Abstract
Surface plasmons — light-induced oscillations of electrons at the surface of nanoplasmonic metallic nanoparticles or nanostructures — can be used in a wide range of applications. Such nanoplasmonic optical antennas can be interfaced with biological systems to answer diverse questions in life sciences and to solve problems in translational medicine. In particular, nanoplasmonics provide insight and solutions for intracellular exploration, gene delivery and regulation, and rapid precision molecular diagnostics. In this Review, we examine the development of nanoplasmonic optical antennas for in vitro and in vivo applications. We evaluate the use of optical nanoplasmonic antennas for the optical detection of mRNA in living cells and for in vivo molecular imaging. We also discuss nanoplasmonic optical antennas for in vivo gene delivery and the optical control of gene circuits. Finally, we highlight the use of nanoplasmonic-based molecular diagnostic systems for ultrafast precision medicine.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012).
Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).
Garcia-Vidal, F. J., Martin-Moreno, L. & Pendry, J. B. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A. Pure Appl. Opt. 7, S97–S101 (2005).
Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).
Haffner, C. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 9, 525–528 (2015).
Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014). Report on an excellent nanoplasmonic platform based on transmission SPR for molecular diagnostics through quantitative analysis of extracellular vesicles.
Son, J. H. et al. Ultrafast photonic PCR. Light Sci. Appl. 4, e280 (2015). Demonstration of ultrafast photonic PCR based on a plasmonic substrate for molecular diagnostics.
Kang, B., Austin, L. A. & El-Sayed, M. A. Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy. Nano Lett. 12, 5369–5375 (2012).
Kang, B., Austin, L. A. & El-Sayed, M. A. Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes. ACS Nano 8, 4883–4892 (2014). References 10 and 11 are good examples of reports on the use of nanoplasmonic optical antennas in SERS-based real-time molecular imaging of native DNA and protein changes in living cells during different cellular activities.
Austin, L. A., Kang, B. & El-Sayed, M. A. Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review. Nano Today 10, 542–558 (2015).
Bodelón, G., Costas, C., Pérez-Juste, J., Pastoriza-Santos, I. & Liz-Marzán, L. M. Gold nanoparticles for regulation of cell function and behavior. Nano Today 13, 46–60 (2017).
Yoo, S., Hong, S., Choi, Y., Park, J.-H. & Nam, Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8, 8040–8049 (2014).
Wang, X., Cui, Y. & Irudayaraj, J. Single-cell quantification of cytosine modifications by hyperspectral dark-field imaging. ACS Nano 9, 11924–11932 (2015).
Kang, J. W., So, P. T., Dasari, R. R. & Lim, D.-K. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett. 15, 1766–1772 (2015).
Zhang, B., Kumar, R. B., Dai, H. & Feldman, B. J. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 20, 948–953 (2014).
Yang, K. S. et al. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci. Transl Med. 9, eaal3226 (2017).
Zhang, B. et al. Diagnosis of Zika virus infection on a nanotechnology platform. Nat. Med. 23, 548–550 (2017).
Chen, C.-C. et al. DNA–gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128, 3709–3715 (2006). Report on remote gene regulation in living cells with nanoplasmonic optical antennas.
Lee, S. E. et al. Photonic gene circuits by optically addressable siRNA-Au nanoantennas. ACS Nano 6, 7770–7780 (2012). Report on the use of nanoplasmonic optical antennas to reconfigure and regulate gene circuits in living cells.
Choi, Y., Kang, T. & Lee, L. P. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett. 9, 85–90 (2009). Report on PRET-based molecular imaging of a protein in a living cell.
Nakatsuji, H. et al. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles. Angew. Chem. Int. Ed. 54, 11725–11729 (2015).
Novotny, L. & Van Hulst, N. Antennas for light. Nat. Photonics 5, 83–90 (2011).
Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).
Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).
Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).
Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).
Kneipp, J., Kneipp, H. & Kneipp, K. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37, 1052–1060 (2008).
Lee, S. et al. Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy. Anal. Chem. 79, 916–922 (2007).
Wu, L. Y., Ross, B. M., Hong, S. & Lee, L. P. Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6, 503–507 (2010).
Pallaoro, A., Hoonejani, M. R., Braun, G. B., Meinhart, C. D. & Moskovits, M. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9, 4328–4336 (2015).
Köker, T. et al. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat. Commun. 9, 607 (2018).
Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83 (2008).
Khlebtsov, N. & Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647–1671 (2011).
Zhang, S., Gao, H. & Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015).
Varkouhi, A. K., Scholte, M., Storm, G. & Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 151, 220–228 (2011).
Lee, K., Cui, Y., Lee, L. P. & Irudayaraj, J. Quantitative imaging of single mRNA splice variants in living cells. Nat. Nanotechnol. 9, 474–480 (2014). Good example of a study showing mRNA detection in living cells using nanoplasmonic optical antennas.
Liu, G. L., Long, Y.-T., Choi, Y., Kang, T. & Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods 4, 1015–2017 (2007).
Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).
Song, J., Zhou, J. & Duan, H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc. 134, 13458–13469 (2012).
Bustin, S. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39 (2002).
Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999).
Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).
Bao, G., Rhee, W. J. & Tsourkas, A. Fluorescent probes for live-cell RNA detection. Annu. Rev. Biomed. Eng. 11, 25–47 (2009).
Jayagopal, A., Halfpenny, K. C., Perez, J. W. & Wright, D. W. Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells. J. Am. Chem. Soc. 132, 9789–9796 (2010).
Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E. & Mirkin, C. A. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129, 15477–15479 (2007).
Halo, T. L. et al. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc. Natl Acad. Sci. USA 111, 17104–17109 (2014).
Dulkeith, E. et al. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002 (2002).
Pan, W. et al. Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Anal. Chem. 85, 10581–10588 (2013).
Yang, Y. et al. FRET nanoflares for intracellular mRNA detection: avoiding false positive signals and minimizing effects of system fluctuations. J. Am. Chem. Soc. 137, 8340–8343 (2015).
Cognet, L. et al. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl Acad. Sci. USA 100, 11350–11355 (2003).
Yguerabide, J. & Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: II. Experimental characterization. Anal. Biochem. 262, 157–176 (1998).
Raschke, G. et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003).
Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).
Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).
Kleinman, S. L., Frontiera, R. R., Henry, A.-I., Dieringer, J. A. & Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013).
Alvarez-Puebla, R. A. & Liz-Marzán, L. M. SERS-based diagnosis and biodetection. Small 6, 604–610 (2010).
Braun, G. et al. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 129, 6378–6379 (2007).
Andreou, C., Hoonejani, M. R., Barmi, M. R., Moskovits, M. & Meinhart, C. D. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 7, 7157–7164 (2013).
Bantz, K. C. et al. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
Kneipp, K. et al. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc. 56, 150–154 (2002). Report on SERS imaging of native chemical constituents within a single living cell using nanoplasmonic optical antennas.
Narayanan, N. et al. Investigation of apoptotic events at molecular level induced by SERS guided targeted theranostic nanoprobe. Nanoscale 8, 11392–11397 (2016).
Liang, L. et al. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus. Anal. Chem. 87, 2504–2510 (2015).
Aioub, M. & El-Sayed, M. A. A real-time surface enhanced Raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J. Am. Chem. Soc. 138, 1258–1264 (2016).
Kang, B. et al. Plasmon-enhanced Raman spectroscopic metrics for in situ quantitative and dynamic assays of cell apoptosis and necrosis. Chem. Sci. 8, 1243–1250 (2017).
Ali, M. R. et al. Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy. J. Am. Chem. Soc. 138, 15434–15442 (2016).
Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).
Chatterjee, K., Sarkar, S., Rao, K. J. & Paria, S. Core/shell nanoparticles in biomedical applications. Adv. Colloid Interface Sci. 209, 8–39 (2014).
Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).
Zhang, H. et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Commun. 8, 15447 (2017).
Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2005).
Harmsen, S. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl Med. 7, 271ra277 (2015).
Hong, S., Lee, M. Y., Jackson, A. O. & Lee, L. P. Bioinspired optical antennas: gold plant viruses. Light Sci. Appl. 4, e267 (2015).
Rodríguez-Lorenzo, L. et al. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 131, 4616–4618 (2009).
Shi, C. et al. Intracellular surface-enhanced Raman scattering probes based on TAT peptide-conjugated Au nanostars for distinguishing the differentiation of lung resident mesenchymal stem cells. Biomaterials 58, 10–25 (2015).
Samanta, A. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. 50, 6089–6092 (2011).
Bohndiek, S. E. et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc. Natl Acad. Sci. USA 110, 12408–12413 (2013).
Wang, H.-N. et al. Surface-enhanced Raman scattering nanosensors for in vivo detection of nucleic acid targets in a large animal model. Nano Res. https://doi.org/10.1007/s12274-018-1982-3 (2018).
Cao, Y., Xie, T., Qian, R. C. & Long, Y. T. Plasmon resonance energy transfer: coupling between chromophore molecules and metallic nanoparticles. Small 13, 1601955 (2017).
Lee, J. Y. et al. Real-time investigation of cytochrome c release profiles in living neuronal cells undergoing amyloid beta oligomer-induced apoptosis. Nanoscale 7, 10340–10343 (2015).
Kim, J., Kim, J., Jeong, C. & Kim, W. J. Synergistic nanomedicine by combined gene and photothermal therapy. Adv. Drug Del. Rev. 98, 99–112 (2016).
Goodman, A. M. et al. Understanding resonant light-triggered DNA release from plasmonic nanoparticles. ACS Nano 11, 171–179 (2016).
Jones, M. R. et al. Plasmonically controlled nucleic acid dehybridization with gold nanoprisms. ChemPhysChem 10, 1461–1465 (2009).
Mintzer, M. A. & Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 109, 259–302 (2008).
Lee, S. E. et al. Biologically functional cationic phospholipid–gold nanoplasmonic carriers of RNA. J. Am. Chem. Soc. 131, 14066–14074 (2009).
Lee, S. E., Liu, G. L., Kim, F. & Lee, L. P. Remote optical switch for localized and selective control of gene interference. Nano Lett. 9, 562–570 (2009).
Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).
Link, S. & El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331–366 (2003).
Jain, P. K., Qian, W. & El-Sayed, M. A. Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold–thiol bond. J. Am. Chem. Soc. 128, 2426–2433 (2006).
Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).
Wang, Z. et al. Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy. Adv. Sci. 4, 1600327 (2017).
Wijaya, A., Schaffer, S. B., Pallares, I. G. & Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3, 80–86 (2009).
Huschka, R. et al. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6, 7681–7691 (2012).
Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G. & Sood, A. K. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11, 59–67 (2011).
Hunter, A. C. & Moghimi, S. M. Cationic carriers of genetic material and cell death: a mitochondrial tale. Biochim. Biophys. Acta Bioenergetics 1797, 1203–1209 (2010).
Huang, X. et al. Light-activated RNA interference in human embryonic stem cells. Biomaterials 63, 70–79 (2015).
Zhang, P. et al. Near infrared-guided smart nanocarriers for microRNA-controlled release of doxorubicin/siRNA with intracellular ATP as fuel. ACS Nano 10, 3637–3647 (2016).
Anikeeva, P. & Deisseroth, K. Photothermal genetic engineering. ACS Nano 6, 7548–7552 (2012).
Nedaeinia, R. et al. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther. 24, 48–56 (2017).
Li, X. et al. Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proc. Natl Acad. Sci. USA 114, 7089–7094 (2017).
Wei, H., Abtahi, S. M. H. & Vikesland, P. J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci.: Nano 2, 120–135 (2015).
Piorek, B. D., Lee, S. J., Moskovits, M. & Meinhart, C. D. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives. Anal. Chem. 84, 9700–9705 (2012).
Tabakman, S. M. et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2, 466 (2011). Demonstration of a plasmonic substrate with a large near-infrared fluorescence enhancement as a highly sensitive plasmonic ELISA platform for precision molecular diagnostics.
De La Rica, R. & Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7, 821–824 (2012).
Ambrosi, A., Airo, F. & Merkoci, A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem. 82, 1151–1156 (2010).
Zhan, L., Wu, W. B., Yang, X. X. & Huang, C. Z. Gold nanoparticle-based enhanced ELISA for respiratory syncytial virus. New J. Chem. 38, 2935–2940 (2014).
Tam, F., Goodrich, G. P., Johnson, B. R. & Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 7, 496–501 (2007).
Song, S., Wang, L., Li, J., Fan, C. & Zhao, J. Aptamer-based biosensors. Trends Anal. Chem. 27, 108–117 (2008).
Toh, S. Y., Citartan, M., Gopinath, S. C. & Tang, T.-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392–403 (2015).
Hu, R. et al. Novel electrochemical aptamer biosensor based on an enzyme–gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1. Biosens. Bioelectron. 53, 384–389 (2014).
Zhou, Y. et al. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci. Rep. 6, 35186 (2016).
Wan, H. et al. Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proc. Natl Acad. Sci. USA 114, 10196–10201 (2017).
Son, J. H. et al. Rapid optical cavity PCR. Adv. Health. Mater. 5, 167–174 (2016).
Roche, P. J. et al. Real time plasmonic qPCR: how fast is ultra-fast? 30 cycles in 54 seconds. Analyst 142, 1746–1755 (2017).
Liu, G. L. & Lee, L. P. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl. Phys. Lett. 87, 074101 (2005).
Choi, C. J., Xu, Z., Wu, H.-Y., Liu, G. L. & Cunningham, B. T. Surface-enhanced Raman nanodomes. Nanotechnology 21, 415301 (2010).
Luo, S.-C., Sivashanmugan, K., Liao, J.-D., Yao, C.-K. & Peng, H.-C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens. Bioelectron. 61, 232–240 (2014).
Kanipe, K. N., Chidester, P. P., Stucky, G. D. & Moskovits, M. Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity. ACS Nano 10, 7566–7571 (2016).
Im, H. et al. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 25, 2678–2685 (2013).
Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).
Ebbesen, T. W., Lezec, H. J., Ghaemi, H., Thio, T. & Wolff, P. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).
Escobedo, C. On-chip nanohole array based sensing: a review. Lab Chip 13, 2445–2463 (2013).
Gartia, M. R. et al. Colorimetric plasmon resonance imaging using nano lycurgus cup arrays. Adv. Opt. Mater. 1, 68–76 (2013). Report on a nanoplasmonic platform for molecular diagnostics based on a large spectral shift and direct colour change upon molecular binding.
Seo, S., Zhou, X. & Liu, G. L. Sensitivity tuning through additive heterogeneous plasmon coupling between 3D assembled plasmonic nanoparticle and nanocup arrays. Small 12, 3453–3462 (2016).
Wang, X., Chang, T.-W., Lin, G., Gartia, M. R. & Liu, G. L. Self-referenced smartphone-based nanoplasmonic imaging platform for colorimetric biochemical sensing. Anal. Chem. 89, 611–615 (2016).
Xin, H., Li, Y., Liu, X. & Li, B. Escherichia coli-based biophotonic waveguides. Nano Lett. 13, 3408–3413 (2013).
Lambert, N. et al. Quantum biology. Nat. Phys. 9, 10–18 (2013).
Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
Yeh, E.-C. et al. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 3, e1501645 (2017).
Kim, B. N., Diaz, J. A., Hong, S. G., Lee, S. H. & Lee, L. P. in Proc. 18th Int. Conf. Miniaturized Systems for Chemistry and Life Sciences 2247–2249 (CBMS, 2014).
Wei, Q. et al. Plasmonics enhanced smartphone fluorescence microscopy. Sci. Rep. 7, 2124 (2017).
Pantelopoulos, A. & Bourbakis, N. G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man. Cybern. C. 40, 1–12 (2010).
Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).
Kimling, J. et al. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006).
Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).
Reetz, M. T. & Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116, 7401–7402 (1994).
Yu, Y.-Y., Chang, S.-S., Lee, C.-L. & Wang, C. C. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997).
Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).
Sun, S. et al. Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett. 6, 345–350 (2006).
Hicks, E. M. et al. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5, 1065–1070 (2005).
Haynes, C. & Van Duyne, R. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).
Narayanan, K. B. & Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156, 1–13 (2010).
Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O. & Pérez, V. M. J. The greener synthesis of nanoparticles. Trends Biotechnol. 31, 240–248 (2013).
Singh, P., Kim, Y.-J., Zhang, D. & Yang, D.-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016).
Wen, A. M. & Steinmetz, N. F. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem. Soc. Rev. 45, 4074–4126 (2016).
Kostiainen, M. A. et al. Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat. Nanotechnol. 8, 52–56 (2013).
Sun, J. et al. Core-controlled polymorphism in virus-like particles. Proc. Natl Acad. Sci. USA 104, 1354–1359 (2007).
Wen, A. M., Podgornik, R., Strangi, G. & Steinmetz, N. F. Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials. Rend. Lincei Sci. Fis. Nat. 26, 129–141 (2015).
Agnihotri, S., Mukherji, S. & Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974–3983 (2014).
Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999).
Ristig, S. et al. Nanostructure of wet-chemically prepared, polymer-stabilized silver–gold nanoalloys (6 nm) over the entire composition range. J. Mater. Chem. B 3, 4654–4662 (2015).
Wiley, B. J. et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 15666–15675 (2006).
Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape & composition: applications in biological imaging & biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).
Loo, C. et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).
Skrabalak, S. E., Au, L., Li, X. & Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2, 2182–2190 (2007).
Yuan, H. et al. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).
Chen, J. et al. Gold nanocages as photothermal transducers for cancer treatment. Small 6, 811–817 (2010).
Hrelescu, C., Sau, T. K., Rogach, A. L., Jäckel, F. & Feldmann, J. Single gold nanostars enhance Raman scattering. Appl. Phys. Lett. 94, 153113 (2009).
Acknowledgements
The authors thank S.J. Taylor for help with revising the manuscript before submission.
Author information
Authors and Affiliations
Contributions
H.X. researched data for the article. H.X. and L.P.L. contributed to the discussion of content and wrote the article. All authors edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xin, H., Namgung, B. & Lee, L.P. Nanoplasmonic optical antennas for life sciences and medicine. Nat Rev Mater 3, 228–243 (2018). https://doi.org/10.1038/s41578-018-0033-8
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-018-0033-8
This article is cited by
-
Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles
Nano Convergence (2024)
-
Plasmonic Nanoantenna Array-Based Sensor for Air Parameters Monitoring Purpose
Plasmonics (2024)
-
Tunable Cherenkov Terahertz Graphene Surface Plasmon Generation in Graphene Sheet by a Moving Relativistic Electron Beam
Plasmonics (2024)
-
Remote control of cellular immunotherapy
Nature Reviews Bioengineering (2023)
-
Dynamic monitoring of oscillatory enzyme activity of individual live bacteria via nanoplasmonic optical antennas
Nature Photonics (2023)