Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing dynamics in quantum materials with femtosecond X-rays

A Publisher Correction to this article was published on 12 June 2018

This article has been updated

Abstract

Optical pulses are routinely used to drive dynamic changes in the properties of solids. In quantum materials, many new phenomena have been discovered, including ultrafast transitions between electronic phases, switching of ferroic orders and non-equilibrium emergent behaviours, such as photoinduced superconductivity. Understanding the underlying non-equilibrium physics requires detailed measurements of multiple microscopic degrees of freedom at ultrafast time resolution. Femtosecond X-rays are key to this endeavour, as they can probe the dynamics of structural, electronic and magnetic degrees of freedom. Here, we review a series of representative experimental studies in which ultrashort X-ray pulses from free-electron lasers have been used, opening up new horizons for materials research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ultrafast angular momentum transfer in a ferromagnetic film.
Fig. 2: Ultrafast interfacial strain engineering.
Fig. 3: Nonlinear phononics in a bilayer cuprate.
Fig. 4: Ultrafast stripe order melting in a single-layer cuprate.
Fig. 5: Electron–phonon deformation potential in an iron-based superconductor.
Fig. 6: Phonon dispersion relation in germanium.

Change history

  • 12 June 2018

    This article was originally published with an error in the main text. The original sentence, “The on-resonance intensity includes a charge order contribution (grey shaded region, Fig. 2b), which disappears on a timescale shorter than that of the off-resonance intensity and is sensitive only to structural dynamics”, should have read: “The on-resonance intensity includes a charge order contribution (grey shaded region, Fig. 2b) that disappears on a timescale shorter than that of the off-resonance intensity, which is sensitive only to structural dynamics.”

References

  1. 1.

    Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    Article  CAS  Google Scholar 

  2. 2.

    Fink, J., Schierle, E., Weschke, E. & Geck, J. Resonant elastic soft x-ray scattering. Rep. Prog. Phys. 76, 056502 (2013).

    Article  CAS  Google Scholar 

  3. 3.

    Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004, 61 (2004).

    Article  Google Scholar 

  4. 4.

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  CAS  Google Scholar 

  5. 5.

    Graves, C. E. et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293–298 (2013).

    Article  CAS  Google Scholar 

  6. 6.

    Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  CAS  Google Scholar 

  7. 7.

    Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    Chen, F. et al. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3. Phys. Rev. B 94, 180104 (2016).

    Article  Google Scholar 

  9. 9.

    de Jong, S. et al. Speed limit of the insulator–metal transition in magnetite. Nat. Mater. 12, 882–886 (2013).

    Article  CAS  Google Scholar 

  10. 10.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  CAS  Google Scholar 

  11. 11.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  CAS  Google Scholar 

  12. 12.

    Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

    Article  CAS  Google Scholar 

  13. 13.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Wang, X. et al. Measurement of femtosecond electron pulse length and the temporal broadening due to space charge. Rev. Sci. Instrum. 80, 013902 (2009).

    Article  CAS  Google Scholar 

  15. 15.

    Shank, C. V. & Ippen, E. P. Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Appl. Phys. Lett. 24, 373–375 (1974).

    Article  CAS  Google Scholar 

  16. 16.

    Fork, R. L., Greene, B. I. & Shank, C. V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38, 671–672 (1981).

    Article  CAS  Google Scholar 

  17. 17.

    Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    Article  Google Scholar 

  18. 18.

    Knox, W. H. Femtosecond optical pulse amplification. IEEE J. Quantum Electron. 24, 388–397 (1988).

    Article  Google Scholar 

  19. 19.

    Murnane, M. M., Kapteyn, H. C., Rosen, M. D. & Falcone, R. W. Ultrafast X-ray pulses from laser-produced plasmas. Science 251, 531–536 (1991).

    Article  CAS  Google Scholar 

  20. 20.

    Rousse, A. et al. Efficient K α x-ray source from femtosecond laser-produced plasmas. Phys. Rev. E 50, 2200–2207 (1994).

    Article  CAS  Google Scholar 

  21. 21.

    Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).

    Article  CAS  Google Scholar 

  22. 22.

    Siders, C. W. et al. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342 (1999).

    Article  CAS  Google Scholar 

  23. 23.

    Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys. Rev. Lett. 87, 225701 (2001).

    Article  CAS  Google Scholar 

  24. 24.

    Rousse, A. et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65–68 (2001).

    Article  CAS  Google Scholar 

  25. 25.

    Rose-Petruck, C. et al. Picosecond-milliångstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310–312 (1999).

    Article  CAS  Google Scholar 

  26. 26.

    Cavalleri, A. et al. Anharmonic lattice dynamics in germanium measured with ultrafast X-ray diffraction. Phys. Rev. Lett. 85, 586–589 (2000).

    Article  CAS  Google Scholar 

  27. 27.

    Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003).

    Article  CAS  Google Scholar 

  28. 28.

    Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

    Article  CAS  Google Scholar 

  29. 29.

    Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials. Science 274, 236–238 (1996).

    Article  CAS  Google Scholar 

  30. 30.

    Leemans, W. P. et al. X-ray based subpicosecond electron bunch characterization using 90° Thomson scattering. Phys. Rev. Lett. 77, 4182–4185 (1996).

    Article  CAS  Google Scholar 

  31. 31.

    Chin, A. H. et al. Ultrafast structural dynamics in InSb probed by time-resolved X-ray diffraction. Phys. Rev. Lett. 83, 336–339 (1999).

    Article  CAS  Google Scholar 

  32. 32.

    Zholents, A. A. & Zolotorev, M. S. Femtosecond X-ray pulses of synchrotron radiation. Phys. Rev. Lett. 76, 912–915 (1996).

    Article  CAS  Google Scholar 

  33. 33.

    Schoenlein, R. W. et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000).

    Article  CAS  Google Scholar 

  34. 34.

    Cavalleri, A. et al. Tracking the motion of charges in a terahertz light field by femtosecond X-ray diffraction. Nature 442, 664–666 (2006).

    Article  CAS  Google Scholar 

  35. 35.

    Johnson, S. L. et al. Nanoscale depth-resolved coherent femtosecond motion in laser-excited bismuth. Phys. Rev. Lett. 100, 155501 (2008).

    Article  CAS  Google Scholar 

  36. 36.

    Cavalleri, A. et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 067405 (2005).

    Article  CAS  Google Scholar 

  37. 37.

    Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat. Mater. 6, 740–743 (2007).

    Article  CAS  Google Scholar 

  38. 38.

    Gaffney, K. J. et al. Observation of structural anisotropy and the onset of liquidlike motion during the nonthermal melting of InSb. Phys. Rev. Lett. 95, 125701 (2005).

    Article  CAS  Google Scholar 

  39. 39.

    Fritz, D. M. et al. Ultrafast bond softening in bismuth: mapping a solid’s interatomic potential with X-rays. Science 315, 633–636 (2007).

    Article  CAS  Google Scholar 

  40. 40.

    Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).

    Article  CAS  Google Scholar 

  41. 41.

    Landauer, R. Electrostatic considerations in BaTiO3 domain formation during polarization reversal. J. Appl. Phys. 28, 227–234 (1957).

    Article  CAS  Google Scholar 

  42. 42.

    Li, J. et al. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004).

    Article  CAS  Google Scholar 

  43. 43.

    Kenjiro, F. & Yasuo, C. Nanosecond switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3 using scanning nonlinear dielectric microscopy. Jpn J. Appl. Phys. 43, 2818 (2004).

    Article  CAS  Google Scholar 

  44. 44.

    Fahy, S. & Merlin, R. Reversal of ferroelectric domains by ultrashort optical pulses. Phys. Rev. Lett. 73, 1122–1125 (1994).

    Article  CAS  Google Scholar 

  45. 45.

    Brennan, C. J. & Nelson, K. A. Direct time-resolved measurement of anharmonic lattice vibrations in ferroelectric crystals. J. Chem. Phys. 107, 9691–9694 (1997).

