Biofabrication strategies for 3D in vitro models and regenerative medicine

A Publisher Correction to this article was published on 03 May 2018

This article has been updated

Abstract

Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell–cell and cell–extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bioprinting and bioassembly techniques.
Fig. 2: Hydrogel bioprinting.
Fig. 3: Bioassembly of tissue-like constructs.
Fig. 4: Bioprinting in support materials.
Fig. 5: Bioassembly of macroscopic tissue structures.
Fig. 6: 3D bioprinting of tissues and organs.
Fig. 7: Stereolithography and continuous liquid interface production.
Fig. 8: Bioacoustic levitation.

Change history

  • 03 May 2018

    This article was originally published with incorrect affiliations for Sang Jin Lee, Yuya Morimoto, Shoji Takeuchi and James J. Yoo. Please see below the correct affiliations.

References

  1. 1.

    Gomes, M. E., Rodrigues, M. T., Domingues, R. M. A. & Reis, R. L. Tissue engineering and regenerative medicine: new trends and directions-a year in review. Tissue Eng. Part B Rev. 23, 211–224 (2017).

    Article  Google Scholar 

  2. 2.

    Tschugg, A. et al. A prospective randomized multicenter phase I/II clinical trial to evaluate safety and efficacy of NOVOCART disk plus autologous disk chondrocyte transplantation in the treatment of nucleotomized and degenerative lumbar disks to avoid secondary disease: safety results of Phase I-a short report. Neurosurg. Rev. 40, 155–162 (2017).

    Article  Google Scholar 

  3. 3.

    Martin, I. et al. The survey on cellular and engineered tissue therapies in Europe in 2013. Tissue Eng. A 22, 5–16 (2016).

    Article  Google Scholar 

  4. 4.

    Groll, J. et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8, 013001 (2016).

    Article  CAS  Google Scholar 

  5. 5.

    Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    Dai, X. et al. Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci. Rep. 7, 1457 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    Faulkner-Jones, A. et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7, 044102 (2015).

    Article  Google Scholar 

  8. 8.

    Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    Article  CAS  Google Scholar 

  9. 9.

    Jeon, H. et al. Generation of multilayered 3D structures of HepG2 cells using a bio-printing technique. Gut Liver 11, 121–128 (2017).

    Article  Google Scholar 

  10. 10.

    Burdick, J. A. & Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 3, 1269 (2012).

    Article  CAS  Google Scholar 

  11. 11.

    Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods 8, 949–955 (2011).

    Article  CAS  Google Scholar 

  12. 12.

    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47 (2005).

    Article  CAS  Google Scholar 

  13. 13.

    Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article  CAS  Google Scholar 

  14. 14.

    Khetan, S. & Burdick, J. A. Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter 7, 830–838 (2011).

    Article  CAS  Google Scholar 

  15. 15.

    Moroni, L. et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 36, 384–402 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Jungst, T., Smolan, W., Schacht, K., Scheibel, T. & Groll, J. Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 116, 1496–1539 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    Guvendiren, M., Molde, J., Soares, R. M. & Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2, 1679–1693 (2016).

    Article  CAS  Google Scholar 

  18. 18.

    Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mulhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017).

    Article  CAS  Google Scholar 

  19. 19.

    Shi, W. et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv. Mater. 29, 1701089 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Levato, R. et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater. 61, 41–53 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Compaan, A. M., Christensen, K. & Huang, Y. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater. Sci. Eng. (2016).

  22. 22.

    Colosi, C. et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28, 677–684 (2016).

    Article  CAS  Google Scholar 

  23. 23.

    Ouyang, L., Highley, C. B., Sun, W. & Burdick, J. A. A. Generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv. Mater. 29, 1604983 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Liu, W. et al. Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29, 1604630 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Schacht, K. et al. Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chem. Int. Ed. 54, 2816–2820 (2015).

    Article  CAS  Google Scholar 

  26. 26.

    Ouyang, L. L., Highley, C. B., Rodell, C. B., Sun, W. & Burdick, J. A. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater. Sci. Eng. 2, 1743–1751 (2016).

    Article  CAS  Google Scholar 

  27. 27.

    Li, C. et al. Rapid formation of a supramolecular polypeptide–dna hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed. 54, 3957–3961 (2015).

    Article  CAS  Google Scholar 

  28. 28.

    Dubbin, K., Hori, Y., Lewis, K. K. & Heilshorn, S. C. Dual-stage crosslinking of a gel-phase bioink improves cell viability and homogeneity for 3D bioprinting. Adv. Healthc. Mater. 5, 2488–2492 (2016).

    Article  CAS  Google Scholar 

  29. 29.

    Loo, Y. & Hauser, C. A. E. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed. Mater. 11, 014103 (2015).

    Article  CAS  Google Scholar 

  30. 30.

    Landers, R., Hübner, U., Schmelzeisen, R. & Mülhaupt, R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23, 4437–4447 (2002).

    Article  CAS  Google Scholar 

  31. 31.

    Wu, W., DeConinck, A. & Lewis, J. A. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, H178–H183 (2011).

    Article  CAS  Google Scholar 

  32. 32.

    Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).

    Article  CAS  Google Scholar 

  33. 33.

    Bhattacharjee, T. et al. Writing in the granular gel medium. Sci. Adv. 1, e1500655 (2015).

    Article  Google Scholar 

  34. 34.

    Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).

    Article  CAS  Google Scholar 

  35. 35.

    Shi, L. et al. Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel. Chem. Mater. 29, 5816–5823 (2017).

    Article  CAS  Google Scholar 

  36. 36.

    Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered 3D tissues. Nat. Mater. 11, 768 (2012).

    Article  CAS  Google Scholar 

  37. 37.

    Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    Bhattacharjee, T. et al. Liquid-like solids support cells in 3D. ACS Biomater. Sci. Eng. 2, 1787–1795 (2016).

    Article  CAS  Google Scholar 

  39. 39.

    Mironov, V. et al. Organ printing: tissue spheroids as building blocks. Biomaterials 30, 2164–2174 (2009).

    Article  CAS  Google Scholar 

  40. 40.

    Sego, T. J., Kasacheuski, U., Hauersperger, D., Tovar, A. & Moldovan, N. I. A heuristic computational model of basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication 9, 024104 (2017).

    Article  CAS  Google Scholar 

  41. 41.

    Bakirci, E., Toprakhisar, B., Zeybek, M., Ozaydin, I. G. & Koc, B. Cell sheet based bionk for 3D bioprinting applications. Biofabrication 9, 024105 (2017).

    Article  CAS  Google Scholar 

  42. 42.

    Owaki, T., Shimizu, T., Yamato, M. & Okano, T. Cell sheet engineering for regenerative medicine: current challenges and strategies. Biotechnol. J. 9, 904–914 (2014).

    Article  CAS  Google Scholar 

  43. 43.

    Roh, S., Parekh, D. P., Bharti, B., Stoyanov, S. D. & Velev, O. D. 3D printing by multiphase silicone/water capillary inks. Adv. Mater. 29, 1701554 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    Rutz, A. L., Hyland, K. E., Jakus, A. E., Burghardt, W. R. & Shah, R. N. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27, 1607–1614 (2015).

    Article  CAS  Google Scholar 

  45. 45.

    Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016).

    Article  CAS  Google Scholar 

  46. 46.

    Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).

    Article  CAS  Google Scholar 

  47. 47.

    Stichler, S. et al. Thiol-ene clickable poly(glycidol) hydrogels for biofabrication. Ann. Biomed. Eng. 45, 273–285 (2017).

    Article  Google Scholar 

  48. 48.

    Stichler, S., Bertlein, S., Tessmar, J., Jungst, T. & Groll, J. Thiol-ene cross-linkable hydrogels as bioinks for biofabrication. Macromol. Symp. 372, 102–107 (2017).

    Article  CAS  Google Scholar 

  49. 49.

    Bertlein, S. et al. Thiol-ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv. Mater. 29, 1703404 (2017).

    Article  CAS  Google Scholar 

  50. 50.

    Yeh, Y.-C., Ouyang, L., Highley, C. B. & Burdick, J. A. Norbornene-modified poly (glycerol sebacate) as a photocurable and biodegradable elastomer. Polym. Chem. 8, 5091–5099 (2017).

    Article  CAS  Google Scholar 

  51. 51.

    Mondschein, R. J., Kanitkar, A., Williams, C. B., Verbridge, S. S. & Long, T. E. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140, 170–188 (2017).

    Article  CAS  Google Scholar 

  52. 52.

    Vitale, A. et al. Oxygen-inhibition lithography for the fabrication of multipolymeric structures. Adv. Mater. 27, 4560–4565 (2015).

    Article  CAS  Google Scholar 

  53. 53.

    Zhang, A. P. et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266–4270 (2012).

    Article  CAS  Google Scholar 

  54. 54.

    Zhu, W. et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124, 106–115 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    Article  CAS  Google Scholar 

  56. 56.

    Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).

    Article  CAS  Google Scholar 

  57. 57.

    Mouser, V. H. et al. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication 9, 015026 (2017).

    Article  CAS  Google Scholar 

  58. 58.

    Rhee, S., Puetzer, J. L., Mason, B. N., Reinhart-King, C. A. & Bonassar, L. J. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater. Sci. Eng. 2, 1800–1805 (2016).

    Article  CAS  Google Scholar 

  59. 59.

    Diamantides, N. et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication 9, 034102 (2017).

    Article  Google Scholar 

  60. 60.

    Bolaños, R. A. V. et al. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthritis Cartilage 25, 413–420 (2017).

    Article  Google Scholar 

  61. 61.

    Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).

    Article  CAS  Google Scholar 

  62. 62.

    Kim, B. S., Kim, H., Gao, G., Jang, J. & Cho, D. W. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication 9, 034104 (2017).

