Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biomedical applications of soft robotics

Abstract

Soft robotics enables the design of soft machines and devices at different scales. The compliance and mechanical properties of soft robots make them especially interesting for medical applications. Depending on the level of interaction with humans, different levels of biocompatibility and biomimicry are required for soft materials used in robots. In this Review, we investigate soft robots for biomedical applications, including soft tools for surgery, diagnosis and drug delivery, wearable and assistive devices, prostheses, artificial organs and tissue-mimicking active simulators for training and biomechanical studies. We highlight challenges regarding durability and reliability, and examine traditional and novel soft and active materials as well as different actuation strategies. Finally, we discuss future approaches and applications in the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biomedical soft robots from a materials perspective.
Fig. 2: Soft robots for surgery and drug delivery.
Fig. 3: Wearable soft robots.
Fig. 4: Soft robots as prostheses.

References

  1. 1.

    Wang, L. & Iida, F. Deformation in soft-matter robotics: a categorization and quantitative characterization. IEEE Robot. Autom. Mag. 22, 125–139 (2015).

    Article  Google Scholar 

  2. 2.

    Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

    Article  Google Scholar 

  3. 3.

    Cianchetti, M. & Laschi, C. Pleasant to the Touch: By emulating nature, scientists hope to find innovative new uses for soft robotics in health-care technology. IEEE Pulse 7, 34–37 (2016).

    Article  Google Scholar 

  4. 4.

    McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    Article  Google Scholar 

  5. 5.

    Manti, M., Cacucciolo, V. & Cianchetti, M. Stiffening in soft robotics: a review of the state of the art. IEEE Robot. Autom. Mag. 23, 93–106 (2016).

    Article  Google Scholar 

  6. 6.

    Pfeifer, R., Lungarella, M. & Iida, F. The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55, 76 (2012).

    Article  Google Scholar 

  7. 7.

    Rané, A., Tan, G. Y. & Tewari, A. K. Laparo-endoscopic single-site surgery in urology: is robotics the missing link? BJU Int. 104, 1041–1043 (2009).

    Article  Google Scholar 

  8. 8.

    Vitiello, V., Lee, S.-L., Cundy, T. P. & Yang, G.-Z. Emerging robotic platforms for minimally invasive surgery. IEEE Rev. Biomed. Eng. 6, 111–126 (2013).

    Article  Google Scholar 

  9. 9.

    Vyas, L., Aquino, D., Kuo, C.-H., Dai, J. S. & Dasgupta, P. Flexible robotics. BJU Int. 107, 187–189 (2011).

    Article  Google Scholar 

  10. 10.

    Loeve, A., Breedveld, P. & Dankelman, J. Scopes too flexible…and too stiff. IEEE Pulse 1, 26–41 (2010).

    Article  Google Scholar 

  11. 11.

    Le, H. M., Do, T. N. & Phee, S. J. A survey on actuators-driven surgical robots. Sens. Actuators A Phys. 247, 323–354 (2016).

    Article  Google Scholar 

  12. 12.

    Ikuta, K., Tsukamoto, M. & Hirose, S. in Proceedings. 1988 IEEE International Conference on Robotics and Automation 427–430 (Philadelphia, PA, USA, 1988).

  13. 13.

    Menciassi, A. et al. Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract. J. Micromech. Microeng. 15, 2045–2055 (2005).

    Article  Google Scholar 

  14. 14.

    Robinson, G. & Davies, J. B. C. in Proceedings 1999 IEEE International Conference on Robotics and Automation 2849–2854 (Detroit, MI, USA, 1999).

  15. 15.

    Burgner-Kahrs, J., Caleb Rucker, D. & Choset, H. Continuum robots for medical applications: a survey. IEEE Trans. Rob. 31, 1261–1280 (2015).

    Article  Google Scholar 

  16. 16.

    Polygerinos, P. et al. Soft Robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19, 1700016 (2017).

    Article  Google Scholar 

  17. 17.

    Phee, L. et al. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. Biomed. Eng. 49, 613–616 (2002).

    Article  Google Scholar 

  18. 18.

    Bertetto, A. M. et al. A novel fluidic bellows manipulator. J. Robot. Mechatron. 16, 604–612 (2004).

    Article  Google Scholar 

  19. 19.

    Volder, M. D. et al. Production and characterization of a hydraulic microactuator. J. Micromech. Microeng. 15, S15–S21 (2005).

    Article  Google Scholar 

  20. 20.

    Howell, L. L., Magleby, S. P. & Olsen, B. M. Handbook of Compliant Mechanisms. (John Wiley & Sons, 2013).

  21. 21.

    De Greef, A., Lambert, P. & Delchambre, A. Towards flexible medical instruments: review of flexible fluidic actuators. Precis. Eng. 33, 311–321 (2009).

    Article  Google Scholar 

  22. 22.

    Comber, D. B., Slightam, J. E., Gervasi, V. R., Neimat, J. S. & Barth, E. J. Design, additive manufacture, and control of a pneumatic MR-compatible needle driver. IEEE Trans. Rob. 32, 138–149 (2016).

    Article  Google Scholar 

  23. 23.

    Suzumori, K. Elastic materials producing compliant robots. Rob. Auton. Syst. 18, 135–140 (1996).

    Article  Google Scholar 

  24. 24.

    Suzumori, K., Koga, A., Kondo, F. & Haneda, R. Integrated flexible microactuator systems. Robotica 14, 493 (1996).

    Article  Google Scholar 

  25. 25.

    Ranzani, T., Gerboni, G., Cianchetti, M. & Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10, 035008 (2015).

    Article  Google Scholar 

  26. 26.

    Arezzo, A. et al. Total mesorectal excision using a soft and flexible robotic arm: a feasibility study in cadaver models. Surg. Endosc. 31, 264–273 (2016).

    Article  Google Scholar 

  27. 27.

    Konishi, S., Kawai, F. & Cusin, P. Thin flexible end-effector using pneumatic balloon actuator. Sens. Actuators A Phys. 89, 28–35 (2001).

    Article  Google Scholar 

  28. 28.

    Noritsugu, T. et al. Development of pneumatic rotary soft actuator made of silicone rubber. J. Robot. Mechatron. 13, 17–22 (2001).

    Article  Google Scholar 

  29. 29.

    Yang, Q. et al. in IEEE Conference on Robotics, Automation and Mechatronics, 2004 https://doi.org/10.1109/RAMECH.2004.1438950 (Singapore, 2004).

  30. 30.

    Suzumori, K., Iikura, S. & Tanaka, H. in [1991] Proceedings. IEEE Micro Electro Mechanical Systems 204–209 (Nara, Japan, 1991).

  31. 31.

    Low, J.-H., Delgado-Martinez, I. & Yeow, C.-H. Customizable soft pneumatic chamber–gripper devices for delicate surgical manipulation. J. Med. Device. 8, 044504 (2014).

    Article  Google Scholar 

  32. 32.

    Gerboni, G. et al. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper. Smart Mater. Struct. 25, 105025 (2016).

    Article  Google Scholar 

  33. 33.

    Ranzani, T., Cianchetti, M., Gerboni, G., De Falco, I. & Menciassi, A. A. Soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans. Rob. 32, 187–200 (2016).

    Article  Google Scholar 

  34. 34.

    Lazeroms, M. et al. A hydraulic forceps with force-feedback for use in minimally invasive surgery. Mechatronics 6, 437–446 (1996).

    Article  Google Scholar 

  35. 35.

    Gerboni, G. et al. Modular soft mechatronic manipulator for minimally invasive surgery (MIS): overall architecture and development of a fully integrated soft module. Meccanica 50, 2865–2878 (2015).

    Article  Google Scholar 

  36. 36.

    Moers, A. J. M., De Volder, M. F. L. & Reynaerts, D. Integrated high pressure microhydraulic actuation and control for surgical instruments. Biomed. Microdevices 14, 699–708 (2012).

    Article  Google Scholar 

  37. 37.

    Ikuta, K., Ichikawa, H., Suzuki, K. & Yamamoto, T. in 2003 IEEE International Conference on Robotics and Automation https://doi.org/10.1109/robot.2003.1241991 (Taipei, Taiwan, 2004)

  38. 38.

    Ruzzu, A., Bade, K., Fahrenberg, J. & Maas, D. Positioning system for catheter tips based on an active microvalve system. J. Micromech. Microeng. 8, 161–164 (1998).

    Article  Google Scholar 

  39. 39.

    Sun, Y., Song, S., Liang, X. & Ren, H. A. Miniature soft robotic manipulator based on novel fabrication methods. IEEE Robot. Autom. Lett. 1, 617–623 (2016).

    Article  Google Scholar 

  40. 40.

    Gorissen, B., Vincentie, W., Al-Bender, F., Reynaerts, D. & De Volder, M. Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion. J. Micromech. Microeng. 23, 045012 (2013).

    Article  Google Scholar 

  41. 41.