    Article  CAS  Google Scholar 

  46. 46.

    Istomin, K., Kotaidis, V., Plech, A. & Kong, Q. Y. Dynamics of the laser-induced ferroelectric excitation in BaTiO3 studied by X-ray diffraction. Appl. Phys. Lett. 90, 022905 (2007).

    Article  CAS  Google Scholar 

  47. 47.

    Qi, T., Shin, Y. H., Yeh, K. L., Nelson, K. A. & Rappe, A. M. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys. Rev. Lett. 102, 247603 (2009).

    Article  CAS  Google Scholar 

  48. 48.

    Liu, H. D. et al. In situ observation of light-assisted domain reversal in lithium niobate crystals. Opt. Mater. Express 1, 1433–1438 (2011).

    Article  CAS  Google Scholar 

  49. 49.

    Zhi, Y. N., Liu, D. A., Qu, W. J., Luan, Z. & Liu, L. R. Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal. Appl. Phys. Lett. 90, 042904 (2007).

    Article  CAS  Google Scholar 

  50. 50.

    Ying, C. Y. et al. Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping. Opt. Express 18, 11508–11513 (2010).

    Article  CAS  Google Scholar 

  51. 51.

    Steigerwald, H., von Cube, F., Luedtke, F., Dierolf, V. & Buse, K. Influence of heat and UV light on the coercive field of lithium niobate crystals. Appl. Phys. B 101, 535–539 (2010).

    Article  CAS  Google Scholar 

  52. 52.

    Daranciang, D. et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108, 087601 (2012).

    Article  CAS  Google Scholar 

  53. 53.

    Lichtensteiger, C. et al. in Oxide Ultrathin Films (eds Pacchioni, G. & Valeri, S.) 265–230 (Wiley-VCH, Weinheim, Germany, 2011).

  54. 54.

    Grübel, S. et al. Ultrafast x-ray diffraction of a ferroelectric soft mode driven by broadband terahertz pulses. Preprint at arXiv, 1602.05435 (2016).

  55. 55.

    Subedi, A. Midinfrared-light-induced ferroelectricity in oxide paraelectrics via nonlinear phononics. Phys. Rev. B 95, 134113 (2017).

    Article  Google Scholar 

  56. 56.

    Pitaevskii, L. P. Electric forces in a transparent dispersive medium. J. Exp. Theor. Phys. 12, 1008–1013 (1961).

    Google Scholar 

  57. 57.

    Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).

    Article  CAS  Google Scholar 

  58. 58.

    van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965).

    Article  Google Scholar 

  59. 59.

    Beaurepaire, E., Merle, J., Daunois, A. & Bigot, J. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  60. 60.

    Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).

    Article  CAS  Google Scholar 

  61. 61.

    Lambert, C. H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  CAS  Google Scholar 

  62. 62.

    Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    Article  CAS  Google Scholar 

  63. 63.

    Gutt, C. et al. Single-pulse resonant magnetic scattering using a soft x-ray free-electron laser. Phys. Rev. B 81, 100401 (2010).

    Article  CAS  Google Scholar 

  64. 64.

    Pfau, B. et al. Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls. Nat. Commun. 3, 1100 (2012).

    Article  CAS  Google Scholar 

  65. 65.

    Stavrou, E., Sbiaa, R., Suzuki, T., Knappmann, S. & Röll, K. Magnetic anisotropy and spin reorientation effects in Gd/Fe and Gd/(FeCo) multilayers for high density magneto-optical recording. J. Appl. Phys. 87, 6899–6901 (2000).

    Article  CAS  Google Scholar 

  66. 66.

    Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    Article  CAS  Google Scholar 

  67. 67.

    Le Guyader, L. et al. Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures. Nat. Commun. 6, 5839 (2015).

    Article  CAS  Google Scholar 

  68. 68.

    Staub, U. Advanced resonant soft x-ray diffraction to study ordering phenomena in magnetic materials. J. Phys. Conf. Ser. 211, 012003 (2010).

    Article  CAS  Google Scholar 

  69. 69.

    Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).

    Article  CAS  Google Scholar 

  70. 70.

    Holldack, K. et al. Ultrafast dynamics of antiferromagnetic order studied by femtosecond resonant soft x-ray diffraction. Appl. Phys. Lett. 97, 062502 (2010).

    Article  CAS  Google Scholar 

  71. 71.

    Rettig, L. et al. Itinerant and localized magnetization dynamics in antiferromagnetic Ho. Phys. Rev. Lett. 116, 257202 (2016).

    Article  CAS  Google Scholar 

  72. 72.

    Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  CAS  Google Scholar 

  73. 73.

    Wang, T. et al. Femtosecond single-shot imaging of nanoscale ferromagnetic order in Co/Pd multilayers using resonant x-ray holography. Phys. Rev. Lett. 108, 267403 (2012).

    Article  CAS  Google Scholar 

  74. 74.

    von Korff Schmising, C. et al. Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett. 112, 217203 (2014).

    Article  CAS  Google Scholar 

  75. 75.

    Seaberg, M. H. et al. Nanosecond X-ray photon correlation spectroscopy on magnetic skyrmions. Phys. Rev. Lett. 119, 067403 (2017).

    Article  CAS  Google Scholar 

  76. 76.

    Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939).

    Article  CAS  Google Scholar 

  77. 77.

    Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012).

    Article  CAS  Google Scholar 

  78. 78.

    Zimmermann, M.v. et al. Interplay between charge, orbital, and magnetic order in Pr1−xCaxMnO3. Phys. Rev. Lett. 83, 4872–4875 (1999).

    Article  Google Scholar 

  79. 79.

    Staub, U. et al. Direct observation of charge order in an epitaxial NdNiO3 film. Phys. Rev. Lett. 88, 126402 (2002).

    Article  CAS  Google Scholar 

  80. 80.

    Beaud, P. et al. A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mater. 13, 923–927 (2014).

    Article  CAS  Google Scholar 

  81. 81.

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  CAS  Google Scholar 

  82. 82.

    Esposito, V. et al. Nonlinear electron-phonon coupling in doped manganites. Phys. Rev. Lett. 118, 247601 (2017).

    Article  CAS  Google Scholar 

  83. 83.

    Sternlieb, B. J. et al. Charge and magnetic order in La0.5Sr1.5MnO4. Phys. Rev. Lett. 76, 2169–2172 (1996).

    Article  CAS  Google Scholar 

  84. 84.

    Tobey, R. I. et al. Evolution of three-dimensional correlations during the photoinduced melting of antiferromagnetic order in La0.5Sr1.5MnO4. Phys. Rev. B 86, 064425 (2012).

    Article  CAS  Google Scholar 

  85. 85.

    Ehrke, H. et al. Photoinduced melting of antiferromagnetic order in La0.5Sr1.5MnO4 measured using ultrafast resonant soft x-ray diffraction. Phys. Rev. Lett. 106, 217401 (2011).

    Article  CAS  Google Scholar 

  86. 86.

    Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104 (2011).

    Article  CAS  Google Scholar 

  87. 87.

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  CAS  Google Scholar 

  88. 88.

    Först, M. et al. Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction. Solid State Commun. 169, 24–27 (2013).

    Article  CAS  Google Scholar 

  89. 89.

    Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79, 064503 (2016).

    Article  CAS  Google Scholar 

  90. 90.

    Yoshizawa, H. et al. Stripe order at low temperatures in La2−xSrxNiO4 with 0.289 x 0.5. Phys. Rev. B 61, R854–R857 (2000).

    Article  CAS  Google Scholar 

  91. 91.

    Schussler-Langeheine, C. et al. Spectroscopy of stripe order in La1.8Sr0.2NiO4 using resonant soft x-ray diffraction. Phys. Rev. Lett. 95, 156402 (2005).

    Article  CAS  Google Scholar 

  92. 92.

    Lee, W. S. et al. Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate. Nat. Commun. 3, 838 (2012).

    Article  CAS  Google Scholar 

  93. 93.

    Chuang, Y. D. et al. Real-time manifestation of strongly coupled spin and charge order parameters in stripe-ordered La1.75Sr0.25NiO4 nickelate crystals using time-resolved resonant x-ray diffraction. Phys. Rev. Lett. 110, 127404 (2013).

    Article  CAS  Google Scholar 

  94. 94.

    Lee, W. S. et al. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering. Phys. Rev. B 95, 121105 (2017).

    Article  Google Scholar 

  95. 95.

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  96. 96.

    Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  97. 97.

    Spaldin, N. A. Multiferroics: past, present, and future. MRS Bull. 42, 385–390 (2017).

    Article  Google Scholar 

  98. 98.

    Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    Article  CAS  Google Scholar 

  99. 99.

    Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

    Article  CAS  Google Scholar 

  100. 100.

    Yang, B. X., Thurston, T. R., Tranquada, J. M. & Shirane, G. Magnetic neutron scattering study of single-crystal cupric oxide. Phys. Rev. B 39, 4343–4349 (1989).

    Article  CAS  Google Scholar 

  101. 101.

    Langner, M. C. et al. Nonlinear ultrafast spin scattering in the skyrmion phase of Cu2OSeO3. Phys. Rev. Lett. 119, 107204 (2017).

    Article  CAS  Google Scholar 

  102. 102.

    Okamura, Y., Kagawa, F., Seki, S. & Tokura, Y. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound. Nat. Commun. 7, 12669 (2016).

    Article  CAS  Google Scholar 

  103. 103.

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  CAS  Google Scholar 

  104. 104.

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  105. 105.

    Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    Article  CAS  Google Scholar 

  106. 106.

    Först, M. et al. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. Nat. Mater. 14, 883–888 (2015).

    Article  CAS  Google Scholar 

  107. 107.

    Först, M. et al. Multiple supersonic phase fronts launched at a complex-oxide heterointerface. Phys. Rev. Lett. 118, 027401 (2017).

    Article  Google Scholar 

  108. 108.

    Grüner, G. Density Waves in Solids. (Addison-Wesley, Reading, MA, 1994).

    Google Scholar 

  109. 109.

    Peierls, R. E. Quantum Theory of Solids. (Oxford Univ. Press, Oxford, UK, 1955).

    Google Scholar 

  110. 110.

    Perfetti, L. et al. Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition. Phys. Rev. Lett. 97, 067402 (2006).

    Article  CAS  Google Scholar 

  111. 111.

    Dean, N. et al. Polaronic conductivity in the photoinduced phase of 1T-TaS2. Phys. Rev. Lett. 106, 016401 (2011).

    Article  CAS  Google Scholar 

  112. 112.

    Petersen, J. C. et al. Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 177402 (2011).

    Article  CAS  Google Scholar 

  113. 113.

    Eichberger, M. et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010).

    Article  CAS  Google Scholar 

  114. 114.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  CAS  Google Scholar 

  115. 115.

    Schäfer, H., Kabanov, V. V. & Demsar, J. Collective modes in quasi-one-dimensional charge-density wave systems probed by femtosecond time-resolved optical studies. Phys. Rev. B 89, 045106 (2014).

    Article  CAS  Google Scholar 

  116. 116.

    Schäfer, H., Kabanov, V. V., Beyer, M., Biljakovic, K. & Demsar, J. Disentanglement of the electronic and lattice parts of the order parameter in a 1D charge density wave system probed by femtosecond spectroscopy. Phys. Rev. Lett. 105, 066402 (2010).

    Article  CAS  Google Scholar 

  117. 117.

    Liu, H. Y. et al. Possible observation of parametrically amplified coherent phasons in K0.3MoO3 using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. B 88, 045104 (2013).

    Article  CAS  Google Scholar 

  118. 118.

    Tomeljak, A. et al. Dynamics of photoinduced charge-density-wave to metal phase transition in K0.3MoO3. Phys. Rev. Lett. 102, 066404 (2009).

    Article  CAS  Google Scholar 

  119. 119.

    Huber, T. et al. Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition. Phys. Rev. Lett. 113, 026401 (2014).

    Article  CAS  Google Scholar 

  120. 120.

    Mankowsky, R. et al. Dynamical stability limit for the charge density wave in K0.3MoO3. Phys. Rev. Lett. 118, 116402 (2017).

    Article  CAS  Google Scholar 

  121. 121.

    Huber, J. G., Liverman, W. J., Xu, Y. & Moodenbaugh, A. R. Superconductivity under high pressure of YBa2(Cu1−xMx)3O7−δ M = Fe, Co, Al, Cr, Ni, and Zn. Phys. Rev. B 41, 8757–8761 (1990).

    Article  CAS  Google Scholar 

  122. 122.

    Schirber, J. E., Ginley, D. S., Venturini, E. L. & Morosin, B. Pressure dependence of the superconducting transition temperature in the 94-K superconductor YBa2Cu3O7. Phys. Rev. B 35, 8709–8710 (1987).

    Article  CAS  Google Scholar 

  123. 123.

    Bucher, B., Karpinski, J., Kaldis, E. & Wachter, P. Pressure dependence of T c and anisotropic features in the family Y2Ba4Cu6+nO14+n (n = 0,1,2). J. Less-Common Met. 164, 20–30 (1990).

    Article  Google Scholar 

  124. 124.

    Cyr-Choinière, O. et al. Suppression of charge order by pressure in the cuprate superconductor YBa2Cu3Oy: restoring the full superconducting dome. Preprint at arXiv, 1503.02033 (2015).

    Google Scholar 

  125. 125.

    Kaiser, S. et al. Optically induced coherent transport far above T c in underdoped YBa2Cu3O6+δ. Phys. Rev. B 89, 184516 (2014).

    Article  CAS  Google Scholar 

  126. 126.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    Article  CAS  Google Scholar 

  127. 127.

    Mankowsky, R. et al. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48. Struct. Dyn. 4, 044007 (2017).

    Article  CAS  Google Scholar 

  128. 128.

    Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O(6+x). Science 337, 821–825 (2012).

    Article  CAS  Google Scholar 

  129. 129.

    Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).

    Article  CAS  Google Scholar 

  130. 130.

    Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  Google Scholar 

  131. 131.

    Hücker, M. et al. Stripe order in superconducting La2−xBaxCuO4 (0.095 ≤ x ≤ 0.155). Phys. Rev. B 83, 104506 (2011).

    Article  CAS  Google Scholar 

  132. 132.

    Först, M. et al. Melting of charge stripes in vibrationally driven La1.875Ba0.125CuO4: assessing the respective roles of electronic and lattice order in frustrated superconductors. Phys. Rev. Lett. 112, 157002 (2014).

    Article  CAS  Google Scholar 

  133. 133.

    Khanna, V. et al. Restoring interlayer Josephson coupling in La1.885Ba0.115CuO4 by charge transfer melting of stripe order. Phys. Rev. B 93, 224522 (2016).

    Article  CAS  Google Scholar 

  134. 134.

    Först, M. et al. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YBa2Cu3O6.6. Phys. Rev. B 90, 184514 (2014).

    Article  CAS  Google Scholar 

  135. 135.

    Yang, L. X. et al. Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons. Phys. Rev. Lett. 112, 207001 (2014).

    Article  Google Scholar 

  136. 136.

    Gerber, S. et al. Direct characterization of photoinduced lattice dynamics in BaFe2As2. Nat. Commun. 6, 7377 (2015).

    Article  CAS  Google Scholar 

  137. 137.

    Rettig, L. et al. Ultrafast structural dynamics of the Fe-pnictide parent compound BaFe2As2. Phys. Rev. Lett. 114, 067402 (2015).

    Article  CAS  Google Scholar 

  138. 138.

    Mandal, S., Cohen, R. E. & Haule, K. Strong pressure-dependent electron-phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).

    Article  CAS  Google Scholar 

  139. 139.

    Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser. Science 357, 71–75 (2017).

    Article  CAS  Google Scholar 

  140. 140.

    Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    Article  CAS  Google Scholar 

  141. 141.

    Ghiringhelli, G. et al. NiO as a test case for high resolution resonant inelastic soft x-ray scattering. J. Phys. Condens. Matter 17, 5397–5412 (2005).

    Article  CAS  Google Scholar 

  142. 142.

    Ishii, H. et al. Resonant soft X-ray emission spectroscopy of NiO across the Ni L 2,3 thresholds. J. Phys. Soc. Jpn 70, 1813–1816 (2001).

    Article  CAS  Google Scholar 

  143. 143.

    Ishii, K. et al. Momentum-resolved electronic excitations in the Mott insulator Sr2IrO4 studied by resonant inelastic x-ray scattering. Phys. Rev. B 83, 115121 (2011).

    Article  CAS  Google Scholar 

  144. 144.

    Ghiringhelli, G. et al. Observation of two nondispersive magnetic excitations in NiO by resonant inelastic soft-X-ray scattering. Phys. Rev. Lett. 102, 027401 (2009).

    Article  CAS  Google Scholar 

  145. 145.

    Yavas, H. et al. Observation of phonons with resonant inelastic x-ray scattering. J. Phys. Condens. Matter 22, 485601 (2010).

    Article  CAS  Google Scholar 

  146. 146.

    Braicovich, L. et al. Magnetic excitations and phase separation in the underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering. Phys. Rev. Lett. 104, 077002 (2010).

    Article  CAS  Google Scholar 

  147. 147.

    Dean, M. P. M. et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4. Nat. Mater. 15, 601–605 (2016).

    Article  CAS  Google Scholar 

  148. 148.

    Trigo, M. et al. Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nat. Phys. 9, 790–794 (2013).

    Article  CAS  Google Scholar 

  149. 149.

    Jiang, M. P. et al. The origin of incipient ferroelectricity in lead telluride. Nat. Commun. 7, 12291 (2016).

    Article  CAS  Google Scholar 

  150. 150.

    Teitelbaum, S. W. et al. Direct measurement of anharmonic decay channels of a coherent phonon. Preprint at arXiv 1710, 02207 (2017).

    Google Scholar 

  151. 151.

    Harmand, M. et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photonics 7, 215–218 (2013).

    Article  CAS  Google Scholar 

  152. 152.

    Zhu, D. et al. A single-shot transmissive spectrometer for hard x-ray free electron lasers. Appl. Phys. Lett. 101, 034103 (2012).

    Article  CAS  Google Scholar 

  153. 153.

    Hartmann, N. et al. Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers. Nat. Photonics 8, 706–709 (2014).

    Article  CAS  Google Scholar 

  154. 154.

    Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699–704 (2012).

    Article  CAS  Google Scholar 

  155. 155.

    Amann, J. et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 6, 693–698 (2012).

    Article  CAS  Google Scholar 

  156. 156.

    Ratner, D. et al. Experimental demonstration of a soft X-ray self-seeded free-electron laser. Phys. Rev. Lett. 114, 054801 (2015).

    Article  CAS  Google Scholar 

  157. 157.

    Grguraš, I. et al. Ultrafast X-ray pulse characterization at free-electron lasers. Nat. Photonics 6, 852–857 (2012).

    Article  CAS  Google Scholar 

  158. 158.

    Bressler, C. et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(ii) complex. Science 323, 489–492 (2009).

    Article  CAS  Google Scholar 

  159. 159.

    Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant No. 319286 (Q-MAC) and acknowledge support from the Deutsche Forschungsgemeinschaft through the Hamburg Centre for Ultrafast Imaging — Structure, Dynamics and Control of Matter at the Atomic Scale excellence cluster and the priority programme SFB925. M.B. acknowledges financial support from the Swiss National Science Foundation through an Early Postdoc Mobility Grant (P2BSP2_165352).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this article.

Corresponding author

Correspondence to Andrea Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buzzi, M., Först, M., Mankowsky, R. et al. Probing dynamics in quantum materials with femtosecond X-rays. Nat Rev Mater 3, 299–311 (2018). https://doi.org/10.1038/s41578-018-0024-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing