Hydrogel ionotronics


An ionotronic device functions by a hybrid circuit of mobile ions and mobile electrons. Hydrogels are stretchable, transparent, ionic conductors that can transmit electrical signals of high frequency over long distance, enabling ionotronic devices such as artificial muscles, skins and axons. Moreover, ionotronic luminescent devices, ionotronic liquid crystal devices, touchpads, triboelectric generators, artificial eels and gel–elastomer–oil devices can be designed based on hydrogels. In this Review, we discuss first-generation hydrogel ionotronic devices and the challenges associated with the mechanical properties and the chemistry of the materials. We examine how strong and stretchable adhesion between hydrophilic and hydrophobic polymer networks can be achieved, how water can be retained in hydrogels and how to design hydrogels that resist fatigue under cyclic loads. Finally, we highlight applications of hydrogel ionotronic devices and discuss the future of the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Hydrogels as ionic conductors.
Fig. 2: Artificial muscle, skin and axon.
Fig. 3: Optoelectronic devices.
Fig. 4: Hydrogel ionotronic devices.
Fig. 5: Fracture energy.
Fig. 6: Hydrophilic–hydrophobic adhesion.
Fig. 7: Chemistry of hydrogel–elastomer adhesion.
Fig. 8: Water retention.
Fig. 9: Fatigue of hydrogels.


  1. 1.

    Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  CAS  Google Scholar 

  2. 2.

    Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379 (2016).

    Article  CAS  Google Scholar 

  3. 3.

    Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2015).

    Article  CAS  Google Scholar 

  4. 4.

    Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    Jeong, J.-W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

    Article  CAS  Google Scholar 

  7. 7.

    Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    Mohtadi, R. & Orimo, S.-i. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2017).

    Article  Google Scholar 

  9. 9.

    El-Kady, M. F., Shao, Y. & Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016).

    Article  CAS  Google Scholar 

  10. 10.

    Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Irvine, J. T. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016).

    Article  CAS  Google Scholar 

  12. 12.

    Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 16080 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    Yang, C. H. et al. Ionic cable. Extreme Mechan. Lett. 3, 59–65 (2015).

    Article  Google Scholar 

  14. 14.

    Chun, H. & Chung, T. D. Iontronics. Ann. Rev. Anal. Chem. 8, 441–462 (2015).

    Article  CAS  Google Scholar 

  15. 15.

    Leger, J., Berggren, M. & Carter, S. Iontronics: Ionic Carriers in Organic Electronic Materials and Devices. (CRC Press, 2016).

  16. 16.

    Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. (2017).

  17. 17.

    Stokes, R. H. & Robinson, R. A. Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948).

    Article  CAS  Google Scholar 

  18. 18.

    Bard, A. J., Inzelt, G. & Scholz, F. Electrochemical Dictionary. (Springer Science & Business Media, 2008).

  19. 19.

    Devlin, P. H. et al. Electrode array system for measuring electrophysiological signals. US Patent US6394953B1 (2002).

  20. 20.

    Goding, J. A., Gilmour, A. D., Aregueta-Robles, U. A., Hasan, E. A. & Green, R. A. Living bioelectronics: strategies for developing an effective long-term implant with functional neural connections. Adv. Funct. Mater. 28, 1702969 (2018).

    Article  CAS  Google Scholar 

  21. 21.

    Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    Suo, Z. Journal Club Theme of September 2013: Stretchable Ionics. iMechanica http://imechanica.org/node/15218 (2013).

  23. 23.

    Bai, Y. et al. Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Appl. Phys. Lett. 104, 062902 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    Chen, B. et al. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J. Polym. Sci. B Polym. Phys. 52, 1055–1060 (2014).

    Article  CAS  Google Scholar 

  25. 25.

    Li, T. et al. Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017).

    Article  CAS  Google Scholar 

  26. 26.

    Zhang, C. et al. Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes. J. Appl. Phys. 119, 094108 (2016).