    Diodato, A. et al. Soft robotic manipulator for improving dexterity in minimally invasive surgery. Surg. Innov. 25, 69–76 (2018).

    Article  Google Scholar 

  42. 42.

    Karki, S. et al. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 11, 559–574 (2016).

    Article  Google Scholar 

  43. 43.

    Borodkin, S. & Tucker, F. E. Drug release from hydroxypropyl cellulose-polyvinyl acetate films. J. Pharm. Sci. 63, 1359–1364 (1974).

    Article  Google Scholar 

  44. 44.

    Fusco, S. et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26, 952–957 (2014).

    Article  Google Scholar 

  45. 45.

    Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7, 3398–3405 (2015).

    Article  Google Scholar 

  46. 46.

    Ricotti, L. et al. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci. Robot. 2, eaaq0495 (2017).

    Article  Google Scholar 

  47. 47.

    Tefertiller, C., Pharo, B., Evans, N. & Winchester, P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J. Rehabil. Res. Dev. 48, 387–416 (2011).

    Article  Google Scholar 

  48. 48.

    Herr, H. M. & Kornbluh, R. D. in Proc. SPIE 5385, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD) https://doi.org/10.1117/12.544510 (San Diego, CA, USA, 2004).

  49. 49.

    Gordon, K. E., Sawicki, G. S. & Ferris, D. P. Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis. J. Biomech. 39, 1832–1841 (2006).

    Article  Google Scholar 

  50. 50.

    do Nascimento, B. G., Vimieiro, C. B. S., Nagem, D. A. P. & Pinotti, M. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal. Artif. Organs 32, 317–322 (2008).

    Article  Google Scholar 

  51. 51.

    Kawamura, T., Takanaka, K., Nakamura, T. & Osumi, H. in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) https://doi.org/10.1109/ICORR.2013.6650350 (Seattle, WA, USA, 2013).

  52. 52.

    Pittaccio, S. et al. SHADE: a shape-memory-activated device promoting ankle dorsiflexion. J. Mater. Eng. Perform. 18, 824–830 (2009).

    Article  Google Scholar 

  53. 53.

    Pittaccio, S. & Viscuso, S. An EMG-controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke. J. Mater. Eng. Perform. 20, 666–670 (2011).

    Article  Google Scholar 

  54. 54.

    Stirling, L. et al. Applicability of shape memory alloy wire for an active, soft orthotic. J. Mater. Eng. Perform. 20, 658–662 (2011).

    Article  Google Scholar 

  55. 55.

    Park, Y.-L. et al. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir. Biomim. 9, 016007 (2014).

    Article  Google Scholar 

  56. 56.

    Wehner, M. et al. in 2013 IEEE International Conference on Robotics and Automation 3362–3369 (Karlsruhe, Germany, 2013).

  57. 57.

    Asbeck, A. T., De Rossi, S. M. M., Holt, K. G. & Walsh, C. J. A biologically inspired soft exosuit for walking assistance. Int. J. Rob. Res. 34, 744–762 (2015).

    Article  Google Scholar 

  58. 58.

    Awad, L. N. et al. A soft robotic exosuit improves walking in patients after stroke. Sci. Transl Med. 9, eaai9084 (2017).

    Article  Google Scholar 

  59. 59.

    Mengüç, Y. et al. Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 33, 1748–1764 (2014).

    Article  Google Scholar 

  60. 60.

    Tsagarakis, N. G. & Caldwell, D. G. Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Autonom. Robots 15, 21–33 (2003).

    Article  Google Scholar 

  61. 61.

    Villoslada, A., Flores, A., Copaci, D., Blanco, D. & Moreno, L. High-displacement flexible shape memory alloy actuator for soft wearable robots. Rob. Auton. Syst. 73, 91–101 (2015).

    Article  Google Scholar 

  62. 62.

    Copaci, D., Cano, E., Moreno, L. & Blanco, D. New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators. Appl. Bion. Biomech. 2017, 1605101 (2017).

    Google Scholar 

  63. 63.

    Galiana, I., Hammond, F. L., Howe, R. D. & Popovic, M. B. in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 317–322 (Vilamoura, Portugal, 2012).

  64. 64.

    Natividad, R. F. & Yeow, C. H. in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) 989–993 (Singapore, 2016).

  65. 65.

    Kim, D. H., Heo, S.-H. & Park, H.-S. in 2017 International Conference on Rehabilitation Robotics (ICORR) 1326–1330 (London, UK, 2017).

  66. 66.

    Maeder-York, P. et al. Biologically inspired soft robot for thumb rehabilitation. J. Med. Device. 8, 020934 (2014).

    Article  Google Scholar 

  67. 67.

    Carpi, F., Mannini, A. & De Rossi, D. Proc. SPIE 6927, Electroactive Polymer Actuators and Devices (EAPAD) 2008 https://doi.org/10.1117/12.774644 (San Diego, CA, USA, 2008).

  68. 68.

    Delph, M. A. et al. in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) https://doi.org/10.1109/ICORR.2013.6650426 (Seattle, WA, USA, 2013).

  69. 69.

    In, H., Kang, B. B., Sin, M. & Cho, K.-J. Exo-Glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot. Autom. Mag. 22, 97–105 (2015).

    Article  Google Scholar 

  70. 70.

    Kang, B. B. et al. in 2016 IEEE International Conference on Robotics and Automation (ICRA) 3750–3755 (Stockholm, Sweden, 2016).

  71. 71.

    Connelly, L. et al. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 551–559 (2010).

    Article  Google Scholar 

  72. 72.

    Guo, S. et al. in 2015 IEEE International Conference on Mechatronics and Automation (ICMA) 2197–2202 (Beijing, China, 2015).

  73. 73.

    Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. & Walsh, C. J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015).

    Article  Google Scholar 

  74. 74.

    Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1890–1895 (2011).

    Article  Google Scholar 

  75. 75.

    Yeo, J. C. et al. Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv. Mater. Technol. 1, 1600018 (2016).

    Article  Google Scholar 

  76. 76.

    Yap, H. K., Lim, J. H., Nasrallah, F. & Yeow, C.-H. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front. Neurosci. 11, 547 (2017).

    Article  Google Scholar 

  77. 77.

    Manto, M. et al. Dynamically responsive intervention for tremor suppression. IEEE Eng. Med. Biol. Mag. 22, 120–132 (2003).

    Article  Google Scholar 

  78. 78.

    Ansari, Y. et al. Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int. J. Adv. Rob. Syst. 14, 172988141668713 (2017).

    Article  Google Scholar 

  79. 79.

    Pfeifer, R. & Bongard, J. How the Body Shapes the Way We Think: A New View of Intelligence. (MIT Press, 2006).

  80. 80.

    Deimel, R. & Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Rob. Res. 35, 161–185 (2015).

    Article  Google Scholar 

  81. 81.

    Galloway, K. C. et al. Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3, 23–33 (2016).

    Article  Google Scholar 

  82. 82.

    Mutlu, R., Alici, G., in het Panhuis, P. & Spinks, G. M. 3D printed flexure hinges for soft monolithic prosthetic fingers. Soft Robot. 3, 120–133 (2016).

    Article  Google Scholar 

  83. 83.

    Thompson-Bean, E., Das, R. & McDaid, A. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study. Bioinspir. Biomim. 11, 066005 (2016).

    Article  Google Scholar 

  84. 84.

    Cheng, N. et al. Prosthetic jamming terminal device: a case study of untethered soft robotics. Soft Robot. 3, 205–212 (2016).

    Article  Google Scholar 

  85. 85.

    Ogawa, A., Obinata, G., Hase, K., Dutta, A. & Nakagawa, M. in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 330–333 (Vancouver, BC, Canada, 2008).

  86. 86.

    Paterno, L., Ibrahimi, M., Gruppioni, E., Menciassi, A. & Ricotti, L. Sockets for limb prostheses: a review of existing technologies and open challenges. IEEE Trans. Biomed. Engineer. https://doi.org/10.1109/TBME.2017.2775100 (2018).

  87. 87.

    Roche, E. T. et al. A bioinspired soft actuated material. Adv. Mater. 26, 1200–1206 (2014).

    Article  Google Scholar 

  88. 88.

    Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl Med. 9, eaaf3925 (2017).

    Article  Google Scholar 

  89. 89.

    Payne, C. J. et al. An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot. 4, 241–250 (2017).

    Google Scholar 

  90. 90.

    Horvath, M. A. et al. An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann. Biomed. Eng. 45, 2222–2233 (2017).

    Article  Google Scholar 

  91. 91.

    Cohrs, N. H. et al. A soft total artificial heart-first concept evaluation on a hybrid mock circulation. Artif. Organs 41, 948–958 (2017).

    Article  Google Scholar 

  92. 92.

    Schumacher, C. M., Loepfe, M., Fuhrer, R., Grass, R. N. & Stark, W. J. 3D printed lost-wax casted soft silicone monoblocks enable heart-inspired pumping by internal combustion. RSC Adv. 4, 16039–16042 (2014).

    Article  Google Scholar 

  93. 93.

    Mac Murray, B. C. et al. Poroelastic foams for simple fabrication of complex soft robots. Adv. Mater. 27, 6334–6340 (2015).

    Article  Google Scholar 

  94. 94.

    Irwin, D. E., Kopp, Z. S., Agatep, B., Milsom, I. & Abrams, P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int. 108, 1132–1138 (2011).

    Article  Google Scholar 

  95. 95.

    Chonan, S. et al. Development of an artificial urethral valve using SMA actuators. Smart Mater. Struct. 6, 410–414 (1997).

    Article  Google Scholar 

  96. 96.

    Weiss, F. M., Deyhle, H., Kovacs, G. & Müller, B. in Proc. SPIE 8340, Electroactive Polymer Actuators and Devices (EAPAD) 2012 https://doi.org/10.1117/12.914649 (San Diego, CA, USA, 2012).

  97. 97.

    Hached, S. et al. Novel, wirelessly controlled, and adaptive artificial urinary sphincter. IEEE/ASME Trans. Mechatron. 20, 3040–3052 (2015).

    Article  Google Scholar 

  98. 98.

    Lamraoui, H. et al. Development of a novel artificial urinary sphincter: a versatile automated device. IEEE/ASME Trans. Mechatron. 15, 916–924 (2010).

    Google Scholar 

  99. 99.

    Baldoli, I. et al. A novel simulator for mechanical ventilation in newborns: MEchatronic REspiratory System SImulator for Neonatal Applications. Proc. Inst. Mech. Eng. H 229, 581–591 (2015).

    Article  Google Scholar 

  100. 100.

    Kim, S., Kim, P., Park, C.-Y. & Choi, S.-B. A new tactile device using magneto-rheological sponge cells for medical applications: experimental investigation. Sens. Actuators A Phys. 239, 61–69 (2016).

    Article  Google Scholar 

  101. 101.

    Someya, Y. et al. in 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS) https://doi.org/10.1109/MHS.2016.7824208 (Nagoya, Japan, 2016).

  102. 102.

    Manti, M., Cianchetti, M., Nacci, A., Ursino, F. & Laschi, C. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3623–3626 (2015).

  103. 103.

    Zhu, M., Xu, W. & Cheng, L. K. Esophageal peristaltic control of a soft-bodied swallowing robot by the central pattern generator. IEEE/ASME Trans. Mechatron. 22, 91–98 (2017).

    Article  Google Scholar 

  104. 104.

    Lu, X., Xu, W. & Li, X. A. Soft robotic tongue — mechatronic design and surface reconstruction. IEEE/ASME Trans. Mechatron. 22, 2102–2110 (2017).

    Article  Google Scholar 

  105. 105.

    Wehner, M. et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot. 1, 263–274 (2014).

    Article  Google Scholar 

  106. 106.

    Roseman, J. M. et al. Hybrid integrated biological–solid-state system powered with adenosine triphosphate. Nat. Commun. 6, 10070 (2015).

    Article  Google Scholar 

  107. 107.

    Menciassi, A. Swell findings in hydrogels. N. Engl. J. Med. 378, 864–865 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Commission through the Hybrid Heart (#767195) and I-SUPPORT (#643666) projects.

Author information

Affiliations

Authors

Contributions

C.L. and M.C. conceived the topic of the Review. M.C. analysed aspects related to prostheses, wearable devices and artificial organs. C.L. and M.C. analysed aspects related to assistive robots and body-part simulators. A.M. and P.D. analysed aspects related to surgery and drug delivery. All authors equally contributed to the writing and revising of the paper. All authors contributed to the discussion to draw conclusions and perspectives.

Corresponding author

Correspondence to Matteo Cianchetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Intiutive Surgical: http://www.intuitivesurgical.com/ Ovesco: http://www.ovesco.com The Lee Company: http://www.theleeco.com/ Soft Robotics: https://www.softroboticsinc.com/ HybridHeart: http://www.hybridheart.eu/ BR Biomedical Pvt Ltd: http://www.brbiomedicals.com The Bionic Humanoid: http://www.jst.go.jp/impact/bionichumanoids/en/index.html

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cianchetti, M., Laschi, C., Menciassi, A. et al. Biomedical applications of soft robotics. Nat Rev Mater 3, 143–153 (2018). https://doi.org/10.1038/s41578-018-0022-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing