Size effects on the fracture of microscale and nanoscale materials

Abstract

Micro- and nanoscale materials have remarkable mechanical properties, such as enhanced strength and toughness, but they usually display sample-to-sample fluctuations and size effects. These variations are a nuisance for engineering applications and an intriguing problem for science. Our understanding of size effects in small-scale materials has progressed in the past few years thanks to experimental measurements of carbon-based nanomaterials, such as graphene and carbon nanotubes, and of crystalline and amorphous micro- and nanopillars and micro- and nanowires. At the same time, increased computational power has allowed atomistic simulations to reach experimentally relevant sample sizes. From a theoretical point of view, the standard analysis and interpretation of experimental and computational data rely on traditional extreme value theories developed decades ago for macroscopic samples, with recent work extending some of the limiting assumptions of these theories to the micro- and nanoscale. In this Review, we discuss experimental and computational studies of size effects on the fracture in micro- and nanoscale materials, point out the advantages and limitations of existing theories and, finally, provide a pedagogical guide to the analysis of fracture data from micro- and nanoscale samples.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimentally observed fracture behaviour of nanomaterials with different structures and sizes.
Fig. 2: Different structures undergoing fracture from molecular dynamics simulations.
Fig. 3: Size dependence and extreme value theory.
Fig. 4: Estimations of extreme value theory parameters from experimental data.

References

  1. 1.

    da Vinci, L. I libri di Meccanica (Hoepli, Milan, 1940).

    Google Scholar 

  2. 2.

    Weibull, W. A. Statistical Theory of the Strength of Materials (Generalstabens litografiska anstalts förlag, Stockholm, 1939).

    Google Scholar 

  3. 3.

    Gumbel, E. J. Statistics of Extremes (Columbia Univ. Press, New York, 2004).

    Google Scholar 

  4. 4.

    Griffith, A. A. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A 221, 163–198 (1921).

    Article  Google Scholar 

  5. 5.

    Weiss, J., Girard, L., Gimbert, F., Amitrano, D. & Vandembroucq, D. (Finite) statistical size effects on compressive strength. Proc. Natl Acad. Sci. USA 111, 6231–6236 (2014).

    Article  CAS  Google Scholar 

  6. 6.

    Zaiser, M. & Moretti, P. Fluctuation phenomena in crystal plasticity — a continuum model. J. Stat. Mech. Theory Exp. https://doi.org/10.1088/1742-5468/2005/08P08004 (2005).

    Article  Google Scholar 

  7. 7.

    Zaiser, M. Scale invariance in plastic flow of crystalline solids. Adv. Phys. 55, 185–245 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    Tüzes, D., Ispánovity, P. D. & Zaiser, M. Disorder is good for you: the influence of local disorder on strain localization and ductility of strain softening materials. Int. J. Fract. 205, 139–150 (2017).

    Article  Google Scholar 

  9. 9.

    Freundenthal, A. M. Statistical Approach to Brittle Fracture (Academic Press, New York, 1968).

    Google Scholar 

  10. 10.

    Duxbury, P. M., Leath, P. L. & Beale, P. D. Breakdown properties of quenched random systems: the random-fuse network. Phys. Rev. B 36, 367–380 (1987).

    Article  CAS  Google Scholar 

  11. 11.

    Beale, P. D. & Duxbury, P. M. Theory of dielectric breakdown in metal-loaded dielectrics. Phys. Rev. B 37, 2785 (1988).

    Article  CAS  Google Scholar 

  12. 12.

    Manzato, C. et al. Fracture strength of disordered media: universality, interactions, and tail asymptotics. Phys. Rev. Lett. 108, 065504 (2012).

    Article  CAS  Google Scholar 

  13. 13.

    Bertalan, Z., Shekhawat, A., Sethna, J. P. & Zapperi, S. Fracture strength: stress concentration, extreme value statistics, and the fate of the weibull distribution. Phys. Rev. Appl. 2, 034008 (2014).

    Article  CAS  Google Scholar 

  14. 14.

    Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  15. 15.

    Dimiduk, D., Uchic, M. & Parthasarathy, T. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065–4077 (2005).

    Article  CAS  Google Scholar 

  16. 16.