    Article  CAS  Google Scholar 

  27. 27.

    Xu, C., Li, B., Xu, C. & Zheng, J. A novel dielectric elastomer actuator based on compliant polyvinyl alcohol hydrogel electrodes. J. Mater. Sci. Mater. Electron. 26, 9213–9218 (2015).

    Article  CAS  Google Scholar 

  28. 28.

    Haghiashtiani, G., Habtour, E., Park, S.-H., Gardea, F. & McAlpine, M. C. 3D printed unimorph dielectric elastomer actuators. Extreme Mechan. Lett. 21, 1–8 (2018).

    Article  Google Scholar 

  29. 29.

    Sun, J. Y., Keplinger, C., Whitesides, G. M. & Suo, Z. Ionic skin. Adv. Mater. 26, 7608–7614 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    Sarwar, M. S. et al. Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array. Sci. Adv. 3, e1602200 (2017).

    Article  CAS  Google Scholar 

  31. 31.

    Lei, Z., Wang, Q., Sun, S., Zhu, W. & Wu, P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29, 1700321 (2017).

    Article  CAS  Google Scholar 

  32. 32.

    Lei, Z., Wang, Q. & Wu, P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz. 4, 694–700 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    Lei, Z. & Wu, P. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 9, 1134 (2018).

    Article  CAS  Google Scholar 

  34. 34.

    Yang, C. H., Chen, B., Zhou, J., Chen, Y. M. & Suo, Z. Electroluminescence of giant stretchability. Adv. Mater. 28, 4480–4484 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

    Article  CAS  Google Scholar 

  36. 36.

    Yang, C. H., Zhou, S., Shian, S., Clarke, D. R. & Suo, Z. Organic liquid-crystal devices based on ionic conductors. Mater. Horiz. 4, 1102–1109 (2017).

    Article  CAS  Google Scholar 

  37. 37.

    Kim, C.-C., Lee, H.-H., Oh, K. H. & Sun, J.-Y. Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    Pu, X. et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3, e1700015 (2017).

    Article  Google Scholar 

  39. 39.

    Parida, K. et al. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 29, 1702181 (2017).

    Article  CAS  Google Scholar 

  40. 40.

    Xu, W. et al. Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 7, 1601529 (2017).

    Article  CAS  Google Scholar 

  41. 41.

    Schroeder, T. B. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214 (2017).

    Article  CAS  Google Scholar 

  42. 42.

    Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    Article  CAS  Google Scholar 

  43. 43.

    Kellaris, N., Venkata, V. G., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3, eaar3276 (2018).

    Article  Google Scholar 

  44. 44.

    Keplinger, C. Journal Club for February 2018: HASEL artificial muscles for high-speed, electrically powered, self-healing soft robots. iMechanica http://imechanica.org/node/22096 (2018).

  45. 45.

    Wichterle, O. & Lim, D. Hydrophilic gels for biological use. Nature 185, 117 (1960).

    Article  Google Scholar 

  46. 46.

    Wichterle, O., Lim, D. & Dreifus, M. On the problem of contact lenses. Ceskoslovenska Oftalmol. 17, 70 (1961).

    CAS  Google Scholar 

  47. 47.

    Dubrovskii, S., Afanas’ eva, M., Lagutina, M. & Kazanskii, K. Comprehensive characterization of superabsorbent polymer hydrogels. Polym. Bull. 24, 107–113 (1990).

    Article  CAS  Google Scholar 

  48. 48.

    Thiele, J., Ma, Y., Bruekers, S., Ma, S. & Huck, W. T. 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26, 125–148 (2014).

    Article  CAS  Google Scholar 

  49. 49.

    Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

    Article  CAS  Google Scholar 

  50. 50.

    Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012).

    Article  Google Scholar 

  51. 51.

    Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    Article  CAS  Google Scholar 

  52. 52.

    Wirthl, D. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3, e1700053 (2017).

    Article  CAS  Google Scholar 

  53. 53.

    Liu, Q., Nian, G., Yang, C., Qu, S. & Suo, Z. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018).

    Article  CAS  Google Scholar 

  54. 54.

    Bai, Y. et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 105, 151903 (2014).

    Article  CAS  Google Scholar 

  55. 55.

    Le Floch, P. et al. Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfaces 9, 25542–25552 (2017).

    Article  CAS  Google Scholar 

  56. 56.

    Tang, J., Li, J., Vlassak, J. J. & Suo, Z. Fatigue fracture of hydrogels. Extreme Mechan. Lett. 10, 24–31 (2017).

    Article  Google Scholar 

  57. 57.

    Bai, R. et al. Fatigue fracture of tough hydrogels. Extreme Mechan. Lett. 15, 91–96 (2017).

    Article  Google Scholar 

  58. 58.

    Zhang, W. et al. Fatigue of double-network hydrogels. Eng. Fract. Mech. 187, 74–93 (2018).

    Article  Google Scholar 

  59. 59.

    Hu, X., Vatankhah-Varnoosfaderani, M., Zhou, J., Li, Q. & Sheiko, S. S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater. 27, 6899–6905 (2015).

    Article  CAS  Google Scholar 

  60. 60.

    Yang, Y., Wang, X., Yang, F., Shen, H. & Wu, D. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv. Mater. 28, 7178–7184 (2016).

    Article  CAS  Google Scholar 

  61. 61.

    Jeon, I., Cui, J., Illeperuma, W. R., Aizenberg, J. & Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 28, 4678–4683 (2016).

    Article  CAS  Google Scholar 

  62. 62.

    Haque, M. A., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916–8924 (2011).

    Article  CAS  Google Scholar 

  63. 63.

    Haque, M. A., Kurokawa, T. & Gong, J. P. Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance. Soft Matter 8, 8008–8016 (2012).

    Article  CAS  Google Scholar 

  64. 64.

    Bai, T. et al. Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole–dipole interaction. Soft Matter 7, 2825–2831 (2011).

    Article  CAS  Google Scholar 

  65. 65.

    Du, G. et al. Tough and fatigue resistant biomimetic hydrogels of interlaced self-assembled conjugated polymer belts with a polyelectrolyte network. Chem. Mater. 26, 3522–3529 (2014).

    Article  CAS  Google Scholar 

  66. 66.

    Lin, P., Ma, S., Wang, X. & Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 27, 2054–2059 (2015).

    Article  CAS  Google Scholar 

  67. 67.

    Bai, R., Yang, J., Morelle, X. P., Yang, C. & Suo, Z. Fatigue fracture of self-recovery hydrogels. ACS Macro Lett. 7, 312–317 (2018).

    Article  CAS  Google Scholar 

  68. 68.

    Dayan, P. & Abbott, L. F. Theoretical Neuroscience. Vol. 806 (MIT Press, Cambridge, MA, 2001).

    Google Scholar 

  69. 69.

    Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

    Article  CAS  Google Scholar 

  70. 70.

    Pelrine, R. E., Kornbluh, R. D. & Joseph, J. P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A Phys. 64, 77–85 (1998).

    Article  CAS  Google Scholar 

  71. 71.

    O’Halloran, A., O’malley, F. & McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 9 (2008).

    Article  CAS  Google Scholar 

  72. 72.

    Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R. E. & Sommer-Larsen, P. Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. (Elsevier, 2011).

  73. 73.

    Anderson, I. A., Gisby, T. A., McKay, T. G., O’Brien, B. M. & Calius, E. P. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112, 041101 (2012).

    Article  CAS  Google Scholar 

  74. 74.

    Brochu, P. & Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010).

    Article  CAS  Google Scholar 

  75. 75.

    Suo, Z. Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010).

    Article  Google Scholar 

  76. 76.

    Zhao, X. & Wang, Q. Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application. Appl. Phys. Rev. 1, 021304 (2014).

    Article  CAS  Google Scholar 

  77. 77.

    Poulin, A., Rosset, S. & Shea, H. R. Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 107, 244104 (2015).

    Article  CAS  Google Scholar 

  78. 78.

    Duduta, M., Wood, R. J. & Clarke, D. R. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Adv. Mater. 28, 8058–8063 (2016).

    Article  CAS  Google Scholar 

  79. 79.

    Madsen, F. B., Yu, L., Daugaard, A. E., Hvilsted, S. & Skov, A. L. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers. Polymer 55, 6212–6219 (2014).

    Article  CAS  Google Scholar 

  80. 80.

    Zhang, Q. et al. An all-organic composite actuator material with a high dielectric constant. Nature 419, 284 (2002).

    Article  CAS  Google Scholar 

  81. 81.

    Molberg, M. et al. High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Funct. Mater. 20, 3280–3291 (2010).

    Article  CAS  Google Scholar 

  82. 82.

    Madsen, F. B., Daugaard, A. E., Hvilsted, S. & Skov, A. L. The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 37, 378–413 (2016).

    Article  CAS  Google Scholar 

  83. 83.

    Opris, D. M. Polar elastomers as novel materials for electromechanical actuator applications. Adv. Mater. 30, 1703678 (2018).

    Article  CAS  Google Scholar 

  84. 84.

    Carpi, F., Frediani, G., Turco, S. & De Rossi, D. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21, 4152–4158 (2011).

    Article  CAS  Google Scholar 

  85. 85.

    Rosset, S. & Shea, H. R. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110, 281–307 (2013).

    Article  CAS  Google Scholar 

  86. 86.

    Huang, J., Yang, J., Jin, L., Clarke, D. R. & Suo, Z. Pattern formation in plastic liquid films on elastomers by ratcheting. Soft Matter 12, 3820–3827 (2016).

    Article  CAS  Google Scholar 

  87. 87.

    Morelle, X. P., Bai, R. & Suo, Z. Localized deformation in plastic liquids on elastomers. J. Appl. Mech. 84, 101002 (2017).

    Article  CAS  Google Scholar 

  88. 88.

    McCoul, D., Hu, W., Gao, M., Mehta, V. & Pei, Q. Recent advances in stretchable and transparent electronic materials. Adv. Electron. Mater. 2, 1500407 (2016).

    Article  CAS  Google Scholar 

  89. 89.

    Carpi, F., Chiarelli, P., Mazzoldi, A. & De Rossi, D. Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens. Actuators A Phys. 107, 85–95 (2003).

    Article  CAS  Google Scholar 

  90. 90.

    Tavakol, B. & Holmes, D. P. Voltage-induced buckling of dielectric films using fluid electrodes. Appl. Phys. Lett. 108, 112901 (2016).

    Article  CAS  Google Scholar 

  91. 91.

    Christianson, C., Goldberg, N., Cai, S. & Tolley, M. T. in Electroactive Polymer Actuators and Devices (EAPAD) 2017 101631O (Portland, OR, USA, 2017).

  92. 92.

    Bard, A. J. & Faulkner, L. R. Fundamentals and applications. Electrochem. Methods 2, 482 (2001).

    Google Scholar 

  93. 93.

    Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  CAS  Google Scholar 

  94. 94.

    Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    Article  CAS  Google Scholar 

  95. 95.

    Bauer, S. et al. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014).

    Article  CAS  Google Scholar 

  96. 96.

    Rogers, J. A. Wearable electronics: nanomesh on-skin electronics. Nat. Nanotechnol. 12, 839 (2017).

    Article  CAS  Google Scholar 

  97. 97.

    Lu, N. & Kim, D.-H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 1, 53–62 (2014).

    Article  Google Scholar 

  98. 98.

    Manandhar, P., Calvert, P. D. & Buck, J. R. Elastomeric ionic hydrogel sensor for large strains. IEEE Sens. J. 12, 2052–2061 (2012).

    Article  CAS  Google Scholar 

  99. 99.

    Tian, K. et al. 3D printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Adv. Mater. 29, 1604827 (2017).

    Article  CAS  Google Scholar 

  100. 100.

    Yuan-Hui, L. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714 (1974).

    Article  Google Scholar 

  101. 101.

    Bear, M. F., Connors, B. W. & Paradiso, M. A. Neuroscience. Vol. 2 (Lippincott Williams & Wilkins, 2007).

  102. 102.

    Robinson, S. S. et al. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mechan. Lett. 5, 47–53 (2015).

    Article  Google Scholar 

  103. 103.

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  104. 104.

    Yang, S., Ng, E. & Lu, N. Indium Tin Oxide (ITO) serpentine ribbons on soft substrates stretched beyond 100%. Extreme Mechan. Lett. 2, 37–45 (2015).

    Article  Google Scholar 

  105. 105.

    Na, S. I., Kim, S. S., Jo, J. & Kim, D. Y. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20, 4061–4067 (2008).

    Article  CAS  Google Scholar 

  106. 106.

    Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411 (2016).

    Article  CAS  Google Scholar 

  107. 107.

    De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  CAS  Google Scholar 

  108. 108.

    Sun, H., Zhang, Y., Zhang, J., Sun, X. & Peng, H. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017).

    Article  CAS  Google Scholar 

  109. 109.

    Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817 (2013).

    Article  CAS  Google Scholar 

  110. 110.

    Langley, D. et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24, 452001 (2013).

    Article  CAS  Google Scholar 

  111. 111.

    Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907 (2008).

    Article  CAS  Google Scholar 

  112. 112.

    Lewis, J. Material challenge for flexible organic devices. Mater. Today 9, 38–45 (2006).

    Article  CAS  Google Scholar 

  113. 113.

    Denisin, A. K. & Pruitt, B. L. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016).

    Article  CAS  Google Scholar 

  114. 114.

    Southan, A. et al. Toward controlling the formation, degradation behavior, and properties of hydrogels synthesized by Aza-Michael reactions. Macromol. Chem. Phys. 214, 1865–1873 (2013).

    Article  CAS  Google Scholar 

  115. 115.

    Martini, M. et al. Charged triazole cross-linkers for hyaluronan-based hybrid hydrogels. Materials 9, 810 (2016).

    Article  CAS  Google Scholar 

  116. 116.

    Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  117. 117.

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133 (2012).

    Article  CAS  Google Scholar 

  118. 118.

    Kitai, A. Luminescent Materials and Applications. Vol. 25 (John Wiley & Sons, 2008).

  119. 119.

    Chopra, K. Dielectric properties of ZnS films. J. Appl. Phys. 36, 655–656 (1965).

    Article  CAS  Google Scholar 

  120. 120.

    Hirabayashi, K., Kozawaguchi, H. & Tsujiyama, B. Study on A-C powder EL phosphor deterioration factors. J. Electrochem. Soc. 130, 2259–2263 (1983).

    Article  CAS  Google Scholar 

  121. 121.

    Bender, J., Wager, J., Kissick, J., Clark, B. & Keszler, D. Zn2GeO4: Mn alternating-current thin-film electroluminescent devices. J. Lumin. 99, 311–324 (2002).

    Article  CAS  Google Scholar 

  122. 122.

    Lee, J. S. et al. Robust moisture and thermally stable phosphor glass plate for highly unstable sulfide phosphors in high-power white light-emitting diodes. Opt. Lett. 38, 3298–3300 (2013).

    Article  CAS  Google Scholar 

  123. 123.

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325 (2005).

    Article  CAS  Google Scholar 

  124. 124.

    Yang, D.-K. Fundamentals of Liquid Crystal Devices. (John Wiley & Sons, 2014).

  125. 125.

    Kleman, M. & Laverntovich, O. D. Soft Matter Physics: An Introduction. (Springer Science & Business Media, 2007).

  126. 126.

    Sutherland, R., Tondiglia, V., Natarajan, L., Bunning, T. & Adams, W. Electrically switchable volume gratings in polymer-dispersed liquid crystals. Appl. Phys. Lett. 64, 1074–1076 (1994).

    Article  CAS  Google Scholar 

  127. 127.

    Aguilar, R. & Meijer, G. in Proceedings of IEEE Sensors, 2002 1360–1363 (Orlando, FL, USA, 2002).

  128. 128.

    Krein, P. T. & Meadows, R. D. The electroquasistatics of the capacitive touch panel. IEEE Trans. Ind. Appl. 26, 529–534 (1990).

    Article  Google Scholar 

  129. 129.

    Adler, R. & Desmares, P. J. An economical touch panel using SAW absorption. IEEE Trans. Ultrason. Ferroelect., Freq. Control 34, 195–201 (1987).

    Article  CAS  Google Scholar 

  130. 130.

    Bhalla, M. R. & Bhalla, A. V. Comparative study of various touchscreen technologies. IJCA 6, 12–18 (2010).

    Article  Google Scholar 

  131. 131.

    Tian, H. et al. A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale 5, 890–894 (2013).

    Article  CAS  Google Scholar 

  132. 132.

    Lai, Y. C. et al. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 28, 10024–10032 (2016).

    Article  CAS  Google Scholar 

  133. 133.

    Yi, F. et al. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 10, 6519–6525 (2016).

    Article  CAS  Google Scholar 

  134. 134.

    Niu, S. & Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015).

    Article  CAS  Google Scholar 

  135. 135.

    Gotter, A. L., Kaetzel, M. A. & Dedman, J. R. Electrophorus electricus as a model system for the study of membrane excitability. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 119, 225–241 (1998).

    Article  CAS  Google Scholar 

  136. 136.

    Xu, J. & Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666 (2008).

    Article  CAS  Google Scholar 

  137. 137.

    Carpi, F., Frediani, G. & De Rossi, D. Hydrostatically coupled dielectric elastomer actuators. IEEE/ASME Trans. Mechatron. 15, 308–315 (2010).

    Article  Google Scholar 

  138. 138.

    Pharr, M., Sun, J.-Y. & Suo, Z. Rupture of a highly stretchable acrylic dielectric elastomer. J. Appl. Phys. 111, 104114 (2012).

    Article  CAS  Google Scholar 

  139. 139.

    Chen, C., Wang, Z. & Suo, Z. Flaw sensitivity of highly stretchable materials. Extreme Mechan. Lett. 10, 50–57 (2017).

    Article  Google Scholar 

  140. 140.

    Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    Article  CAS  Google Scholar 

  141. 141.

    Peak, C. W., Wilker, J. J. & Schmidt, G. A review on tough and sticky hydrogels. Colloid. Polym. Sci. 291, 2031–2047 (2013).

    Article  CAS  Google Scholar 

  142. 142.

    Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    Article  CAS  Google Scholar 

  143. 143.

    Long, R. & Hui, C.-Y. Crack tip fields in soft elastic solids subjected to large quasi-static deformation — a review. Extreme Mechan. Lett. 4, 131–155 (2015).

    Article  Google Scholar 

  144. 144.

    Creton, C. 50th anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules 50, 8297–8316 (2017).

    Article  CAS  Google Scholar 

  145. 145.

    Wang, W., Zhang, Y. & Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71, 1–25 (2017).

    Article  CAS  Google Scholar 

  146. 146.

    Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    Article  CAS  Google Scholar 

  147. 147.

    Buwalda, S. J. et al. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 190, 254–273 (2014).

    Article  CAS  Google Scholar 

  148. 148.

    Griffith, A. The phenomena of flow and rupture in solids. Philos. Trans. R. Soc. A 221, 163–198 (1920).

    Article  Google Scholar 

  149. 149.

    Lake, G. & Thomas, A. The strength of highly elastic materials. Proc. R. Soc. Lond. A 300, 108–119 (1967).

    Article  CAS  Google Scholar 

  150. 150.

    Andrews, E. Rupture propagation in hysteresial materials: stress at a notch. J. Mech. Phys. Solids 11, 231–242 (1963).

    Article  Google Scholar 

  151. 151.

    Evans, A. G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73, 187–206 (1990).

    Article  CAS  Google Scholar 

  152. 152.

    Tvergaard, V. & Hutchinson, J. W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992).

    Article  Google Scholar 

  153. 153.

    Bao, G. & Suo, Z. Remarks on crack-bridging concepts. Appl. Mech. Rev. 45, 355–366 (1992).

    Article  Google Scholar 

  154. 154.

    Du, J., Thouless, M. & Yee, A. Effects of rate on crack growth in a rubber-modified epoxy. Acta Mater. 48, 3581–3592 (2000).

    Article  CAS  Google Scholar 

  155. 155.

    Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    Article  CAS  Google Scholar 

  156. 156.

    Tang, J., Li, J., Vlassak, J. J. & Suo, Z. Adhesion between highly stretchable materials. Soft Matter 12, 1093–1099 (2016).

    Article  CAS  Google Scholar 

  157. 157.

    Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190 (2016).

    Article  CAS  Google Scholar 

  158. 158.

    Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

    Article  CAS  Google Scholar 

  159. 159.

    Ebnesajjad, S. & Landrock, A. H. Adhesives Technology Handbook (William Andrew, 2014).

  160. 160.

    Yang, J., Bai, R. & Suo, Z. Topological adhesion of wet materials. Adv. Mater. https://doi.org/10.1002/adma.201800671 (2018).

  161. 161.

    Efimenko, K., Wallace, W. E. & Genzer, J. Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254, 306–315 (2002).

    Article  CAS  Google Scholar 

  162. 162.

    Hegemann, D., Brunner, H. & Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys. Res. B 208, 281–286 (2003).

    Article  CAS  Google Scholar 

  163. 163.

    Bodas, D. & Khan-Malek, C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment — an SEM investigation. Sens. Actuators B 123, 368–373 (2007).

    Article  CAS  Google Scholar 

  164. 164.

    Dissado, L. A. & Fothergill, J. C. Electrical Degradation and Breakdown in Polymers. Vol. 9 (IET, 1992).

  165. 165.

    Barry, R. A. et al. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21, 2407–2410 (2009).

    Article  CAS  Google Scholar 

  166. 166.

    Levinson, P., Cazabat, A., Stuart, M. C., Heslot, F. & Nicolet, S. The spreading of macroscopic droplets. Rev. Phys. Appl. 23, 1009–1016 (1988).

    Article  Google Scholar 

  167. 167.

    Wu, H. et al. Transfer printing of metallic microstructures on adhesion-promoting hydrogel substrates. Adv. Mater. 27, 3398–3404 (2015).

    Article  CAS  Google Scholar 

  168. 168.

    Kusaka, I. & Suëtaka, W. Infrared spectrum of α-cyanoacrylate adhesive in the first monolayer on a bulk aluminum surface. Spectrochim. Acta A 36, 647–648 (1980).

    Article  Google Scholar 

  169. 169.

    Schneider, M. H., Tran, Y. & Tabeling, P. Benzophenone absorption and diffusion in poly (dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir 27, 1232–1240 (2011).

    Article  CAS  Google Scholar 

  170. 170.

    Wang, Y. et al. Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask. Anal. Chem. 77, 7539–7546 (2005).

    Article  CAS  Google Scholar 

  171. 171.

    Simmons, C. S., Ribeiro, A. J. & Pruitt, B. L. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain. Lab Chip 13, 646–649 (2013).

    Article  CAS  Google Scholar 

  172. 172.

    Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382 (2014).

    Article  CAS  Google Scholar 

  173. 173.

    Young, J. F. Humidity control in the laboratory using salt solutions — a review. J. Chem. Technol. Biotechnol. 17, 241–245 (1967).

    CAS  Google Scholar 

  174. 174.

    Root, S. E. et al. Ionotactile stimulation: nonvolatile ionic gels for human–machine interfaces. ACS Omega 3, 662–666 (2018).

    Article  CAS  Google Scholar 

  175. 175.

    Chen, B. et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 6, 7840–7845 (2014).

    Article  CAS  Google Scholar 

  176. 176.

    Le Bideau, J., Viau, L. & Vioux, A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011).

    Article  Google Scholar 

  177. 177.

    Suresh, S. Fatigue of Materials (Cambridge Univ Press, 1998).

  178. 178.

    Ritchie, R. O. Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fracture 100, 55–83 (1999).

    Article  CAS  Google Scholar 

  179. 179.

    Li, J., Suo, Z. & Vlassak, J. J. Stiff, strong, and tough hydrogels with good chemical stability. J. Mater. Chem. B 2, 6708–6713 (2014).

    Google Scholar 

  180. 180.

    Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932 (2013).

    Article  CAS  Google Scholar 

  181. 181.

    Lin, S. et al. Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016).

    Article  CAS  Google Scholar 

  182. 182.

    Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).

    Article  CAS  Google Scholar 

  183. 183.

    Guiseppi-Elie, A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31, 2701–2716 (2010).

    Article  CAS  Google Scholar 

  184. 184.

    Cheong, G. M. et al. Conductive hydrogels with tailored bioactivity for implantable electrode coatings. Acta Biomaterialia 10, 1216–1226 (2014).

    Article  CAS  Google Scholar 

  185. 185.

    Overvelde, J. T. et al. Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mechan. Lett. 1, 42–46 (2014).

    Article  Google Scholar 

  186. 186.

    Alirezaei, H., Nagakubo, A. & Kuniyoshi, Y. in 2007 7th IEEE-RAS International Conference on Humanoid Robots 167–173 (Pittsburgh, PA, USA, 2007).

  187. 187.

    Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015).

    Article  CAS  Google Scholar 

  188. 188.

    Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. https://doi.org/10.1002/adma.201706383 (2018).

  189. 189.

    Frutiger, A. et al. Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 27, 2440–2446 (2015).

    Article  CAS  Google Scholar 

  190. 190.

    Xiong, W. et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Adv. Mater. 28, 7167–7172 (2016).

    Article  CAS  Google Scholar 

  191. 191.

    Kim, D., Lee, G., Kim, D. & Ha, J. S. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte. ACS Appl. Mater. Interfaces 7, 4608–4615 (2015).

    Article  CAS  Google Scholar 

  192. 192.

    Zhang, S., Wang, F., Peng, H., Yan, J. & Pan, G. Flexible highly sensitive pressure sensor based on ionic liquid gel film. ACS Omega 3, 3014–3021 (2018).

    Article  CAS  Google Scholar 

  193. 193.

    Kamio, E., Yasui, T., Iida, Y., Gong, J. P. & Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater. 29, 1704118 (2017).

    Article  CAS  Google Scholar 

  194. 194.

    Chen, N., Zhang, H., Li, L., Chen, R. & Guo, S. Ionogel electrolytes for high-performance lithium batteries: a review. Adv. Energy Mater. https://doi.org/10.1002/aenm.201702675 (2018).

Download references


The authors acknowledge financial support from the National Science Foundation Materials Research Science and Engineering Centers (DMR-1420570). The authors thank collaborators at Harvard University and Xi’an Jiaotong University for much of the work reviewed here. In particular, the co-authors of reference 21, C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund and G. Whitesides, helped shape a long view of hydrogel ionotronics.

Author information




All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Zhigang Suo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Suo, Z. Hydrogel ionotronics. Nat Rev Mater 3, 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing