Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue repair and regeneration with endogenous stem cells

An Author Correction to this article was published on 27 July 2018

This article has been updated

Abstract

In contrast to non-mammalian vertebrates, mammals and humans have limited innate capacity for the self-regeneration of tissues and organs owing to differences in genetics, development, immune systems and tissue complexity. Endogenous stem cells are tissue-specific adult stem cells with the capacity to self-renew and differentiate into specific cell types. Therefore, endogenous stem cells are being explored for the regeneration of tissues in situ and in vivo. Stem cells reside in specific niches in the body, and stem cell activation depends on progressive changes in the niche. Niches are specific and instructive microenvironments that can be recreated using biomaterial-based scaffolds. Such scaffolds can be fabricated into a variety of shapes and formulations, and they can be functionalized with biochemical and biophysical cues to guide stem cell fate and migration. In this Review, we discuss important differences in the self-regeneration abilities of non-mammalian vertebrates and mammals, including humans, and investigate adult stem cell populations and their niches involved in tissue repair and regeneration. We highlight natural and synthetic biomaterials and their potential for improving applications of endogenous stem cells and examine the role of interspecies chimaeras in regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue regeneration in different species.
Fig. 2: Relationship between regenerative capacity and immune competence.
Fig. 3: Mesenchymal stem cell signalling.
Fig. 4: Haematopoietic stem cell niche and muscle satellite cell niche.
Fig. 5: Biomaterials for endogenous stem cells.
Fig. 6: Implantable and injectable biomaterials.
Fig. 7: Biomaterial functionalization.

Similar content being viewed by others

Change history

  • 27 July 2018

    This article was originally published with an incorrect affiliation 1. The correct affiliation 1 is: Department of Pediatric Surgery and Center for Genetic Diagnosis, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China

References

  1. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  Google Scholar 

  2. Tsonis, P. A. & Fox, T. P. Regeneration according to Spallanzani. Dev. Dynam. 238, 2357–2363 (2009).

    Article  Google Scholar 

  3. Michalopoulos, G. K. Liver regeneration. J. Cell. Physiol. 213, 286–300 (2007).

    Article  CAS  Google Scholar 

  4. Thomas, E. D., Lochte, H. L. Jr, Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    Article  CAS  Google Scholar 

  5. Brockes, J. P. & Kumar, A. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol. 24, 525–549 (2008).

    Article  CAS  Google Scholar 

  6. Carlson, M. E. & Conboy, I. M. Regulating the Notch pathway in embryonic, adult and old stem cells. Curr. Opin. Pharmacol. 7, 303–309 (2007).

    Article  CAS  Google Scholar 

  7. Tanaka, E. M. & Reddien, P. W. The cellular basis for animal regeneration. Dev. Cell 21, 172–185 (2011).

    Article  CAS  Google Scholar 

  8. Godwin, J. W. & Rosenthal, N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation 87, 66–75 (2014).

    Article  CAS  Google Scholar 

  9. Daar, A. S. & Greenwood, H. L. A proposed definition of regenerative medicine. J. Tissue Eng. Regen Med. 1, 179–184 (2007).

    Article  CAS  Google Scholar 

  10. Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19, 998–1004 (2013).

    Article  CAS  Google Scholar 

  11. Squillaro, T., Peluso, G. & Galderisi, U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25, 829–848 (2016).

    Article  Google Scholar 

  12. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  Google Scholar 

  13. Amaya, E. Xenomics. Genome Res. 15, 1683–1691 (2005).

    Article  CAS  Google Scholar 

  14. Harland, R. M. & Grainger, R. M. Xenopus research: metamorphosed by genetics and genomics. Trends Genet. 27, 507–515 (2011).

    Article  CAS  Google Scholar 

  15. Yokoyama, H. et al. Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration. J. Invest. Dermatol. 131, 2477–2485 (2011).

    Article  CAS  Google Scholar 

  16. Henry, J. J. & Tsonis, P. A. Molecular and cellular aspects of amphibian lens regeneration. Prog. Retin. Eye Res. 29, 543–555 (2010).

    Article  CAS  Google Scholar 

  17. Bettencourt-Dias, M., Mittnacht, S. & Brockes, J. P. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J. Cell Sci. 116, 4001–4009 (2003).

    Article  CAS  Google Scholar 

  18. Love, N. R. et al. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. Bmc Dev. Biol. 11, 70 (2011).

    Article  CAS  Google Scholar 

  19. Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659–672 (2017).

    Article  CAS  Google Scholar 

  20. Rigamonti, E., Zordan, P., Sciorati, C., Rovere-Querini, P. & Brunelli, S. Macrophage plasticity in skeletal muscle repair. Biomed. Res. Int. 2014, 560629 (2014).

    Article  Google Scholar 

  21. Iismaa, S. E. et al. Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen. Med. 3, 6 (2018).

    Article  Google Scholar 

  22. Petrie, T. A., Strand, N. S., Tsung-Yang, C., Rabinowitz, J. S. & Moon, R. T. Macrophages modulate adult zebrafish tail fin regeneration. Development 141, 2581–2591 (2014).

    Article  CAS  Google Scholar 

  23. Banaei-Bouchareb, L. et al. Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J. Leukocyte Biol. 76, 359–367 (2004).

    Article  CAS  Google Scholar 

  24. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).

    Article  CAS  Google Scholar 

  25. Godwin, J., Kuraitis, D. & Rosenthal, N. Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int. J. Biochem. Cell Biol. 56, 47–55 (2014).

    Article  CAS  Google Scholar 

  26. Corona, B. T. et al. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am. J. Physiol. Cell Physiol. 305, C761–775 (2013).

    Article  CAS  Google Scholar 

  27. Kishi, K., Okabe, K., Shimizu, R. & Kubota, Y. Fetal skin possesses the ability to regenerate completely: complete regeneration of skin. Keio J. Med. 61, 101–108 (2012).

    Article  Google Scholar 

  28. Sattler, S. & Rosenthal, N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim. Biophys. Acta 1863, 1813–1821 (2016).

    Article  CAS  Google Scholar 

  29. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  Google Scholar 

  30. Wilgus, T. A. Regenerative healing in fetal skin: a review of the literature. Ostomy Wound Manage. 53, 16–31; quiz 32–33 (2007).

    Google Scholar 

  31. Colwell, A. S., Longaker, M. T. & Lorenz, H. P. Fetal wound healing. Front. Biosci. 8, s1240–1248 (2003).

    Article  CAS  Google Scholar 

  32. Lorenz, H. P., Lin, R. Y., Longaker, M. T., Whitby, D. J. & Adzick, N. S. The fetal fibroblast: the effector cell of scarless fetal skin repair. Plast. Reconstr Surg. 96, 1251–1259; discussion 1260–1261 (1995).

    Article  CAS  Google Scholar 

  33. Colwell, A. S., Krummel, T. M., Longaker, M. T. & Lorenz, H. P. An in vivo mouse excisional wound model of scarless healing. Plast. Reconstr Surg. 117, 2292–2296 (2006).

    Article  CAS  Google Scholar 

  34. Lorenz, H. P., Whitby, D. J., Longaker, M. T. & Adzick, N. S. Fetal wound healing. The ontogeny of scar formation in the non-human primate. Ann. Surg. 217, 391–396 (1993).

    Article  CAS  Google Scholar 

  35. Peake, M. A. et al. Identification of a transcriptional signature for the wound healing continuum. Wound Repair Regen 22, 399–405 (2014).

    Article  Google Scholar 

  36. Wulff, B. C. et al. Mast cells contribute to scar formation during fetal wound healing. J. Invest. Dermatol. 132, 458–465 (2012).

    Article  CAS  Google Scholar 

  37. Wilgus, T. A., Ferreira, A. M., Oberyszyn, T. M., Bergdall, V. K. & Dipietro, L. A. Regulation of scar formation by vascular endothelial growth factor. Lab Invest. 88, 579–590 (2008).

    Article  CAS  Google Scholar 

  38. Liechty, K. W., Adzick, N. S. & Crombleholme, T. M. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12, 671–676 (2000).

    Article  CAS  Google Scholar 

  39. Liechty, K. W., Crombleholme, T. M., Cass, D. L., Martin, B. & Adzick, N. S. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J. Surg. Res. 77, 80–84 (1998).

    Article  CAS  Google Scholar 

  40. Ozturk, S., Deveci, M., Sengezer, M. & Gunhan, O. Results of artificial inflammation in scarless foetal wound healing: an experimental study in foetal lambs. Br. J. Plast. Surg. 54, 47–52 (2001).

    Article  CAS  Google Scholar 

  41. Gawronska-Kozak, B., Grabowska, A., Kopcewicz, M. & Kur, A. Animal models of skin regeneration. Reprod. Biol. 14, 61–67 (2014).

    Article  Google Scholar 

  42. Sawai, T. et al. Hyaluronic acid of wound fluid in adult and fetal rabbits. J. Pediatr. Surg. 32, 41–43 (1997).

    Article  CAS  Google Scholar 

  43. Ferguson, M. W. et al. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet 373, 1264–1274 (2009).

    Article  CAS  Google Scholar 

  44. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  Google Scholar 

  45. Fu, X. et al. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res. 25, 655–673 (2015).

    Article  CAS  Google Scholar 

  46. Clevers, H. & Watt, F. M. Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-062917-012341 (2018).

  47. Lee, E. H. & Hui, J. H. The potential of stem cells in orthopaedic surgery. J. Bone Joint Surg. Br. 88, 841–851 (2006).

    Article  CAS  Google Scholar 

  48. Lu, L., Finegold, M. J. & Johnson, R. L. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp. Mol. Med. 50, e423 (2018).

    Article  Google Scholar 

  49. Sackstein, R. et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14, 181–187 (2008).

    Article  CAS  Google Scholar 

  50. De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106 (2007).

    Article  CAS  Google Scholar 

  51. Wang, H. S. et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22, 1330–1337 (2004).

    Article  Google Scholar 

  52. Zuk, P. A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).

    Article  CAS  Google Scholar 

  53. Horner, P. J. & Gage, F. H. Regenerating the damaged central nervous system. Nature 407, 963–970 (2000).

    Article  CAS  Google Scholar 

  54. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9, 641–650 (1991).

    Article  CAS  Google Scholar 

  55. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    Article  CAS  Google Scholar 

  56. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784 (2001).

    Article  CAS  Google Scholar 

  57. Mohamed, T. M. A. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173, 104–116 (2018).

    Article  CAS  Google Scholar 

  58. Srivastava, D. & DeWitt, N. In vivo cellular reprogramming: the next generation. Cell 166, 1386–1396 (2016).

    Article  CAS  Google Scholar 

  59. Mahla, R. S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016, 6940283 (2016).

    Article  CAS  Google Scholar 

  60. Ankrum, J. & Karp, J. M. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16, 203–209 (2010).

    Article  Google Scholar 

  61. Dexter, T. M., Wright, E. G., Krizsa, F. & Lajtha, L. G. Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicine 27, 344–349 (1977).

    CAS  Google Scholar 

  62. Allen, T. D. & Dexter, T. M. Ultrastructural aspects of erythropoietic differentiation in long-term bone marrow culture. Differentiation 21, 86–94 (1982).

    Article  CAS  Google Scholar 

  63. Tavassoli, M. & Friedenstein, A. Hemopoietic stromal microenvironment. Am. J. Hematol. 15, 195–203 (1983).

    Article  CAS  Google Scholar 

  64. Owen, M. & Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60 (1988).

    CAS  Google Scholar 

  65. Gnecchi, M. & Melo, L. G. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol. 482, 281–294 (2009).

    Article  CAS  Google Scholar 

  66. Friedenstein, A. J., Piatetzky, S., I. I. & Petrakova, K. V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 16, 381–390 (1966).

    CAS  Google Scholar 

  67. Owen, M. The origin of bone cells in the postnatal organism. Arthritis Rheum. 23, 1073–1080 (1980).

    Article  CAS  Google Scholar 

  68. Owen, M. Marrow stromal stem cells. J. Cell Sci. Suppl. 10, 63–76 (1988).

    Article  CAS  Google Scholar 

  69. Bruder, S. P., Fink, D. J. & Caplan, A. I. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell. Biochem. 56, 283–294 (1994).

    Article  CAS  Google Scholar 

  70. Caplan, A. I. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 11, 1198–1211 (2005).

    Article  CAS  Google Scholar 

  71. Beresford, J. N., Graves, S. E. & Smoothy, C. A. Formation of mineralized nodules by bone derived cells in vitro: a model of bone formation? Am. J. Med. Genet. 45, 163–178 (1993).

    Article  CAS  Google Scholar 

  72. Altman, G. H. et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 4131–4141 (2002).

    Article  CAS  Google Scholar 

  73. Beresford, J. N., Bennett, J. H., Devlin, C., Leboy, P. S. & Owen, M. E. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102, 341–351 (1992).

    CAS  Google Scholar 

  74. Johnstone, B. & Yoo, J. U. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin. Orthop. Relat. Res. 367, S156–S162 (1999).

    Article  Google Scholar 

  75. Yoo, J. U. & Johnstone, B. The role of osteochondral progenitor cells in fracture repair. Clin. Orthop. Relat. Res. 355, S73–S81 (1998).

    Article  Google Scholar 

  76. Wakitani, S., Saito, T. & Caplan, A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18, 1417–1426 (1995).

    Article  CAS  Google Scholar 

  77. Friedenstein, A. J., Latzinik, N. W., Grosheva, A. G. & Gorskaya, U. F. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp. Hematol. 10, 217–227 (1982).

    CAS  Google Scholar 

  78. Ashton, B. A. et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. Relat. Res. 151, 294–307 (1980).

    Google Scholar 

  79. Casser-Bette, M., Murray, A. B., Closs, E. I., Erfle, V. & Schmidt, J. Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif. Tissue Int. 46, 46–56 (1990).

    Article  CAS  Google Scholar 

  80. Wakitani, S. et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 76, 579–592 (1994).

    Article  CAS  Google Scholar 

  81. De Bari, C. et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J. Cell Biol. 160, 909–918 (2003).

    Article  CAS  Google Scholar 

  82. Salingcarnboriboon, R. et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp. Cell Res. 287, 289–300 (2003).

    Article  CAS  Google Scholar 

  83. Bosch, P. et al. Osteoprogenitor cells within skeletal muscle. J. Orthop. Res. 18, 933–944 (2000).

    Article  CAS  Google Scholar 

  84. Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    Article  CAS  Google Scholar 

  85. Erickson, G. R. et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 290, 763–769 (2002).

    Article  CAS  Google Scholar 

  86. Dragoo, J. L. et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J. Bone Joint Surg. Br. 85, 740–747 (2003).

    Article  CAS  Google Scholar 

  87. Kuznetsov, S. A. et al. Circulating skeletal stem cells. J. Cell Biol. 153, 1133–1140 (2001).

    Article  CAS  Google Scholar 

  88. Trounson, A. & McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17, 11–22 (2015).

    Article  CAS  Google Scholar 

  89. Borlongan, C. V. Age of PISCES: stem-cell clinical trials in stroke. Lancet 388, 736–738 (2016).

    Article  Google Scholar 

  90. Halvorsen, Y. D. et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 7, 729–741 (2001).

    Article  CAS  Google Scholar 

  91. Strem, B. M. et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med. 54, 132–141 (2005).

    Article  CAS  Google Scholar 

  92. Huang, J. I. et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast. Reconstr Surg. 113, 585–594 (2004).

    Article  Google Scholar 

  93. Rodriguez, A. M., Elabd, C., Amri, E. Z., Ailhaud, G. & Dani, C. The human adipose tissue is a source of multipotent stem cells. Biochimie 87, 125–128 (2005).

    Article  CAS  Google Scholar 

  94. Seo, M. J., Suh, S. Y., Bae, Y. C. & Jung, J. S. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 328, 258–264 (2005).

    Article  CAS  Google Scholar 

  95. Safford, K. M. et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 294, 371–379 (2002).

    Article  CAS  Google Scholar 

  96. Rangappa, S., Fen, C., Lee, E. H., Bongso, A. & Sim, E. K. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann. Thorac Surg. 75, 775–779 (2003).

    Article  Google Scholar 

  97. Charriere, G. et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J. Biol. Chem. 278, 9850–9855 (2003).

    Article  CAS  Google Scholar 

  98. Tholpady, S. S. et al. Adipose tissue: stem cells and beyond. Clin. Plast. Surg. 33, 55–62 (2006).

    Article  Google Scholar 

  99. Afizah, H., Yang, Z., Hui, J. H., Ouyang, H. W. & Lee, E. H. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 13, 659–666 (2007).

    Article  CAS  Google Scholar 

  100. Bartholomew, A. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42–48 (2002).

    Article  Google Scholar 

  101. Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B cell lymphoma. N. Engl. J. Med. 346, 1937–1947 (2002).

    Article  Google Scholar 

  102. Puissant, B. et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129, 118–129 (2005).

    Article  Google Scholar 

  103. Lendeckel, S. et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J. Craniomaxillofac. Surg. 32, 370–373 (2004).

    Article  Google Scholar 

  104. Fu, X. & Sun, X. Can hematopoietic stem cells be an alternative source for skin regeneration? Ageing Res. Rev. 8, 244–249 (2009).

    Article  CAS  Google Scholar 

  105. Inokuma, D. et al. CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells 24, 2810–2816 (2006).

    Article  CAS  Google Scholar 

  106. Kroeze, K. L. et al. Chemokine-mediated migration of skin-derived stem cells: predominant role for CCL5/RANTES. J. Invest. Dermatol. 129, 1569–1581 (2009).

    Article  CAS  Google Scholar 

  107. Blanpain, C. Stem cells: skin regeneration and repair. Nature 464, 686–687 (2010).

    Article  CAS  Google Scholar 

  108. Wu, Y., Zhao, R. C. & Tredget, E. E. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells 28, 905–915 (2010).

    CAS  Google Scholar 

  109. Barbosa-Sabanero, K. et al. Lens and retina regeneration: new perspectives from model organisms. Biochem. J. 447, 321–334 (2012).

    Article  CAS  Google Scholar 

  110. Gwon, A. Lens regeneration in mammals: a review. Surv. Ophthalmol. 51, 51–62 (2006).

    Article  Google Scholar 

  111. Gwon, A. E., Gruber, L. J. & Mundwiler, K. E. A histologic study of lens regeneration in aphakic rabbits. Invest. Ophthalmol. Vis. Sci. 31, 540–547 (1990).

    CAS  Google Scholar 

  112. Cocteau, M. M. & D’Etoille. L. Reproduction du crystallin. J. Physiol. Exp. Pathol. 7, 30–744 (1827).

    Google Scholar 

  113. Henry, J. J. & Hamilton, P. W. Diverse evolutionary origins and mechanisms of lens regeneration. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msy045 (2018).

  114. Beebe, D. C., Feagans, D. E. & Jebens, H. A. Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc. Natl Acad. Sci. USA 77, 490–493 (1980).

    Article  CAS  Google Scholar 

  115. Lin, H. T. et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature 531, 323–328 (2016).

    Article  CAS  Google Scholar 

  116. Kaur, S., Siddiqui, H. & Bhat, M. H. Hepatic progenitor cells in action: liver regeneration or fibrosis? Am. J. Pathol. 185, 2342–2350 (2015).

    Article  CAS  Google Scholar 

  117. Chen, J. et al. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int. 37, 1260–1271 (2017).

    Article  Google Scholar 

  118. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6, 606–619 (2013).

    Article  CAS  Google Scholar 

  119. Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

    Article  CAS  Google Scholar 

  120. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  Google Scholar 

  121. Nakada, Y. et al. Hypoxia induces heart regeneration in adult mice. Nature 541, 222–227 (2017).

    Article  CAS  Google Scholar 

  122. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  CAS  Google Scholar 

  123. Fransioli, J. et al. Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells 26, 1315–1324 (2008).

    Article  CAS  Google Scholar 

  124. van Berlo, J. H. et al. c-Kit+cells minimally contribute cardiomyocytes to the heart. Nature 509, 337–341 (2014).

    Article  CAS  Google Scholar 

  125. Garbern, J. C. & Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12, 689–698 (2013).

    Article  CAS  Google Scholar 

  126. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  Google Scholar 

  127. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  Google Scholar 

  128. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  Google Scholar 

  129. Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11–21 (2008).

    Article  CAS  Google Scholar 

  130. Lander, A. D. et al. What does the concept of the stem cell niche really mean today? BMC Biol. 10, 19 (2012).

    Article  Google Scholar 

  131. Wagers, A. J. The stem cell niche in regenerative medicine. Cell Stem Cell 10, 362–369 (2012).

    Article  CAS  Google Scholar 

  132. Watt, F. M. & Fujiwara, H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 3, a005124 (2011).

    Article  CAS  Google Scholar 

  133. Nakayama, K. H., Batchelder, C. A., Lee, C. I. & Tarantal, A. F. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng. Part A 16, 2207–2216 (2010).

    Article  CAS  Google Scholar 

  134. Soto-Gutierrez, A. et al. Cell delivery: from cell transplantation to organ engineering. Cell Transplant. 19, 655–665 (2010).

    Article  Google Scholar 

  135. Song, J. J. & Ott, H. C. Organ engineering based on decellularized matrix scaffolds. Trends Mol. Med. 17, 424–432 (2011).

    Article  CAS  Google Scholar 

  136. Avigdor, A. et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+stem/progenitor cells to bone marrow. Blood 103, 2981–2989 (2004).

    Article  CAS  Google Scholar 

  137. Smith-Berdan, S. et al. Robo4 cooperates with CXCR4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell 8, 72–83 (2011).

    Article  CAS  Google Scholar 

  138. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  Google Scholar 

  139. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  140. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods 2, 119–125 (2005).

    Article  CAS  Google Scholar 

  141. Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31, 8228–8234 (2010).

    Article  CAS  Google Scholar 

  142. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    Article  CAS  Google Scholar 

  143. Formiga, F. R. et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J. Control. Release 173, 132–139 (2014).

    Article  CAS  Google Scholar 

  144. Herberg, S. et al. Development of an injectable composite as a carrier for growth factor-enhanced periodontal regeneration. J. Clin. Periodontol 35, 976–984 (2008).

    Article  CAS  Google Scholar 

  145. Erggelet, C. et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J. Orthopaed. Res. 27, 1353–1360 (2009).

    Article  Google Scholar 

  146. Thevenot, P. T. et al. The effect of incorporation of SDF-1 alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 31, 3997–4008 (2010).

    Article  CAS  Google Scholar 

  147. Mendelson, A., Ahn, J. M., Paluch, K., Embree, M. C. & Mao, J. J. Engineered nasal cartilage by cell homing: a model for augmentative and reconstructive rhinoplasty. Plast. Reconstr. Surg. 133, 1344–1353 (2014).

    Article  CAS  Google Scholar 

  148. Dupont, K. M. et al. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res. 347, 575–588 (2012).

    Article  CAS  Google Scholar 

  149. Lee, C. H. et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376, 440–448 (2010).

    Article  CAS  Google Scholar 

  150. Schantz, J. T., Chim, H. & Whiteman, M. Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Engineer. 13, 2615–2624 (2007).

    Article  CAS  Google Scholar 

  151. Lee, C. H. et al. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl Med. 6, 266ra171 (2014).

    Article  CAS  Google Scholar 

  152. Wang, Y. D., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002).

    Article  CAS  Google Scholar 

  153. Engelmayr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003–1010 (2008).

    Article  CAS  Google Scholar 

  154. Chen, Q. Z. et al. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 31, 3885–3893 (2010).

    Article  CAS  Google Scholar 

  155. Ravichandran, R., Venugopal, J. R., Sundarrajan, S., Mukherjee, S. & Ramakrishna, S. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J. Cardiol. 5, 28–41 (2013).

    Article  Google Scholar 

  156. Zaky, S. H. et al. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Acta Biomater. 54, 95–106 (2017).

    Article  CAS  Google Scholar 

  157. Fischer, K. M. et al. Poly(limonene thioether) scaffold for tissue engineering. Adv. Healthc. Mater. 5, 813–821 (2016).

    Article  CAS  Google Scholar 

  158. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    Article  CAS  Google Scholar 

  159. Bai, T. et al. Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew. Chem. Int. Ed. 53, 12729–12734 (2014).

    Article  CAS  Google Scholar 

  160. Bai, T. et al. Harnessing isomerization-mediated manipulation of nonspecific cell/matrix interactions to reversibly trigger and suspend stem cell differentiation. Chem. Sci. 7, 333–338 (2016).

    Article  CAS  Google Scholar 

  161. Malafaya, P. B., Silva, G. A. & Reis, R. L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 59, 207–233 (2007).

    Article  CAS  Google Scholar 

  162. Geesink, R. G. T., Hoefnagels, N. H. & Bulstra, S. K. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J. Bone Joint Surg. Br. 81, 710–718 (1999).

    Article  CAS  Google Scholar 

  163. Burkus, J. K., Transfeldt, E. E., Kitchel, S. H., Watkins, R. G. & Balderston, R. A. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27, 2396–2408 (2002).

    Article  Google Scholar 

  164. Nakahara, T. et al. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng. 9, 153–162 (2003).

    Article  CAS  Google Scholar 

  165. van de Kamp, J. et al. Mesenchymal stem cells can be recruited to wounded tissue via hepatocyte growth factor-loaded biomaterials. J. Tissue Eng. Regen. Med. 11, 2988–2998 (2017).

    Article  CAS  Google Scholar 

  166. Wang, Y. Z., Kim, H. J., Vunjak-Novakovic, G. & Kaplan, D. L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27, 6064–6082 (2006).

    Article  CAS  Google Scholar 

  167. Ebrahimi, D. et al. Silk-its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 1, 864–876 (2015).

    Article  CAS  Google Scholar 

  168. Li, G. et al. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv. Healthc. Mater. 4, 1134–1151 (2015).

    Article  CAS  Google Scholar 

  169. Dinjaski, N. & Kaplan, D. L. Recombinant protein blends: silk beyond natural design. Curr. Opin. Biotechnol. 39, 1–7 (2016).

    Article  CAS  Google Scholar 

  170. Zhang, W. J. et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur. Cells Mater. 27, 1–12 (2014).

    Article  Google Scholar 

  171. Chen, X. et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials 29, 3683–3692 (2008).

    Article  CAS  Google Scholar 

  172. Spector, M. Decellularized tissues and organs: an historical perspective and prospects for the future. Biomed. Mater. 11, 020201(2016).

    Article  CAS  Google Scholar 

  173. Fu, R. H. et al. Decellularization and recellularization technologies in tissue engineering. Cell Transplant. 23, 621–630 (2014).

    Article  Google Scholar 

  174. Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

    Article  CAS  Google Scholar 

  175. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    Article  CAS  Google Scholar 

  176. Papadimitropoulos, A., Scotti, C., Bourgine, P., Scherberich, A. & Martin, I. Engineered decellularized matrices to instruct bone regeneration processes. Bone 70, 66–72 (2015).

    Article  CAS  Google Scholar 

  177. Martino, M. M., Briquez, P. S., Maruyama, K. & Hubbell, J. A. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Adv. Drug Deliv. Rev. 94, 41–52 (2015).

    Article  CAS  Google Scholar 

  178. Samorezov, J. E. & Alsberg, E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv. Drug Deliv. Rev. 84, 45–67 (2015).

    Article  CAS  Google Scholar 

  179. Wang, Z. S. et al. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering. Sci. Rep. 6, 28126 (2016).

    Article  CAS  Google Scholar 

  180. Ji, B. H. et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing. Tissue Eng. Part A 21, 26–34 (2015).

    Article  CAS  Google Scholar 

  181. Kim, J. Y. et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng. Part A 16, 3023–3031 (2010).

    Article  CAS  Google Scholar 

  182. Jordan, J. E. et al. Bioengineered self-seeding heart valves. J. Thorac. Cardiovasc. Surg. 143, 201–208 (2012).

    Article  Google Scholar 

  183. Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–470 (2009).

    Article  CAS  Google Scholar 

  184. Vasita, R., Shanmugam, K. & Katti, D. S. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr. Top. Med. Chem. 8, 341–353 (2008).

    Article  CAS  Google Scholar 

  185. Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog. Polym. Sci. 36, 1254–1276 (2011).

    Article  CAS  Google Scholar 

  186. Doulabi, A. H., Mequanint, K. & Mohammadi, H. Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials 7, 5327–5355 (2014).

    Article  CAS  Google Scholar 

  187. Zeng, S. et al. Characterization of highly interconnected porous poly(lactic acid) and chitosan-coated poly(lactic acid) scaffold fabricated by vacuum-assisted resin transfer molding and particle leaching. J. Mater. Sci. 51, 9958–9970 (2016).

    Article  CAS  Google Scholar 

  188. Salehi, M., Farzamfar, S., Bastami, F. & Tajerian, R. Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed. Eng. Appl. Basis Commun. 28, 1650035 (2016).

    Article  CAS  Google Scholar 

  189. Schreinemacher, M. H. F. et al. Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br. J. Surg. 96, 305–313 (2009).

    Article  CAS  Google Scholar 

  190. Chen, M. W., Le, D. Q. S., Kjems, J., Bunger, C. & Lysdahl, H. Improvement of distribution and osteogenic differentiation of human mesenchymal stem cells by hyaluronic acid and beta-tricalcium phosphate-coated polymeric scaffold in vitro. Biores. Open Access 4, 363–373 (2015).

    Article  CAS  Google Scholar 

  191. Deepthi, S., Jeevitha, K., Sundaram, M. N., Chennazhi, K. P. & Jayakumar, R. Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem. Engineer. J. 260, 478–485 (2015).

    Article  CAS  Google Scholar 

  192. Liao, H. T., Lee, M. Y., Tsai, W. W., Wang, H. C. & Lu, W. C. Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J. Tissue Eng. Regen. Med. 10, E337–E353 (2016).

    Article  CAS  Google Scholar 

  193. Gottipati, A. & Elder, S. H. Mesenchymal stem cell mediated chondrogenesis on chitosan-calcium phosphate scaffolds: effect of collagen coating. J. Chitin Chitosan Sci. 4, 33–40 (2016).

    Article  Google Scholar 

  194. Takaoka, R., Hikasa, Y. & Tabata, Y. Vascularization around poly(tetrafluoroethylene) mesh with coating of gelatin hydrogel incorporating basic fibroblast growth factor. J. Biomater. Sci. Polym. Ed. 20, 1483–1494 (2009).

    Article  CAS  Google Scholar 

  195. Peh, P. et al. Simultaneous delivery of highly diverse bioactive compounds from blend electrospun fibers for skin wound healing. Bioconjug. Chem. 26, 1348–1358 (2015).

    Article  CAS  Google Scholar 

  196. Sampaio, S., Miranda, T. M. R., Santos, J. G. & Soares, G. M. B. Preparation of silk fibroin-poly (ethylene glycol) conjugate films through click chemistry. Polymer Int. 60, 1737–1744 (2011).

    Article  CAS  Google Scholar 

  197. Ibusuki, S., Fujii, Y., Iwamoto, Y. & Matsuda, T. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue Eng. 9, 371–384 (2003).

    Article  CAS  Google Scholar 

  198. Cho, J. H. et al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25, 5743–5751 (2004).

    Article  CAS  Google Scholar 

  199. Burdick, J. A., Mauck, R. L. & Gerecht, S. To serve and protect: hydrogels to improve stem cell-based therapies. Cell Stem Cell 18, 13–15 (2016).

    Article  CAS  Google Scholar 

  200. Espinosa-Jeffrey, A. et al. Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells. Regen. Biol. Spine Spinal Cord 760, 25–52 (2012).

    Article  Google Scholar 

  201. Wang, Y., Cooke, M. J., Morshead, C. M. & Shoichet, M. S. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials 33, 2681–2692 (2012).

    Article  CAS  Google Scholar 

  202. Hennink, W. E. & van Nostrum, C. F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 54, 13–36 (2002).

    Article  CAS  Google Scholar 

  203. Tong, X. M. & Yang, F. Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater. 28, 7257–7263 (2016).

    Article  CAS  Google Scholar 

  204. Lin, Y. D. et al. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci. Transl Med. 4, 146ra109 (2012).

    Google Scholar 

  205. Zhang, Z. P., Hu, J. & Ma, P. X. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv. Drug Deliv. Rev. 64, 1129–1141 (2012).

    Article  CAS  Google Scholar 

  206. Xie, J. W. et al. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4, 5027–5036 (2010).

    Article  CAS  Google Scholar 

  207. Han, L. H., Yu, S., Wang, T. Y., Behn, A. W. & Yang, F. Microribbon-like elastomers for fabricating macroporous and highly flexible scaffolds that support cell proliferation in 3D. Adv. Funct. Mater. 23, 346–358 (2013).

    Article  CAS  Google Scholar 

  208. Raic, A., Rodling, L., Kalbacher, H. & Lee-Thedieck, C. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35, 929–940 (2014).

    Article  CAS  Google Scholar 

  209. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  Google Scholar 

  210. Pati, F., Gantelius, J. & Svahn, H. A. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed. 55, 4650–4665 (2016).

    Article  CAS  Google Scholar 

  211. Lee, C. H. et al. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng. Part A 20, 1342–1351 (2014).

    Article  CAS  Google Scholar 

  212. Abraham, A. C., Edwards, C. R., Odegard, G. M. & Donahue, T. L. H. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J. Mechan. Behav. Biomed. Mater. 4, 2024–2030 (2011).

    Article  Google Scholar 

  213. Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).

    Article  CAS  Google Scholar 

  214. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    Article  CAS  Google Scholar 

  215. Kretlow, J. D., Klouda, L. & Mikos, A. G. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 59, 263–273 (2007).

    Article  CAS  Google Scholar 

  216. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

    Article  CAS  Google Scholar 

  217. Kim, J. H., Jung, Y., Kim, B. S. & Kim, S. H. Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials 34, 1657–1668 (2013).

    Article  CAS  Google Scholar 

  218. Zhang, Z. P. Injectable biomaterials for stem cell delivery and tissue regeneration. Expert Opin. Biol. Ther. 17, 49–62 (2017).

    Article  CAS  Google Scholar 

  219. Douglas, A. M. et al. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers. Proc. Natl Acad. Sci. USA 114, 885–890 (2017).

    Article  CAS  Google Scholar 

  220. Bencherif, S. A. et al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. USA 109, 19590–19595 (2012).

    Article  Google Scholar 

  221. Andreas, K., Sittinger, M. & Ringe, J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends Biotechnol. 32, 483–492 (2014).

    Article  CAS  Google Scholar 

  222. Shafiq, M., Jung, Y. & Kim, S. H. In situ vascular regeneration using substance P-immobilised poly (l-lactide-co-epsilon-caprolactone) scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration. Eur. Cell. Mater. 30, 282–302 (2015).

    Article  CAS  Google Scholar 

  223. Yamamoto, M., Takahashi, Y. & Tabata, Y. Enhanced bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue Engineer. 12, 1305–1311 (2006).

    Article  CAS  Google Scholar 

  224. Osathanon, T. et al. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 29, 4091–4099 (2008).

    Article  CAS  Google Scholar 

  225. Salimath, A. S. et al. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLOS ONE 7, e50980 (2012).

    Article  CAS  Google Scholar 

  226. Zhao, J., Zhang, N., Prestwich, G. D. & Wen, X. J. Recruitment of endogenous stem cells for tissue repair. Macromol. Biosci. 8, 836–842 (2008).

    Article  CAS  Google Scholar 

  227. Zhang, G. et al. Controlled release of stromal cell-derived factor-1alpha in situ increases C-kit+ cell homing to the infarcted heart. Tissue Eng. 13, 2063–2071 (2007).

    Article  CAS  Google Scholar 

  228. Kim, K., Lee, C. H., Kim, B. K. & Mao, J. J. Anatomically shaped tooth and periodontal regeneration by cell homing. J. Dent. Res. 89, 842–847 (2010).

    Article  CAS  Google Scholar 

  229. Gao, W. W., Zhang, Y., Zhang, Q. Z. & Zhang, L. F. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng. 44, 2049–2061 (2016).

    Article  Google Scholar 

  230. Koehler, K. R., Mikosz, A. M., Molosh, A. I., Patel, D. & Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500, 217–221 (2013).

    Article  CAS  Google Scholar 

  231. Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 7, 816–823 (2008).

    Article  CAS  Google Scholar 

  232. Lin, C. C. & Anseth, K. S. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc. Natl Acad. Sci. USA 108, 6380–6385 (2011).

    Article  Google Scholar 

  233. Zheng, W. T. et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials 33, 2880–2891 (2012).

    Article  CAS  Google Scholar 

  234. Calvert, J. W. et al. Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. J. Biomed. Mater. Res. 52, 279–284 (2000).

    Article  CAS  Google Scholar 

  235. Calvert, J. W., Chua, W. C., Gharibjanian, N. A., Dhar, S. & Evans, G. R. D. Osteoblastic phenotype expression of MC3T3-E1 cells cultured on polymer surfaces. Plast. Reconstr. Surg. 116, 567–576 (2005).

    Article  CAS  Google Scholar 

  236. Chastain, S. R., Kundu, A. K., Dhar, S., Calvert, J. W. & Putnam, A. J. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. A 78, 73–85 (2006).

    Article  CAS  Google Scholar 

  237. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article  CAS  Google Scholar 

  238. Kang, S. M. et al. One-step multipurpose surface functionalization by adhesive catecholamine. Adv. Funct. Mater. 22, 2949–2955 (2012).

    Article  CAS  Google Scholar 

  239. Tunuguntla, R. H. et al. Bioelectronic light-gated transistors with biologically tunable performance. Adv. Mater. 27, 831–836 (2015).

    Article  CAS  Google Scholar 

  240. Li, W. et al. Microbead-based biomimetic synthetic neighbors enhance survival and function of rat pancreatic beta-cells. Sci. Rep. 3, 2863 (2013).

    Article  Google Scholar 

  241. Hu, C. M. J., Fang, R. H., Copp, J., Luk, B. T. & Zhang, L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8, 336–340 (2013).

    Article  CAS  Google Scholar 

  242. Hu, C. M. J., Fang, R. H., Luk, B. T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8, 933–938 (2013).

    Article  CAS  Google Scholar 

  243. Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  CAS  Google Scholar 

  244. Chen, W. S. et al. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. Nanoscale 8, 10364–10370 (2016).

    Article  CAS  Google Scholar 

  245. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  Google Scholar 

  246. Ladoux, B. & Mege, R.-M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18, 743–757 (2017).

    Article  CAS  Google Scholar 

  247. Li, H., Wijekoon, A. & Leipzig, N. D. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. PLOS ONE 7, e48824 (2012).

    Article  CAS  Google Scholar 

  248. Vijayavenkataraman, S., Shuo, Z., Fuh, J. Y. H. & Lu, W. F. Design of three-dimensional scaffolds with tunable matrix stiffness for directing stem cell lineage specification: an in silico study. Bioengineering 4, E66 (2017).

    Article  Google Scholar 

  249. Altmann, B. et al. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography. Tissue Eng. Part C Methods 19, 850–863 (2013).

    Article  CAS  Google Scholar 

  250. Mozdzen, L. C., Rodgers, R., Banks, J. M., Bailey, R. C. & Harley, B. A. C. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater. 33, 25–33 (2016).

    Article  CAS  Google Scholar 

  251. Rujitanaroj, P. O., Wang, Y. C., Wang, J. & Chew, S. Y. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 32, 5915–5923 (2011).

    Article  CAS  Google Scholar 

  252. Balmayor, E. R. et al. Modified mRNA for BMP-2 in combination with biomaterials serves as a transcript-activated matrix for effectively inducing osteogenic pathways in stem cells. Stem Cells Dev 26, 25–34 (2017).

    Article  CAS  Google Scholar 

  253. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).

    Article  CAS  Google Scholar 

  254. Gardner, R. L. & Johnson, M. H. Investigation of early mammalian development using interspecific chimaeras between rat and mouse. Nat. New Biol. 246, 86–89 (1973).

    Article  CAS  Google Scholar 

  255. Rossant, J. & Frels, W. I. Interspecific chimeras in mammals: successful production of live chimeras between Mus musculus and Mus caroli. Science 208, 419–421 (1980).

    Article  CAS  Google Scholar 

  256. Fehilly, C. B., Willadsen, S. M. & Tucker, E. M. Interspecific chimaerism between sheep and goat. Nature 307, 634–636 (1984).

    Article  CAS  Google Scholar 

  257. Mascetti, V. L. & Pedersen, R. A. Human–mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 18, 67–72 (2016).

    Article  CAS  Google Scholar 

  258. Hanna, J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl Acad. Sci. USA 107, 9222–9227 (2010).

    Article  CAS  Google Scholar 

  259. Rashid, T., Kobayashi, T. & Nakauchi, H. Revisiting the flight of Icarus: making human organs from PSCs with large animal chimeras. Cell Stem Cell 15, 406–409 (2014).

    Article  CAS  Google Scholar 

  260. Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).

    Article  CAS  Google Scholar 

  261. National Institutes of Health. NIH research involving introduction of human pluripotent cells into non-human vertebrate animal pre-gastrulation embryos. NIH https://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-158.html (2015).

  262. Wu, J. et al. Stem cells and interspecies chimaeras. Nature 540, 51–59 (2016).

    Article  CAS  Google Scholar 

  263. National Institutes of Health. Request for public comment on the proposed changes to the NIH guidelines for human stem cell research and the proposed scope of an NIH steering committee’s consideration of certain human–animal chimera research. NIH https://grants.nih.gov/grants/guide/notice-files/NOT-OD-16-128.html (2016).

  264. Teixeira, A. I., Duckworth, J. K. & Hermanson, O. Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res. 17, 56–61 (2007).

    Article  CAS  Google Scholar 

  265. Vanden Berg-Foels, W. S. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng. Part B Rev. 20, 28–39 (2014).

    Article  Google Scholar 

  266. Huch, M. & Koo, B. K. Modeling mouse and human development using organoid cultures. Development 142, 3113–3125 (2015).

    Article  CAS  Google Scholar 

  267. Chen, F. M., Sun, H. H., Lu, H. & Yu, Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 33, 6320–6344 (2012).

    Article  CAS  Google Scholar 

  268. Embree, M. C. et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat. Commun. 7, 13073 (2016).

    Article  CAS  Google Scholar 

  269. Fong, E. L. S., Chan, C. K. & Goodman, S. B. Stem cell homing in musculoskeletal injury. Biomaterials 32, 395–409 (2011).

    Article  CAS  Google Scholar 

  270. Avci-Adali, M., Ziemer, G. & Wendel, H. P. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization — a review of current strategies. Biotechnol. Adv. 28, 119–129 (2010).

    Article  CAS  Google Scholar 

  271. Cao, Q. L., Benton, R. L. & Whittemore, S. R. Stem cell repair of central nervous system injury. J. Neurosci. Res. 68, 501–510 (2002).

    Article  CAS  Google Scholar 

  272. Iwatani, H. & Imai, E. Kidney repair using stem cells: myth or reality as a therapeutic option? J. Nephrol. 23, 143–146 (2010).

    Google Scholar 

  273. Hocking, A. M. & Gibran, N. S. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp. Cell Res. 316, 2213–2219 (2010).

    Article  CAS  Google Scholar 

  274. Li, C. Y. et al. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J. Hepatol. 50, 1174–1183 (2009).

    Article  CAS  Google Scholar 

  275. Mishra, R., Bishop, T., Valerio, I. L., Fisher, J. P. & Dean, D. The potential impact of bone tissue engineering in the clinic. Regen. Med. 11, 571–587 (2016).

    Article  CAS  Google Scholar 

  276. Yu, Y., Wu, R. X., Yin, Y. & Chen, F. M. Directing immunomodulation using biomaterials for endogenous regeneration. J. Mater. Chem. B 4, 569–584 (2016).

    Article  CAS  Google Scholar 

  277. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  278. Han, L. H., Tong, X. M. & Yang, F. Photo-crosslinkable PEG-based microribbons for forming 3D macroporous scaffolds with decoupled niche properties. Adv. Mater. 26, 1757–1762 (2014).

    Article  CAS  Google Scholar 

  279. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  280. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    Article  CAS  Google Scholar 

  281. Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009).

    Article  CAS  Google Scholar 

  282. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33 (2014).

    Article  CAS  Google Scholar 

  283. Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136, 834–848 (2017).

    Article  Google Scholar 

  284. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  Google Scholar 

  285. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

    Article  CAS  Google Scholar 

  286. Tornini, V. A. & Poss, K. D. Keeping at arm’s length during regeneration. Dev. Cell 29, 139–145 (2014).

    Article  CAS  Google Scholar 

  287. Eguchi, G., Abe, S. I. & Watanabe, K. Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc. Natl Acad. Sci. USA 71, 5052–5056 (1974).

    Article  CAS  Google Scholar 

  288. Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459, 708–711 (2009).

    Article  CAS  Google Scholar 

  289. Godwin, J. The promise of perfect adult tissue repair and regeneration in mammals: learning from regenerative amphibians and fish. Bioessays 36, 861–871 (2014).

    Article  CAS  Google Scholar 

  290. Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53, 13–28 (2017).

    Article  CAS  Google Scholar 

  291. Carrion, F. A. & Figueroa, F. E. Mesenchymal stem cells for the treatment of systemic lupus erythematosus: is the cure for connective tissue diseases within connective tissue? Stem Cell Res. Ther. 2, 23 (2011).

    Article  Google Scholar 

  292. Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506–2519 (2014).

    Article  CAS  Google Scholar 

  293. Hou, S. et al. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience 137, 519–529 (2006).

    Article  CAS  Google Scholar 

  294. Li, L. C., Ge, J., Wang, L., Guo, B. L. & Ma, P. X. Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation. J. Mater. Chem. B 2, 6119–6130 (2014).

    Article  CAS  Google Scholar 

  295. Dainiak, M. B., Kumar, A., Galaev, I. Y. & Mattiasson, B. Detachment of affinity-captured bioparticles by elastic deformation of a macroporous hydrogel. Proc. Natl Acad. Sci. USA 103, 849–854 (2006).

    Article  CAS  Google Scholar 

  296. Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

    Article  CAS  Google Scholar 

  297. Appel, E. A. et al. Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat. Commun. 6, 6295 (2015).

    Article  CAS  Google Scholar 

  298. Zhang, Y. et al. Self-assembled colloidal gel using cell membrane-coated nanosponges as building blocks. ACS Nano 11, 11923–11930 (2017).

    Article  CAS  Google Scholar 

  299. Naghdi, P. et al. Survival, proliferation and differentiation enhancement of neural stem cells cultured in three-dimensional polyethylene glycol-RGD hydrogel with tenascin. J. Tissue Eng. Regen. Med. 10, 199–208 (2016).

    Article  CAS  Google Scholar 

  300. Song, Y. H., Ju, Y., Song, G. B. & Morita, Y. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina. Int. J. Nanomed. 8, 2745–2756 (2013).

    Google Scholar 

  301. Sawyer, A. A., Hennessy, K. M. & Bellis, S. L. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 28, 383–392 (2007).

    Article  CAS  Google Scholar 

  302. Qiu, G. et al. Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet-rich plasma. J. Tissue Eng. Regen. Med. 2, e937–e948 (2018).

    Article  CAS  Google Scholar 

  303. Kim, T. H., Singh, R. K., Kang, M. S., Kim, J. H. & Kim, H. W. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale 8, 8300–8311 (2016).

    Article  CAS  Google Scholar 

  304. Quinlan, E. et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials 52, 358–366 (2015).

    Article  CAS  Google Scholar 

  305. Shih, Y. R. V. et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc. Natl Acad. Sci. USA 111, 990–995 (2014).

    Article  CAS  Google Scholar 

  306. Sun, W. et al. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. J. Tissue Eng. Regen. Med. 11, 1532–1541 (2017).

    Article  CAS  Google Scholar 

  307. Frazier, T. P. et al. Serially transplanted nonpericytic CD146 adipose stromal/stem cells in silk bioscaffolds regenerate adipose tissue in vivo. Stem Cells 34, 1097–1111 (2016).

    Article  CAS  Google Scholar 

  308. Sun, J. et al. Controlled release of collagen-binding SDF-1 alpha improves cardiac function after myocardial infarction by recruiting endogenous stem cells. Sci. Rep. 6, 26683 (2016).

    Article  CAS  Google Scholar 

  309. Matthias, N. et al. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Res. 27, 65–73 (2018).

    Article  CAS  Google Scholar 

  310. Gaetani, R. et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61, 339–348 (2015).

    Article  CAS  Google Scholar 

  311. Simpson, R. M. L. et al. Hyaluronan is crucial for stem cell differentiation into smooth muscle lineage. Stem Cells 34, 1225–1238 (2016).

    Article  CAS  Google Scholar 

  312. Deng, B. Y. et al. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J. Biomed. Mater. Res. Part A 103, 907–918 (2015).

    Article  CAS  Google Scholar 

  313. Tanaka, N., Yamashita, T., Sato, A., Vogel, V. & Tanaka, Y. Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells. PLOS ONE 12, e0173647 (2017).

    Article  CAS  Google Scholar 

  314. Lal, L., Suraishkumar, G. K. & Nair, P. D. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton’s Jelly mesenchymal stem cells. J. Biomed. Mater. Res. Part A 105, 1845–1855 (2017).

    Article  CAS  Google Scholar 

  315. Canadas, R. F. et al. Polyhydroxyalkanoates: waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int. J. Biol. Macromol. 71, 131–140 (2014).

    Article  CAS  Google Scholar 

  316. Jang, J. et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112, 264–274 (2017).

    Article  CAS  Google Scholar 

  317. Rakian, R. et al. Native extracellular matrix preserves mesenchymal stem cell “stemness” and differentiation potential under serum-free culture conditions. Stem Cell Res. Ther. 6, 235 (2015).

    Article  Google Scholar 

  318. Suzuki, Y. et al. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J. Biomed. Mater. Res. 50, 405–409 (2000).

    Article  CAS  Google Scholar 

  319. Barnes, B. et al. Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine 30, 1127–1133 (2005).

    Article  Google Scholar 

  320. Haidar, Z. S., Hamdy, R. C. & Tabrizian, M. Biocompatibility and safety of a hybrid core-shell nanoparticulate OP-1 delivery system intramuscularly administered in rats. Biomaterials 31, 2746–2754 (2010).

    Article  CAS  Google Scholar 

  321. Woo, B. H., Jiang, G., Jo, Y. W. & DeLuca, P. P. Preparation and characterization of a composite PLGA and poly(acryloyl hydroxyethyl starch) microsphere system for protein delivery. Pharm. Res. 18, 1600–1606 (2001).

    Article  CAS  Google Scholar 

  322. Woodruff, M. A. et al. Sustained release and osteogenic potential of heparan sulfate-doped fibrin glue scaffolds within a rat cranial model. J. Mol. Histol. 38, 425–433 (2007).

    Article  CAS  Google Scholar 

  323. Mabilleau, G. et al. Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials 29, 1593–1600 (2008).

    Article  CAS  Google Scholar 

  324. Lim, T. C. et al. Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1 alpha release and compatible structural support. FASEB J. 27, 1023–1033 (2013).

    Article  CAS  Google Scholar 

  325. Erggelet, C. et al. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials 28, 5570–5580 (2007).

    Article  CAS  Google Scholar 

  326. De Visscher, G., Mesure, L., Meuris, B., Ivanova, A. & Flameng, W. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1 alpha. Acta Biomater. 8, 1330–1338 (2012).

    Article  CAS  Google Scholar 

  327. Kuwabara, F. et al. Novel small-caliber vascular grafts with trimeric peptide for acceleration of endothelialization. Ann. Thorac. Surg. 93, 156–163 (2012).

    Article  Google Scholar 

  328. Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl Acad. Sci. USA 107, 3287–3292 (2010).

    Article  CAS  Google Scholar 

  329. Abbushi, A. et al. Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine 33, 1527–1532 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the laboratories of H.X., L.Z. and K.Z. for helpful discussions. This study was funded by the National Natural Science Foundation of China (Grant Nos 81771629, 81770510, 81671498 and 81600399).

Author information

Authors and Affiliations

Authors

Contributions

H.X., L.Z. and K.Z. designed the study. All authors discussed the results and wrote and commented on the manuscript.

Corresponding authors

Correspondence to Liangfang Zhang or Kang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CC-BY-NC-ND-4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/

Organ Procurement and Transplantation Network: https://www.organdonor.gov/statistics-stories/statistics.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Li, X., Gao, W. et al. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater 3, 174–193 (2018). https://doi.org/10.1038/s41578-018-0027-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0027-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research