    Uchic, M. D., Shade, P. A. & Dimiduk, D. M. Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009).

    Article  CAS  Google Scholar 

  17. 17.

    Dimiduk, D. M., Woodward, C., Lesar, R. & Uchic, M. D. Scale-free intermittent flow in crystal plasticity. Science 312, 1188–1190 (2006).

    Article  CAS  Google Scholar 

  18. 18.

    Miguel, M. C., Vespignani, A., Zapperi, S., Weiss, J. & Grasso, J.-R. Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–671 (2001).

    Article  CAS  Google Scholar 

  19. 19.

    Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. & Zapperi, S. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251–254 (2007).

    Article  CAS  Google Scholar 

  20. 20.

    Greer, J. R. & Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  CAS  Google Scholar 

  21. 21.

    Shan, Z., Mishra, R. K., Asif, S. S., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

    Article  CAS  Google Scholar 

  22. 22.

    Greer, J. R. & De Hosson, J. T. M. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    Article  CAS  Google Scholar 

  23. 23.

    Wu, W. F., Li, Y. & Schuh, C. A. Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects. Philos. Mag. 88, 71–89 (2008).

    Article  CAS  Google Scholar 

  24. 24.

    Jang, D., Gross, C. T. & Greer, J. R. Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858–867 (2011).

    Article  CAS  Google Scholar 

  25. 25.

    Kraft, O., Gruber, P. A., Mönig, R. & Weygand, D. Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010).

    Article  CAS  Google Scholar 

  26. 26.

    Sethna, J. P. et al. Deformation of crystals: connections with statistical physics. Annu. Rev. Mater. Res. 47, 217–246 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    Mielke, S. L., Belytschko, T. & Schatz, G. C. Nanoscale fracture mechanics. Annu. Rev. Phys. Chem. 58, 185–209 (2007).

    Article  CAS  Google Scholar 

  28. 28.

    Jeon, S. K., Jang, H.-S., Kwon, O. H. & Nahm, S. H. Mechanical test method and properties of a carbon nanomaterial with a high aspect ratio. Nano Converg. 3, 29 (2016).

    Article  CAS  Google Scholar 

  29. 29.

    Yu, M.-F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  30. 30.

    Barber, A. H., Andrews, R., Schadler, L. S. & Wagner, H. D. On the tensile strength distribution of multiwalled carbon nanotubes. Appl. Phys. Lett. 87, 203106 (2005).

    Article  CAS  Google Scholar 

  31. 31.

    Barber, A., Kaplan-Ashiri, I., Cohen, S., Tenne, R. & Wagner, H. D. Stochastic strength of nanotubes: an appraisal of available data. Compos. Sci. Technol. 65, 2380–2384 (2005).

    Article  CAS  Google Scholar 

  32. 32.

    Zussman, E. et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43, 2175–2185 (2005).

    Article  CAS  Google Scholar 

  33. 33.

    Deng, F. et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49, 1752–1757 (2011).

    Article  CAS  Google Scholar 

  34. 34.

    Sun, G. et al. A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects. Appl. Phys. Lett. 101, 131905 (2012).

    Article  CAS  Google Scholar 

  35. 35.

    Zheng, L., Sun, G. & Zhan, Z. Tuning array morphology for high-strength carbon-nanotube fibers. Small 6, 132–137 (2010).

    Article  CAS  Google Scholar 

  36. 36.

    Naito, K., Yang, J.-M., Tanaka, Y. & Kagawa, Y. The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)-and pitch-based carbon fibers. J. Mater. Sci. 47, 632–642 (2012).

    Article  CAS  Google Scholar 

  37. 37.

    Kaplan-Ashiri, I. et al. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl Acad. Sci. USA 103, 523–528 (2006).

    Article  CAS  Google Scholar 

  38. 38.

    Chae, H. G. et al. High strength and high modulus carbon fibers. Carbon 93, 81–87 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    Hill, F. A., Havel, T. F., Hart, A. J. & Livermore, C. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification. ACS Appl. Mater. Interfaces 5, 7198–7207 (2013).

    Article  CAS  Google Scholar 

  40. 40.

    Jang, H.-S., Jeon, S. K., Lee, H. J. & Nahm, S. H. Mechanical and electrical properties of multi-walled carbon nanotubes by nano-manipulator. Procedia Eng. 10, 2917–2922 (2011).

    Article  CAS  Google Scholar 

  41. 41.

    Chen, B. et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Compos. Sci. Technol. 113, 1–8 (2015).

    Article  CAS  Google Scholar 

  42. 42.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  43. 43.

    Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    Article  CAS  Google Scholar 

  44. 44.

    Kim, K. et al. Ripping graphene: preferred directions. Nano Lett. 12, 293–277 (2012).

    Article  CAS  Google Scholar 

  45. 45.

    Zhang, P. et al. Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014).

    Article  CAS  Google Scholar 

  46. 46.

    Bhushan, B. Nanotribology and Nanomechanics 253–299 (Springer, 2017).

  47. 47.

    Petrovic, J., Milewski, J., Rohr, D. & Gac, F. Tensile mechanical properties of SiC whiskers. J. Mater. Sci. 20, 1167–1177 (1985).

    Article  Google Scholar 

  48. 48.

    Nemeth, N. N. et al. Fabrication and probabilistic fracture strength prediction of high-aspect-ratio single crystal silicon carbide microspecimens with stress concentration. Thin Solid Films 515, 3283–3290 (2007).

    Article  CAS  Google Scholar 

  49. 49.

    Fujii, T. et al. Nano-scale tensile testing and sample preparation techniques for silicon nanowires. Jpn J. Appl. Phys. 52, 110118 (2013).

    Article  CAS  Google Scholar 

  50. 50.

    Namazu, T., Isono, Y. & Tanaka, T. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450–459 (2000).

    Article  Google Scholar 

  51. 51.

    Li, X. & Bhushan, B. Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Surf. Coat. Technol. 163, 521–526 (2003).

    Article  Google Scholar 

  52. 52.

    Sundararajan, S. & Bhushan, B. Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sens. Actuators A 101, 338–351 (2002).

    Article  CAS  Google Scholar 

  53. 53.

    Espinosa, H. et al. Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon. Appl. Phys. Lett. 89, 073111 (2006).

    Article  CAS  Google Scholar 

  54. 54.

    Kang, W., Merrill, M. & Wheeler, J. M. In situ thermomechanical testing methods for micro/nano-scale materials. Nanoscale 9, 2666–2688 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Kang, W. & Saif, M. T. A. In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv. Funct. Mater. 23, 713–719 (2013).

    Article  CAS  Google Scholar 

  56. 56.

    Uesugi, A., Yasutomi, T., Hirai, Y., Tsuchiya, T. & Tabata, O. High-temperature tensile testing machine for investigation of brittle–ductile transition behavior of single crystal silicon microstructure. Jpn J. Appl. Phys. 54, 06FP04 (2015).

    Article  CAS  Google Scholar 

  57. 57.

    Hoffmann, S. et al. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6, 622–625 (2006).

    Article  CAS  Google Scholar 

  58. 58.

    Gordon, M. J., Baron, T., Dhalluin, F., Gentile, P. & Ferret, P. Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett. 9, 525–529 (2009).

    Article  CAS  Google Scholar 

  59. 59.

    Zhu, Y., Xu, F., Qin, Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009).

    Article  CAS  Google Scholar 

  60. 60.

    Zhang, D. et al. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J. Microelectromech. Syst. 19, 663–674 (2010).

    Article  CAS  Google Scholar 

  61. 61.

    Steighner, M. et al. Dependence on diameter and growth direction of apparent strain to failure of Si nanowires. J. Appl. Phys. 109, 033503 (2011).

    Article  CAS  Google Scholar 

  62. 62.

    Kim, Y.-J. et al. Exploring nanomechanical behavior of silicon nanowires: AFM bending versus nanoindentation. Adv. Funct. Mater. 21, 279–286 (2011).

    Article  CAS  Google Scholar 

  63. 63.

    Kizuka, T., Takatani, Y., Asaka, K. & Yoshizaki, R. Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width. Phys. Rev. B 72, 035333 (2005).

    Article  CAS  Google Scholar 

  64. 64.

    Han, X. et al. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007).

    Article  CAS  Google Scholar 

  65. 65.

    Zheng, K. et al. Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9, 2471–2476 (2009).

    Article  CAS  Google Scholar 

  66. 66.

    Wang, L., Zheng, K., Zhang, Z. & Han, X. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 11, 2382–2385 (2011).

    Article  CAS  Google Scholar 

  67. 67.

    Östlund, F. et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009).

    Article  CAS  Google Scholar 

  68. 68.

    Tang, D.-M. et al. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 12, 1898–1904 (2012).

    Article  CAS  Google Scholar 

  69. 69.

    Jadaan, O. M., Nemeth, N. N., Bagdahn, J. & Sharpe, W. Probabilistic Weibull behavior and mechanical properties of mems brittle materials. J. Mater. Sci. 38, 4087–4113 (2003).

    Article  CAS  Google Scholar 

  70. 70.

    French, P. Polysilicon: a versatile material for microsystems. Sens. Actuators A 99, 3–12 (2002).

    Article  CAS  Google Scholar 

  71. 71.

    Boyce, B., Shaw, M., Lu, P. & Dugger, M. Stronger silicon for microsystems. Acta Mater. 58, 439–448 (2010).

    Article  CAS  Google Scholar 

  72. 72.

    Boyce, B. L., Grazier, J. M., Buchheit, T. E. & Shaw, M. J. Strength distributions in polycrystalline silicon MEMS. J. Microelectromech. Syst. 16, 179–190 (2007).

    Article  CAS  Google Scholar 

  73. 73.

    Bagdahn, J., Sharpe, W. N. & Jadaan, O. Fracture strength of polysilicon at stress concentrations. J. Microelectromech. Syst. 12, 302–312 (2003).

    Article  Google Scholar 

  74. 74.

    McCarty, A. & Chasiotis, I. Description of brittle failure of non-uniform MEMS geometries. Thin Solid Films 515, 3267–3276 (2007).

    Article  CAS  Google Scholar 

  75. 75.

    Vayrette, R. et al. Size dependent fracture strength and cracking mechanisms in freestanding polycrystalline silicon films with nanoscale thickness. Eng. Fract. Mech. 168, 190–203 (2016).

    Article  Google Scholar 

  76. 76.

    Chasiotis, I. & Knauss, W. G. The mechanical strength of polysilicon films: part 1. The influence of fabrication governed surface conditions. J. Mech. Phys. Solids 51, 1533–1550 (2003).

    Article  CAS  Google Scholar 

  77. 77.

    Andersons, J., Joffe, R., Hojo, M. & Ochiai, S. Glass fibre strength distribution determined by common experimental methods. Compos. Sci. Technol. 62, 131–145 (2002).

    Article  CAS  Google Scholar 

  78. 78.

    Brambilla, G. & Payne, D. N. The ultimate strength of glass silica nanowires. Nano Lett. 9, 831–835 (2009).

    Article  CAS  Google Scholar 

  79. 79.

    Luo, J. et al. Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett. 16, 105–113 (2015).

    Article  CAS  Google Scholar 

  80. 80.

    Sevillano, J. G., Arizcorreta, I. O. & Kubin, L. Intrinsic size effects in plasticity by dislocation glide. Mater. Sci. Eng. A 309, 393–405 (2001).

    Article  Google Scholar 

  81. 81.

    Khan, A. S., Farrokh, B. & Takacs, L. Compressive properties of cu with different grain sizes: sub-micron to nanometer realm. J. Mater. Sci. 43, 3305–3313 (2008).

    Article  CAS  Google Scholar 

  82. 82.

    Kiener, D., Grosinger, W., Dehm, G. & Pippan, R. A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008).

    Article  CAS  Google Scholar 

  83. 83.

    Lin, M.-T., Tong, C.-J. & Shiu, K.-S. Novel microtensile method for monotonic and cyclic testing of freestanding copper thin films. Exp. Mech. 50, 55–64 (2010).

    Article  CAS  Google Scholar 

  84. 84.

    Jennings, A. T., Burek, M. J. & Greer, J. R. Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article  CAS  Google Scholar 

  85. 85.

    Haque, M. & Saif, M. In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp. Mech. 42, 123–128 (2002).

    Article  CAS  Google Scholar 

  86. 86.

    Yue, Y. et al. Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Lett. 13, 3812–3816 (2013).

    Article  CAS  Google Scholar 

  87. 87.

    Motz, C., Schoberl, T. & Pippan, R. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53, 4269–4279 (2005).

    Article  CAS  Google Scholar 

  88. 88.

    Kiener, D., Motz, C., Schöberl, T., Jenko, M. & Dehm, G. Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119–1125 (2006).

    Article  CAS  Google Scholar 

  89. 89.

    Florando, J. & Nix, W. A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates. J. Mech. Phys. Solids 53, 619–638 (2005).

    Article  CAS  Google Scholar 

  90. 90.

    Vlassak, J. & Nix, W. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J Mater. Res. 7, 3242–3249 (1992).

    Article  CAS  Google Scholar 

  91. 91.

    Wei, X., Lee, D., Shim, S., Chen, X. & Kysar, J. W. Plane-strain bulge test for nanocrystalline copper thin films. Scr. Mater. 57, 541–544 (2007).

    Article  CAS  Google Scholar 

  92. 92.

    Merle, B., Schweitzer, E. W. & Göken, M. Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations. Philos. Mag. 92, 3172–3187 (2012).

    Article  CAS  Google Scholar 

  93. 93.

    Brenner, S. S. Tensile strength of whiskers. J. Appl. Phys. 27, 1484–1491 (1956).

    Article  CAS  Google Scholar 

  94. 94.

    Brenner, S. Growth and properties of ”whiskers”. Science 128, 569–575 (1958).

    Article  CAS  Google Scholar 

  95. 95.

    Richter, G. et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).

    Article  CAS  Google Scholar 

  96. 96.

    Hemker, K. & Sharpe, W. Jr. Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37, 93–126 (2007).

    Article  CAS  Google Scholar 

  97. 97.

    Gianola, D. et al. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253–2263 (2006).

    Article  CAS  Google Scholar 

  98. 98.

    Gupta, S. & Pierron, O. N. A MEMS tensile testing technique for measuring true activation volume and effective stress in nanocrystalline ultrathin microbeams. J. Microelectromech. Syst. 26, 1082–1092 (2017).

    Article  Google Scholar 

  99. 99.

    Chen, W., You, Z., Tao, N., Jin, Z. & Lu, L. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Mater. 125, 255–264 (2017).

    Article  CAS  Google Scholar 

  100. 100.

    Jennings, A. T. & Greer, J. R. Tensile deformation of electroplated copper nanopillars. Philos. Mag. 91, 1108–1120 (2011).

    Article  CAS  Google Scholar 

  101. 101.

    Jennings, A. T., Li, J. & Greer, J. R. Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627–5637 (2011).

    Article  CAS  Google Scholar 

  102. 102.

    Wang, J. et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 14, 594–600 (2015).

    Article  CAS  Google Scholar 

  103. 103.

    Lilleodden, E. Microcompression study of Mg (0001) single crystal. Scr. Mater. 62, 532–535 (2010).

    Article  CAS  Google Scholar 

  104. 104.

    Kunz, A., Pathak, S. & Greer, J. R. Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 59, 4416–4424 (2011).

    Article  CAS  Google Scholar 

  105. 105.

    Kim, J.-Y., Jang, D. & Greer, J. R. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010).

    Article  CAS  Google Scholar 

  106. 106.

    Wang, J. et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 4, 1742 (2013).

    Article  CAS  Google Scholar 

  107. 107.

    Sim, G.-D. et al. An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope. Acta Mater. 61, 7500–7510 (2013).

    Article  CAS  Google Scholar 

  108. 108.

    Sim, G.-D. & Vlassak, J. J. High-temperature tensile behavior of freestanding Au thin films. Scr. Mater. 75, 34–37 (2014).

    Article  CAS  Google Scholar 

  109. 109.

    Vayrette, R., Raskin, J.-P. & Pardoen, T. On-chip fracture testing of freestanding nanoscale materials. Eng. Fract. Mech. 150, 222–238 (2015).

    Article  Google Scholar 

  110. 110.

    Gorham, D. The effect of specimen dimensions on high strain rate compression measurements of copper. J. Phys. D Appl. Phys. 24, 1489 (1991).

    Article  CAS  Google Scholar 

  111. 111.

    Sun, B. & Wang, W. The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211–307 (2015).

    Article  CAS  Google Scholar 

  112. 112.

    Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012).

    Article  CAS  Google Scholar 

  113. 113.

    Greer, A., Cheng, Y. & Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 74, 71–132 (2013).

    Article  Google Scholar 

  114. 114.

    Lai, Y. et al. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr. Mater. 58, 890–893 (2008).

    Article  CAS  Google Scholar 

  115. 115.

    Schuster, B. E. et al. Bulk and microscale compressive properties of a Pd-based metallic glass. Scr. Mater. 57, 517–520 (2007).

    Article  CAS  Google Scholar 

  116. 116.

    Chen, T.-H. & Tsai, C.-K. The microstructural evolution and mechanical properties of Zr-based metallic glass under different strain rate compressions. Materials 8, 1831–1840 (2015).

    Article  CAS  Google Scholar 

  117. 117.

    Calvo, M. Application of the Weibull statistics to the characterization of metallic glass ribbons. J. Mater. Sci. 24, 1801–1808 (1989).

    Article  CAS  Google Scholar 

  118. 118.

    Ocelik, V., Bengus, V., Diko, P. & Hudak, O. Statistical investigations of fracture demonstrations on Ni–Si–B. metallic glass ribbons failed in tension at 4.2 to 300 k. J. Mater. Sci. Lett. 6, 1333–1335 (1987).

    Article  CAS  Google Scholar 

  119. 119.

    Zhao, Y.-Y., Ma, E. & Xu, J. Reliability of compressive fracture strength of Mg–Zn–Ca bulk metallic glasses: flaw sensitivity and Weibull statistics. Scr. Mater. 58, 496–499 (2008).

    Article  CAS  Google Scholar 

  120. 120.

    Han, Z., Tang, L., Xu, J. & Li, Y. A three-parameter Weibull statistical analysis of the strength variation of bulk metallic glasses. Scr. Mater. 61, 923–926 (2009).

    Article  CAS  Google Scholar 

  121. 121.

    Shamimi Nouri, A., Gu, X., Poon, S., Shiflet, G. & Lewandowski, J. Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses. Philos. Mag. Lett. 88, 853–861 (2008).

    Article  CAS  Google Scholar 

  122. 122.

    Yao, J., Wang, J., Lu, L. & Li, Y. High tensile strength reliability in a bulk metallic glass. Appl. Phys. Lett. 92, 041905 (2008).

    Article  CAS  Google Scholar 

  123. 123.

    Lee, C. et al. Strength variation and cast defect distribution in metallic glasses. Scr. Mater. 63, 105–108 (2010).

    Article  CAS  Google Scholar 

  124. 124.

    Jang, D. & Greer, J. R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215–219 (2010).

    Article  CAS  Google Scholar 

  125. 125.

    Pastewka, L., Pou, P., Pérez, R., Gumbsch, P. & Moseler, M. Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range. Phys. Rev. B 78, 161402 (2008).

    Article  CAS  Google Scholar 

  126. 126.

    Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990).

    Article  CAS  Google Scholar 

  127. 127.

    Van Duin, A. C., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article  CAS  Google Scholar 

  128. 128.

    Yang, M., Koutsos, V. & Zaiser, M. Size effect in the tensile fracture of single-walled carbon nanotubes with defects. Nanotechnology 18, 155708 (2007).

    Article  CAS  Google Scholar 

  129. 129.

    Lu, Q. & Bhattacharya, B. Effect of randomly occurring stone–wales defects on mechanical properties of carbon nanotubes using atomistic simulation. Nanotechnology 16, 555 (2005).

    Article  CAS  Google Scholar 

  130. 130.

    Bhattacharya, B. & Lu, Q. The asymptotic properties of random strength and compliance of single-walled carbon nanotubes using atomistic simulation. J. Stat. Mech. Theory Exp. https://doi.org/10.1088/1742-5468/2006/06/P06021 (2006).

    Article  Google Scholar 

  131. 131.

    Yakobson, B., Campbell, M., Brabec, C. & Bernholc, J. High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997).

    Article  CAS  Google Scholar 

  132. 132.

    Wen, M., An, B., Fukuyama, S., Yokogawa, K. & Ngan, A. Thermally activated model for tensile yielding of pristine single-walled carbon nanotubes with nonlinear elastic deformation. Carbon 47, 2070–2076 (2009).

    Article  CAS  Google Scholar 

  133. 133.

    Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783 (2002).

    Article  CAS  Google Scholar 

  134. 134.

    Tang, C., Guo, W. & Chen, C. Molecular dynamics simulation of tensile elongation of carbon nanotubes: temperature and size effects. Phys. Rev. B 79, 155436 (2009).

    Article  CAS  Google Scholar 

  135. 135.

    Jensen, B. D., Wise, K. E. & Odegard, G. M. Simulation of mechanical performance limits and failure of carbon nanotube composites. Model. Simul. Mater. Sci. Eng. 24, 025012 (2016).

    Article  CAS  Google Scholar 

  136. 136.

    Sellerio, A. L., Taloni, A. & Zapperi, S. Fracture size effects in nanoscale materials: the case of graphene. Phys. Rev. Appl. 4, 024011 (2015).

    Article  CAS  Google Scholar 

  137. 137.

    Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    Article  CAS  Google Scholar 

  138. 138.

    Kang, K. & Cai, W. Size and temperature effects on the fracture mechanisms of silicon nanowires: molecular dynamics simulations. Int. J. Plast. 26, 1387–1401 (2010).

    Article  CAS  Google Scholar 

  139. 139.

    Zhang, C., Duan, F. & Liu, Q. Size effects on the fracture behavior of amorphous silica nanowires. Comput. Mater. Sci. 99, 138–144 (2015).

    Article  CAS  Google Scholar 

  140. 140.

    Zhou, X., Zhou, H., Li, X. & Chen, C. Size effects on tensile and compressive strengths in metallic glass nanowires. J. Mech. Phys. Solids 84, 130–144 (2015).

    Article  CAS  Google Scholar 

  141. 141.

    Sopu, D., Foroughi, A., Stoica, M. & Eckert, J. Brittle-to-ductile transition in metallic glass nanowires. Nano Lett. 16, 4467–4471 (2016).

    Article  CAS  Google Scholar 

  142. 142.

    Gu, X. W. et al. Mechanisms of failure in nanoscale metallic glass. Nano Lett. 14, 5858–5864 (2014).

    Article  CAS  Google Scholar 

  143. 143.

    Fisher, R. A. & Tippett, L. H. C. in Mathematical Proceedings of the Cambridge Philosophical Society Vol. 24 180–190 (Cambridge Univ. Press, 1928).

  144. 144.

    Fréchet, M. in Annales de la societe Polonaise de Mathematique (ed. Filipowskie, J.) (s.n., 1928).

  145. 145.

    Gnedenko, B. Sur la distribution limite du terme maximum d’une serie aleatoire [French]. Ann. Math. 44, 423–453 (1943).

    Article  Google Scholar 

  146. 146.

    Danzer, R., Supancic, P., Pascual, J. & Lube, T. Fracture statistics of ceramics — Weibull statistics and deviations from weibull statistics. Eng. Fract. Mech. 74, 2919–2932 (2007).

    Article  Google Scholar 

  147. 147.

    Lu, C., Danzer, R. & Fischer, F. D. Fracture statistics of brittle materials: Weibull or normal distribution. Phys. Rev. E 65, 067102 (2002).

    Article  CAS  Google Scholar 

  148. 148.

    Doremus, R. Fracture statistics: a comparison of the normal, Weibull & type I extreme value distributions. J. Appl. Phys. 54, 193–198 (1983).

    Article  Google Scholar 

  149. 149.

    Trustrum, K. & Jayatilaka, A. Applicability of Weibull analysis for brittle materials. J. Mater. Sci. 18, 2765–2770 (1983).

    Article  Google Scholar 

  150. 150.

    Nohut, S. & Lu, C. Fracture statistics of dental ceramics: discrimination of strength distributions. Ceram. Interfaces 38, 4979–4990 (2012).

    Article  CAS  Google Scholar 

  151. 151.

    Bazant, Z., Xi, Y. & Reid, S. Statistical size effect in quasi-brittle structures: I. Is Weibull theory applicable? J. Eng. Mech. 117, 2609–2622 (1991).

    Article  Google Scholar 

  152. 152.

    Rozenblat, Y. et al. Strength distribution of particles under compression. Powder Technol. 208, 215–224 (2011).

    Article  CAS  Google Scholar 

  153. 153.

    Basu, B., Tiwari, D., Kundu, D. & Prasad, R. Is Weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram. Int. 35, 237–246 (2009).

    Article  CAS  Google Scholar 

  154. 154.

    Salminen, L. I., Tolvanen, A. I. & Alava, M. J. Acoustic emission from paper fracture. Phys. Rev. Lett. 89, 185503 (2002).

    Article  CAS  Google Scholar 

  155. 155.

    Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A. & Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 350, 39–42 (1991).

    Article  Google Scholar 

  156. 156.

    Garcimartin, A., Guarino, A., Bellon, L. & Ciliberto, S. Statistical properties of fracture precursors. Phys. Rev. Lett. 79, 3202–3205 (1997).

    Article  CAS  Google Scholar 

  157. 157.

    Zioupos, P., Currey, J. & Sedman, A. An examination of the micromechanics of failure of bone and antler by acoustic emission tests and laser scanning confocal microscopy. Med. Eng. Phys. 16, 203–212 (1994).

    Article  CAS  Google Scholar 

  158. 158.

    Reiterer, A., Stanzl-Tschegg, S. E. & Tschegg, E. K. Mode I fracture and acoustic emission of softwood and hardwood. Wood Sci. Technol. 34, 417–430 (2000).

    Article  CAS  Google Scholar 

  159. 159.

    Yukalov, V., Moura, A. & Nechad, H. Self-similar law of energy release before materials fracture. J. Mech. Phys. Solids 52, 453–465 (2004).

    Article  Google Scholar 

  160. 160.

    Anifrani, J.-C., Le Floc’h, C., Sornette, D. & Souillard, B. Universal log-periodic correction to renormalization group scaling for rupture stress prediction from acoustic emissions. J. Phys. I France 5, 631–638 (1995).

    Article  Google Scholar 

  161. 161.

    Alava, M. J., Nukala, P. & Zapperi, S. Statistical models of fracture. Adv. Phys. 55, 349–476 (2006).

    Article  Google Scholar 

  162. 162.

    Wu, D., Zhou, J. & Li, Y. Methods for estimating Weibull parameters for brittle materials. J. Mater. Sci. 41, 5630–5638 (2006).

    Article  CAS  Google Scholar 

  163. 163.

    Wu, D., Zhou, J. & Li, Y. Unbiased estimation of Weibull parameters with the linear regression method. J. Eur. Ceram. Soc. 26, 1099–1105 (2006).

    Article  CAS  Google Scholar 

  164. 164.

    Ambrožič, M. & Vidovič, K. Reliability of the Weibull analysis of the strength of construction materials. J. Mater. Sci. 42, 9645–9653 (2007).

    Article  CAS  Google Scholar 

  165. 165.

    Ambrožič, M. & Gorjan, L. Reliability of a Weibull analysis using the maximum-likelihood method. J. Mater. Sci. 46, 1862–1869 (2011).

    Article  CAS  Google Scholar 

  166. 166.

    Cox, D. R. Further results on tests of separate families of hypotheses. J. R. Stat. Soc. Ser. B 24, 406–424 (1962).

    Google Scholar 

  167. 167.

    Shekhawat, A., Zapperi, S. & Sethna, J. P. From damage percolation to crack nucleation through finite size criticality. Phys. Rev. Lett. 110, 185505 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council Advanced Grant SIZEFFECTS (291002) awarded to S.Z.

Author information

Affiliations

Authors

Contributions

A.T. and G.C. prepared the figures and tables, and researched and wrote the experiment and simulation sections. A.T., G.C. and M.V. analysed the data. A.T. and S.Z. wrote the theoretical section. S.Z. wrote the introduction and conclusion sections, and revised and coordinated the paper.

Corresponding author

Correspondence to Stefano Zapperi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taloni, A., Vodret, M., Costantini, G. et al. Size effects on the fracture of microscale and nanoscale materials. Nat Rev Mater 3, 211–224 (2018). https://doi.org/10.1038/s41578-018-0029-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing