN596.pdf (2008).

  293. 293.

    Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

  294. 294.

    Xu, T. Digital signal processing for optical communications and networks I: Linear compensation. arXiv, 1705.05284v1 (2017).

  295. 295.

    Li, G. L. & Yu, P. K. L. Optical intensity modulators for digital and analog applications. IEEE J. Lightwave Technol. 21, 2010–2030 (2003).

  296. 296.

    Wang, H. et al. Simulation and experiment of 1310 nm high speed InGaAsP/InP EAM. Proc. SPIE 9270 (2014).

  297. 297.

    Wang, H. T. et al. Optimization of 1.3−μm InGaAsP/InP electro-absorption modulator. Chin. Phys. Lett. 32, 084203 (2015).

  298. 298.

    Gill, D. M. et al. A figure of merit based transmitter link penalty calculation for CMOS-compatible plasma-dispersion electro-optic Mach-Zehnder modulators. arXiv, 1211.2419

  299. 299.

    Chin, M. K. On the figures of merit for electro-absorption waveguide modulators. IEEE Photon. Technol. Lett. 4, 527–534 (2010).

  300. 300.

    Beling, A. & Campbell, J. C. InP-based high-speed photodetectors. IEEE J. Lightwave Technol. 27, 343–355 (2009).

  301. 301.

    Papes, M. Fiber-chip edge coupler with large mode size for silicon photonics wire waveguides. Opt. Express 24, 5026–5038 (2016).

  302. 302.

    Iwai, H. Roadmap for 22 nm and beyond. Microelectron. Eng. 86, 1520–1528 (2009).

  303. 303.

    Dong, P. et al. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 20, 6163–6169 (2012).

  304. 304.

    Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

  305. 305.

    Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Mater. Today 15, 564 (2012).

  306. 306.

    Hwang, E. H., Adam, S., Hu, B. Y. K. & Das Sarma, S. Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer. Phys. Rev. B 77, 195412 (2008).

  307. 307.

    Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).

  308. 308.

    Soref, R. A. Silicon based optoelectronics. Proc. IEEE 81, 1687–1706 (1993).

  309. 309.

    Liu, A. et al. A high-speed silicon optical modulator based on metal-oxide semiconductor capacity. Nature 427, 615–618 (2004).

  310. 310.

    Treyz, G. V., May, P. G. & Halbout, J. M. Silicon optical modulators at 1.3 micrometer based on free-carrier absorption. IEEE Electron. Device Lett. 12, 276–278 (1991).

  311. 311.

    Liu, A. et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 25, 660–668 (2007).

  312. 312.

    Treyz, G. V., May, P. G. & Halbout, J. M. Silicon Mach-Zehnder waveguide interferometer based on the plasma dispersion effect. Appl. Phys. Lett. 59, 771–773 (1991).

  313. 313.

    Tang, C. K., Reed, G. T., Wilson, A. J. & Rickman, A. G. Low-loss, single-mode, optical phase modulator in SIMOX material. IEEE J. Lightwave Technol. 12, 1394–1400 (1994).

  314. 314.

    Tang, C. K. & Reed, G. T. Highly efficient optical phase modulator in SOI waveguide. Electron. Lett. 31, 451–452 (1995).

  315. 315.

    Dainesi, P. et al. CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology. IEEE Photon. Technol. Lett. 12, 660–662 (2000).

  316. 316.

    Png, C. E., Chan, S. P., Lim, S. T. & Reed, G. T. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). IEEE J. Lightwave Technol. 22, 1573–1582 (2004).

  317. 317.

    Jackson, J. D. Classical Electrodynamics (John Wiley & Sons, Inc., 1999).

  318. 318.

    Franz, W. Einflußeines elektrischen feldes auf eine optische absorptionskante. Z. Naturforschung 13a, 484–489 (1958).

  319. 319.

    Verbist, J. et al. First real-time 100-Gb/s NRZ-OOK transmission over 2 km with a silicon photonic electro-absorption modulator. Proc. Optical Fiber Commun. Conf. https://biblio.ugent.be/publication/8523677/file/8523680.pdf (2017).

  320. 320.

    Falkovsky, L. A. & Pershoguba, S. S. Optical far infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007).

  321. 321.

    Falkovski, L. A. Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008).

  322. 322.

    Young, I. A. et al. Optical I/O technology for tera-scale computing. IEEE J. Solid-State Circuits 45, 235–248 (2010).

  323. 323.

    Smith, D. R. Digital Transmission Systems (Springer, 2004).

Download references

Acknowledgements

This work was conceived within the Graphene Flagship project. The authors acknowledge funding from the European Union H2020 Graphene Project, European Research Council (ERC) Grant Hetero2D and Engineering and Physical Sciences Research Council (EPSRC) grant nos. EP/509 K01711X/1, EP/K017144/1, EP/ N010345/1, EP/M507799/5101 and EP/L016087/1.

Author information

Affiliations

  1. CNIT, Photonics Networks and Technologies Laboratory, Pisa, Italy

    • Marco Romagnoli
    •  & Vito Sorianello
  2. CNIT, University of Udine, Udine, Italy

    • Michele Midrio
  3. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain

    • Frank H. L. Koppens
  4. ICREA, Institució Catalana de Recerça i Estudis Avancats, Barcelona, Spain

    • Frank H. L. Koppens
  5. IMEC, Leuven, Belgium

    • Cedric Huyghebaert
  6. Advanced Microelectronic Center Aachen, AMO GmbH, Aachen, Germany

    • Daniel Neumaier
  7. Nokia Italia, Vimercate, Italy

    • Paola Galli
  8. Nokia Deutschland AG, Bell Laboratories, Stuttgart, Germany

    • Wolfgang Templ
  9. Ericsson Research, Pisa, Italy

    • Antonio D’Errico
  10. Cambridge Graphene Centre, Cambridge University, Cambridge, UK

    • Andrea C. Ferrari

Authors

  1. Search for Marco Romagnoli in:

  2. Search for Vito Sorianello in:

  3. Search for Michele Midrio in:

  4. Search for Frank H. L. Koppens in:

  5. Search for Cedric Huyghebaert in:

  6. Search for Daniel Neumaier in:

  7. Search for Paola Galli in:

  8. Search for Wolfgang Templ in:

  9. Search for Antonio D’Errico in:

  10. Search for Andrea C. Ferrari in:

Contributions

All authors conceived this work and collaborated equally in the writing of the text.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Andrea C. Ferrari.

Supplementary information

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41578-018-0040-9