    Article  Google Scholar 

  63. 63.

    Levato, R. et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomaterialia (2017).

  64. 64.

    Shi, W. et al. Structurally and functionally optimized silk-fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv. Mater. 29, 1701089 (2017).

    Article  CAS  Google Scholar 

  65. 65.

    Klotz, B. J., Gawlitta, D., Rosenberg, A. J. W. P., Malda, J. & Melchels, F. P. W. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 34, 394–407 (2016).

    Article  CAS  Google Scholar 

  66. 66.

    Khalil, S. & Sun, W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131, 111002 (2009).

    Article  Google Scholar 

  67. 67.

    Duan, B., Hockaday, L. A., Kang, K. H. & Butcher, J. T. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101, 1255–1264 (2013).

    Article  CAS  Google Scholar 

  68. 68.

    Jose, R. R., Brown, J. E., Polido, K. E., Omenetto, F. G. & Kaplan, D. L. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing. ACS Biomater. Sci. Eng. 1, 780–788 (2015).

    Article  CAS  Google Scholar 

  69. 69.

    Sommer, M. R., Schaffner, M., Carnelli, D. & Studart, A. R. 3D printing of hierarchical silk fibroin structures. ACS Appl. Mater. Inter 8, 34677–34685 (2016).

    Article  CAS  Google Scholar 

  70. 70.

    Badylak, S. F., Taylor, D. & Uygun, K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2011).

    Article  CAS  Google Scholar 

  71. 71.

    Cheng, J. et al. Rheological properties of cell-hydrogel composites extruding through small-diameter tips. J. Manuf. Sci. Eng. 130, 021014 (2008).

    Article  Google Scholar 

  72. 72.

    Xu, C. X. et al. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir 30, 9130–9138 (2014).

    Article  CAS  Google Scholar 

  73. 73.

    Zhang, Z. Y., Xu, C. X., Xiong, R. T., Chrisey, D. B. & Huang, Y. Effects of living cells on the bioink printability during laser printing. Biomicrofluidics 11, (2017).

  74. 74.

    Nussinovitch, A. Resemblance of immobilized trichoderma-viride fungal spores in an alginate matrix to a composite-material. Biotechnol. Progr. 10, 551–554 (1994).

    Article  CAS  Google Scholar 

  75. 75.

    Zhang, X. Z. & Chu, C. C. Fabrication and characterization of microgel-impregnated, thermosensitive PNIPAAm hydrogels. Polymer 46, 9664–9673 (2005).

    Article  CAS  Google Scholar 

  76. 76.

    Lim, C. T., Zhou, E. H. & Quek, S. T. Mechanical models for living cells — a review. J. Biomech. 39, 195–216 (2006).

    Article  CAS  Google Scholar 

  77. 77.

    Mekhileri, N. V. et al. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication 10, (2018).

  78. 78.

    Yeo, M., Lee, J. S., Chun, W. & Kim, G. H. An innovative collagen-based cell-printing method for obtaining human adipose stem cell-laden structures consisting of core sheath structures for tissue engineering. Biomacromolecules 17, 1365–1375 (2016).

    Article  CAS  Google Scholar 

  79. 79.

    Levato, R. et al. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6, (2014).

  80. 80.

    Kamperman, T. et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments. Adv. Healthc. Mater. 6, (2017).

  81. 81.

    Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  Google Scholar 

  82. 82.

    Cohen, D. L., Malone, E., Lipson, H. & Bonassar, L. J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 12, 1325–1335 (2006).

    Article  CAS  Google Scholar 

  83. 83.

    Pati, F., Gantelius, J. & Svahn, H. A. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed. 55, 4650–4665 (2016).

    Article  CAS  Google Scholar 

  84. 84.

    Min, D. et al. Bioprinting of biomimetic skin containing melanocytes. Exp. Dermatol. https://doi.org/10.1111/exd.13376 (2017).

  85. 85.

    Lee, V. et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. C 20, 473–484 (2014).

    Article  CAS  Google Scholar 

  86. 86.

    Lee, W. et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30, 1587–1595 (2009).

    Article  CAS  Google Scholar 

  87. 87.

    Mandrycky, C., Wang, Z., Kim, K. & Kim, D. H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).

    Article  CAS  Google Scholar 

  88. 88.

    Ozbolat, I. T., Peng, W. & Ozbolat, V. Application areas of 3D bioprinting. Drug Discov. Today 21, 1257–1271 (2016).

    Article  CAS  Google Scholar 

  89. 89.

    Arslan-Yildiz, A. et al. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8, 014103 (2016).

    Article  CAS  Google Scholar 

  90. 90.

    Vyas, D. et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 67, 750–761 (2017).

    Article  CAS  Google Scholar 

  91. 91.

    Bhise, N. S. et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8, 014101 (2016).

    Article  CAS  Google Scholar 

  92. 92.

    Knowlton, S. & Tasoglu, S. A. Bioprinted liver-on-a-chip for drug screening applications. Trends Biotechnol. 34, 681–682 (2016).

    Article  CAS  Google Scholar 

  93. 93.

    Konar, D., Devarasetty, M., Yildiz, D. V., Atala, A. & Murphy, S. V. Lung-on-a-chip technologies for disease modeling and drug development. Biomed. Eng. Comput. Biol. 7, 17–27 (2016).

    Google Scholar 

  94. 94.

    Doryab, A., Amoabediny, G. & Salehi-Najafabadi, A. Advances in pulmonary therapy and drug development: lung tissue engineering to lung-on-a-chip. Biotechnol. Adv. 34, 588–596 (2016).

    Article  CAS  Google Scholar 

  95. 95.

    Horvath, L. et al. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 5, 7974 (2015).

    Article  CAS  Google Scholar 

  96. 96.

    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  Google Scholar 

  97. 97.

    Wang, Z., Lee, S. J., Cheng, H. J., Yoo, J. J. & Atala, A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. https://doi.org/10.1016/j.actbio.2018.02.007 (2018).

  98. 98.

    Zhang, Y. S. et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016).

    Article  CAS  Google Scholar 

  99. 99.

    King, S. M. et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front. Physiol. 8, 123 (2017).

    Article  Google Scholar 

  100. 100.

    Abaci, H. E. & Shuler, M. L. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7, 383–391 (2015).

    Article  Google Scholar 

  101. 101.

    Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    Article  CAS  Google Scholar 

  102. 102.

    Weiswald, L. B., Bellet, D. & Dangles-Marie, V. Spherical cancer models in tumor biology. Neoplasia 17, 1–15 (2015).

    Article  Google Scholar 

  103. 103.

    Skardal, A., Devarasetty, M., Rodman, C., Atala, A. & Soker, S. Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann. Biomed. Eng. 43, 2361–2373 (2015).

    Article  Google Scholar 

  104. 104.

    Friedrich, J., Ebner, R. & Kunz-Schughart, L. A. Experimental anti-tumor therapy in 3D: spheroids — old hat or new challenge? Int. J. Radiat. Biol. 83, 849–871 (2007).

    Article  CAS  Google Scholar 

  105. 105.

    Xu, F. et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 6, 204–212 (2011).

    Article  CAS  Google Scholar 

  106. 106.

    King, S. M., Presnell, S. C. & Nguyen, D. G. Development of 3D bioprinted human breast cancer for in vitro drug screening. Cancer Res. 74 (Suppl), 2034 (2014).

    Article  Google Scholar 

  107. 107.

    Morimoto, Y., Hsiao, A. Y. & Takeuchi, S. Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly. Adv. Drug Deliv. Rev. 95, 29–39 (2015).

    Article  CAS  Google Scholar 

  108. 108.

    Morimoto, Y., Onuki, M. & Takeuchi, S. Mass production of cell-laden calcium alginate particles with centrifugal force. Adv. Healthc. Mater. 6, 1601375 (2017).

    Article  CAS  Google Scholar 

  109. 109.

    Tan, W. H. & Takeuchi, S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19, 2696–2701 (2007).

    Article  CAS  Google Scholar 

  110. 110.

    Headen, D. M., Aubry, G., Lu, H. & Garcia, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26, 3003–3008 (2014).

    Article  CAS  Google Scholar 

  111. 111.

    Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    Article  CAS  Google Scholar 

  112. 112.

    Matsunaga, Y. T., Morimoto, Y. & Takeuchi, S. Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv. Mater. 23, H90–H94 (2011).

    Article  CAS  Google Scholar 

  113. 113.

    Hong, S. M., Hsu, H. J., Kaunas, R. & Kameoka, J. Collagen microsphere production on a chip. Lab. Chip 12, 3277–3280 (2012).

    Article  CAS  Google Scholar 

  114. 114.

    Kato-Negishi, M., Morimoto, Y., Onoe, H. & Takeuchi, S. Millimeter-sized neural building blocks for 3D heterogeneous neural network assembly. Adv. Healthc. Mater. 2, 1564–1570 (2013).

    Article  CAS  Google Scholar 

  115. 115.

    Luo, H. Y. et al. Fabrication of viable centimeter-sized 3D tissue constructs with microchannel conduits for improved tissue properties through assembly of cell-laden microbeads. J. Tissue Eng. Regen. Med. 8, 493–504 (2014).

    Article  CAS  Google Scholar 

  116. 116.

    Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    Article  CAS  Google Scholar 

  117. 117.

    Chung, S. E., Park, W., Shin, S., Lee, S. A. & Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 7, 581–587 (2008).

    Article  CAS  Google Scholar 

  118. 118.

    Yang, W., Yu, H., Li, G., Wang, Y. & Liu, L. High-throughput fabrication and modular assembly of 3D heterogeneous microscale tissues. Small 13, 1602769 (2017).

    Article  CAS  Google Scholar 

  119. 119.

    Kang, E. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10, 877–883 (2011).

    Article  CAS  Google Scholar 

  120. 120.

    Wei, D. et al. Continuous fabrication and assembly of spatial cell-laden fibers for a tissue-like construct via a photolithographic-based microfluidic chip. ACS Appl. Mater. Inter 9, 14606–14617 (2017).

    Article  CAS  Google Scholar 

  121. 121.

    Onoe, H. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013).

    Article  CAS  Google Scholar 

  122. 122.

    Jun, Y. et al. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 34, 8122–8130 (2013).

    Article  CAS  Google Scholar 

  123. 123.

    Sakai, S., Yamaguchi, S., Takei, T. & Kawakami, K. Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels. Biomacromolecules 9, 2036–2041 (2008).

    Article  CAS  Google Scholar 

  124. 124.

    Lee, K. H., Shin, S. J., Park, Y. & Lee, S. H. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small 5, 1264–1268 (2009).

    Article  CAS  Google Scholar 

  125. 125.

    Yang, J. et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26, 6415–6422 (2005).

    Article  CAS  Google Scholar 

  126. 126.

    Leng, L., McAllister, A., Zhang, B. Y., Radisic, M. & Gunther, A. Mosaic hydrogels: one-step formation of multiscale soft materials. Adv. Mater. 24, 3650–3658 (2012).

    Article  CAS  Google Scholar 

  127. 127.

    Yan, J., Chen, F. & Amsden, B. G. Cell sheets prepared via gel-sol transition of calcium RGD-alginate. Acta Biomaterialia 30, 277–284 (2016).

    Article  CAS  Google Scholar 

  128. 128.

    Kim, K., Utoh, R., Ohashi, K., Kikuchi, T. & Okano, T. Fabrication of functional 3D hepatic tissues with polarized hepatocytes by stacking endothelial cell sheets in vitro. J. Tissue Eng. Regen. Med. 11, 2071–2080 (2017).

    Article  CAS  Google Scholar 

  129. 129.

    Cheng, S. et al. Self-adjusting, polymeric multilayered roll that can keep the shapes of the blood vessel scaffolds during biodegradation. Adv. Mater. 29, 1700171 (2017).

    Article  CAS  Google Scholar 

  130. 130.

    Ito, A. et al. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 11, 1553–1561 (2005).

    Article  CAS  Google Scholar 

  131. 131.

    Hsu, A. R. & Ellington, J. K. Patient-specific 3-dimensional printed titanium truss cage with tibiotalocalcaneal arthrodesis for salvage of persistent distal tibia nonunion. Foot Ankle Spec. 8, 483–489 (2015).

    Article  Google Scholar 

  132. 132.

    Jeong, C. G. & Atala, A. 3D printing and biofabrication for load bearing tissue engineering. Adv. Exp. Med. Biol. 881, 3–14 (2015).

    Article  CAS  Google Scholar 

  133. 133.

    Bose, S., Vahabzadeh, S. & Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today 16, 496–504 (2013).

    Article  CAS  Google Scholar 

  134. 134.

    McBeth, C. et al. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication 9, 015009 (2017).

    Article  CAS  Google Scholar 

  135. 135.

    Yao, Q. et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J. Mater. Sci. Mater. Med. 26, 5360 (2015).

    Article  CAS  Google Scholar 

  136. 136.

    Wang, M. O., Piard, C. M., Melchiorri, A., Dreher, M. L. & Fisher, J. P. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng. A 21, 1642–1653 (2015).

    Article  CAS  Google Scholar 

  137. 137.

    Pati, F. et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37, 230–241 (2015).

    Article  CAS  Google Scholar 

  138. 138.

    Kang, H. W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    Article  CAS  Google Scholar 

  139. 139.

    Ballyns, J. J. et al. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. A 14, 1195–1202 (2008).

    Article  Google Scholar 

  140. 140.

    Hockaday, L. A. et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4, 035005 (2012).

    Article  CAS  Google Scholar 

  141. 141.

    Bowles, R. D., Gebhard, H. H., Hartl, R. & Bonassar, L. J. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc. Natl Acad. Sci. USA 108, 13106–13111 (2011).

    Article  Google Scholar 

  142. 142.

    Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C. & Athanasiou, K. A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11, 21–34 (2015).

    Article  CAS  Google Scholar 

  143. 143.

    Tatman, P. D. et al. Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng. B 21, 543–559 (2015).

    Article  Google Scholar 

  144. 144.

    Di Bella, C., Fosang, A., Donati, D. M., Wallace, G. G. & Choong, P. F. 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines. Front. Surg. 2, 39 (2015).

    Article  Google Scholar 

  145. 145.

    Gruene, M. et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. C 17, 79–87 (2011).

    Article  Google Scholar 

  146. 146.

    Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M. & D’Lima, D. D. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. A 18, 1304–1312 (2012).

    Article  CAS  Google Scholar 

  147. 147.

    Cui, X., Breitenkamp, K., Lotz, M. & D’Lima, D. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol. Bioeng. 109, 2357–2368 (2012).

    Article  CAS  Google Scholar 

  148. 148.

    Xu, T. et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001 (2013).

    Article  CAS  Google Scholar 

  149. 149.

    Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013).

    Article  CAS  Google Scholar 

  150. 150.

    Almqvist, K. F. et al. Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am. J. Sport Med. 37, 1920–1929 (2009).

    Article  Google Scholar 

  151. 151.

    Dhollander, A. A. M. et al. Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am. J. Sport Med. 40, 75–82 (2012).

    Article  Google Scholar 

  152. 152.

    Skardal, A. et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 1, 792–802 (2012).

    Article  CAS  Google Scholar 

  153. 153.

    Yang, J. et al. Cell delivery in regenerative medicine: the cell sheet engineering approach. J. Control. Release 116, 193–203 (2006).

    Article  CAS  Google Scholar 

  154. 154.

    Iwata, T. et al. Cell sheet engineering and its application for periodontal regeneration. J. Tissue Eng. Regen. Med. 9, 343–356 (2015).

    Article  CAS  Google Scholar 

  155. 155.

    Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Calcified Tissue Int. 96, 183–195 (2015).

    Article  CAS  Google Scholar 

  156. 156.

    Ostrovidov, S. et al. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng. Part B Rev. 20, 403–436 (2014).

    Article  Google Scholar 

  157. 157.

    Gaebel, R. et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32, 9218–9230 (2011).

    Article  CAS  Google Scholar 

  158. 158.

    Xu, T., Baicu, C., Aho, M., Zile, M. & Boland, T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1, 035001 (2009).

    Article  CAS  Google Scholar 

  159. 159.

    Gaetani, R. et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33, 1782–1790 (2012).

    Article  CAS  Google Scholar 

  160. 160.

    Gao, L. et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ. Res. 120, 1318–1325 (2017).

    Article  CAS  Google Scholar 

  161. 161.

    Atala, A., Kasper, F. K. & Mikos, A. G. Engineering complex tissues. Sci. Transl Med. 4, 160rv12 (2012).

    Article  CAS  Google Scholar 

  162. 162.

    Lee, C. H. et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376, 440–448 (2010).

    Article  CAS  Google Scholar 

  163. 163.

    Merceron, T. K. et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 7, 035003 (2015).

    Article  CAS  Google Scholar 

  164. 164.

    Novosel, E. C., Kleinhans, C. & Kluger, P. J. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–311 (2011).

    Article  CAS  Google Scholar 

  165. 165.

    Jain, R. K., Au, P., Tam, J., Duda, D. G. & Fukumura, D. Engineering vascularized tissue. Nat. Biotechnol. 23, 821–823 (2005).

    Article  CAS  Google Scholar 

  166. 166.

    Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C. & Spence, D. M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240–3253 (2014).

    Article  CAS  Google Scholar 

  167. 167.

    Ozbolat, I. T. & Yu, Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60, 691–699 (2013).

    Article  Google Scholar 

  168. 168.

    Zheng, Y. et al. Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32, 5391–5401 (2011).

    Article  CAS  Google Scholar 

  169. 169.

    Choi, N. W. et al. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007).

    Article  CAS  Google Scholar 

  170. 170.

    Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  Google Scholar 

  171. 171.

    Attalla, R., Ling, C. & Selvaganapathy, P. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Biomed. Microdevices 18, 17 (2016).

    Article  CAS  Google Scholar 

  172. 172.

    L’Heureux, N. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12, 361–365 (2006).

    Article  CAS  Google Scholar 

  173. 173.

    Schubert, C., van Langeveld, M. C. & Donoso, L. A. Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98, 159–161 (2014).

    Article  Google Scholar 

  174. 174.

    Kato-Negishi, M., Onoe, H., Ito, A. & Takeuchi, S. Rod-shaped neural units for aligned 3D neural network connection. Adv. Healthc. Mater. 6, 1700143 (2017).

    Article  CAS  Google Scholar 

  175. 175.

    de Vos, P., Faas, M. M., Strand, B. & Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006).

    Article  CAS  Google Scholar 

  176. 176.

    Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  Google Scholar 

  177. 177.

    Rengifo, H. R., Giraldo, J. A., Labrada, I. & Stabler, C. L. Long-term survival of allograft murine islets coated via covalently stabilized polymers. Adv. Healthc. Mater. 3, 1061–1070 (2014).

    Article  CAS  Google Scholar 

  178. 178.

    Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article  CAS  Google Scholar 

  179. 179.

    Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  CAS  Google Scholar 

  180. 180.

    Dufrane, D., Goebbels, R. M., Saliez, A., Guiot, Y. & Gianello, P. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81, 1345–1353 (2006).

    Article  Google Scholar 

  181. 181.

    Elliott, R. B. et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14, 157–161 (2007).

    Article  Google Scholar 

  182. 182.

    Capone, S. H. et al. Impact of alginate composition: from bead mechanical properties to encapsulated HepG2/C3A cell activities for in vivo implantation. PLOS ONE 8, e62032 (2013).

    Article  CAS  Google Scholar 

  183. 183.

    Song, W. et al. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation. Sci. Rep. 5, 16884 (2015).

    Article  CAS  Google Scholar 

  184. 184.

    Qi, M. et al. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25, 5885–5892 (2004).

    Article  CAS  Google Scholar 

  185. 185.

    Veriter, S. et al. The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials 32, 5945–5956 (2011).

    Article  CAS  Google Scholar 

  186. 186.

    Fozdar, D. Y., Soman, P., Lee, J. W., Han, L. H. & Chen, S. Three-dimensional polymer constructs exhibiting a tunable negative poisson’s ratio. Adv. Funct. Mater. 21, 2712–2720 (2011).

    Article  CAS  Google Scholar 

  187. 187.

    Lee, H. & Cho, D. W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab. Chip 16, 2618–2625 (2016).

    Article  CAS  Google Scholar 

  188. 188.

    Clausen, A., Wang, F., Jensen, J. S., Sigmund, O. & Lewis, J. A. Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27, 5523–5527 (2015).

    Article  CAS  Google Scholar 

  189. 189.

    Shan, S. et al. Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296–4301 (2015).

    Article  CAS  Google Scholar 

  190. 190.

    Martin, J. J., Fiore, B. E. & Erb, R. M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 6, 8641 (2015).

    Article  CAS  Google Scholar 

  191. 191.

    Han, X., Bibb, R. & Harris, R. Engineering design of artificial vascular junctions for 3D printing. Biofabrication 8, 025018 (2016).

    Article  CAS  Google Scholar 

  192. 192.

    Sun, Y., Yang, X. & Wang, Q. In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations. Biofabrication 6, 015008 (2014).

    Article  Google Scholar 

  193. 193.

    Yang, X., Mironov, V. & Wang, Q. Modeling fusion of cellular aggregates in biofabrication using phase field theories. J. Theor. Biol. 303, 110–118 (2012).

    Article  Google Scholar 

  194. 194.

    McCune, M., Shafiee, A., Forgacs, G. & Kosztin, I. Predictive modeling of post bioprinting structure formation. Soft Matter 10, 1790–1800 (2014).

    Article  CAS  Google Scholar 

  195. 195.

    Zhu, W. et al. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40, 103–112 (2016).

    Article  CAS  Google Scholar 

  196. 196.

    Tumbleston, J. R. et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  Google Scholar 

  197. 197.

    Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., Mecham, S. J. & DeSimone, J. M. Layerless fabrication with continuous liquid interface production. Proc. Natl Acad. Sci. USA 113, 11703–11708 (2016).

    Article  CAS  Google Scholar 

  198. 198.

    Shanjani, Y., Pan, C. C., Elomaa, L. & Yang, Y. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7, 045008 (2015).

    Article  CAS  Google Scholar 

  199. 199.

    Hoffmann, A. et al. New stereolithographic resin providing functional surfaces for biocompatible three-dimensional printing. J. Tissue Eng. 8, 2041731417744485 (2017).

    Article  Google Scholar 

  200. 200.

    Morris, V. B., Nimbalkar, S., Younesi, M., McClellan, P. & Akkus, O. Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography. Ann. Biomed. Eng. 45, 286–296 (2017).

    Article  Google Scholar 

  201. 201.

    Serpooshan, V. et al. Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials 131, 47–57 (2017).

    Article  CAS  Google Scholar 

  202. 202.

    Bouyer, C. et al. A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv. Mater. 28, 161–167 (2016).

    Article  CAS  Google Scholar 

  203. 203.

    Durmus, N. G. et al. Magnetic levitation of single cells. Proc. Natl Acad. Sci. USA 112, E3661–E3668 (2015).

    Article  CAS  Google Scholar 

  204. 204.

    Li, Y. et al. Rapid assembly of heterogeneous 3D cell microenvironments in a microgel array. Adv. Mater. 28, 3543–3548 (2016).

    Article  CAS  Google Scholar 

  205. 205.

    O’Bryan, C. S. et al. Self-assembled micro-organogels for 3D printing silicone structures. Sci. Adv. 3, e1602800 (2017).

    Article  CAS  Google Scholar 

  206. 206.

    Vrij, E. et al. Directed Assembly and Development of Material-Free Tissues with Complex Architectures. Adv. Mater. 28, 4032–4039 (2016).

    Article  CAS  Google Scholar 

  207. 207.

    Fernandez, J. G. & Khademhosseini, A. Micro-masonry: construction of 3D structures by microscale self-assembly. Adv. Mater. 22, 2538–2541 (2010).

    Article  CAS  Google Scholar 

  208. 208.

    Qi, H. et al. DNA-directed self-assembly of shape-controlled hydrogels. Nature Commun. 4, 2275 (2013).

    Article  CAS  Google Scholar 

  209. 209.

    Todhunter, M. E. et al. Programmed synthesis of three-dimensional tissues. Nat. Methods 12, 975–981 (2015).

    Article  CAS  Google Scholar 

  210. 210.

    Tasoglu, S., Diller, E., Guven, S., Sitti, M. & Demirci, U. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 5, 3124 (2014).

    Article  CAS  Google Scholar 

  211. 211.

    Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016).

    Article  Google Scholar 

  212. 212.

    Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).

    Article  CAS  Google Scholar 

  213. 213.

    Gullo, M. R., Takeuchi, S. & Paul, O. Multicellular biohybrid materials: probing the interplay of cells of different types precisely positioned and constrained on 3D wireframe-like microstructures. Adv. Healthc. Mater. 6, 1601053 (2017).

    Article  CAS  Google Scholar 

  214. 214.

    Nava, M. M., Zandrini, T., Cerullo, G., Osellame, R. & Raimondi, M. T. 3D stem cell niche engineering via two-photon laser polymerization. Methods Mol. Biol. 1612, 253–266 (2017).

    Article  CAS  Google Scholar 

  215. 215.

    Richter, B. et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. Adv. Mater. 29, 1604342 (2017).

    Article  CAS  Google Scholar 

  216. 216.

    Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

    Article  CAS  Google Scholar 

  217. 217.

    Chiang, M. Y., Hsu, Y. W., Hsieh, H. Y., Chen, S. Y. & Fan, S. K. Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels. Sci. Adv. 2, e1600964 (2016).

    Article  CAS  Google Scholar 

  218. 218.

    Inostroza-Brito, K. E. et al. Cross-linking of a biopolymer-peptide co-assembling system. Acta Biomaterialia 50, 80–89 (2017).

    Article  CAS  Google Scholar 

  219. 219.

    Hardin, J. O., Ober, T. J., Valentine, A. D. & Lewis, J. A. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27, 3279–3284 (2015).

    Article  CAS  Google Scholar 

  220. 220.

    Snyder, J., Son, A. R., Hamid, Q., Wu, H. & Sun, W. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system. Biofabrication 8, 015002 (2016).

    Article  CAS  Google Scholar 

  221. 221.

    Duchi, S. et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci. Rep. 7, 5837 (2017).

    Article  CAS  Google Scholar 

  222. 222.

    Mogas-Soldevila, L., Duro-Royo, J. & Oxman, N. Water-based robotic fabrication: large-scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion. 3D Print. Addit. Manuf. 1, 141–151 (2014).

    Article  Google Scholar 

  223. 223.

    Schuurman, W. et al. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3, 021001 (2011).

    Article  CAS  Google Scholar 

  224. 224.

    Graham, A. D. et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci. Rep. 7, 7004 (2017).

    Article  CAS  Google Scholar 

  225. 225.

    Gu, Q., Tomaskovic-Crook, E., Wallace, G. G. & Crook, J. M. 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv. Healthc. Mater. 6, 1700175 (2017).

    Article  CAS  Google Scholar 

  226. 226.

    Zujur, D. et al. Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions. Sci. Adv. 3, e1602875 (2017).

    Article  CAS  Google Scholar 

  227. 227.

    Whulanza, Y., Ucciferri, N., Domenici, C., Vozzi, G. & Ahluwalia, A. Sensing scaffolds to monitor cellular activity using impedance measurements. Biosens. Bioelectron. 26, 3303–3308 (2011).

    Article  CAS  Google Scholar 

  228. 228.

    Orsi, G. et al. Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces. Curr. Top. Med. Chem. 15, 271–278 (2015).

    Article  CAS  Google Scholar 

  229. 229.

    Muskovich, M. & Bettinger, C. J. Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv. Healthc. Mater. 1, 248–266 (2012).

    Article  CAS  Google Scholar 

  230. 230.

    Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  Google Scholar 

  231. 231.

    Tatara, A. M. et al. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors. Acta Biomater. 45, 72–84 (2016).

    Article  CAS  Google Scholar 

  232. 232.

    Emans, P. J. et al. Autologous engineering of cartilage. Proc. Natl Acad. Sci. USA 107, 3418–3423 (2010).

    Article  Google Scholar 

  233. 233.

    Kluin, J. et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant — from material design to 12 months follow-up in sheep. Biomaterials 125, 101–117 (2017).

    Article  CAS  Google Scholar 

  234. 234.

    Rothuizen, T. C. et al. Development and evaluation of in vivo tissue engineered blood vessels in a porcine model. Biomaterials 75, 82–90 (2016).

    Article  CAS  Google Scholar 

  235. 235.

    Di Bella, C. et al. In-situ handheld 3D Bioprinting for cartilage regeneration. J. Tissue Eng. Regen. Med. 12, 611–621 (2017).

    Article  CAS  Google Scholar 

  236. 236.

    Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  CAS  Google Scholar 

  237. 237.

    Hendrikson, W. J. et al. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication 9, 031001 (2017).

    Article  Google Scholar 

  238. 238.

    Peltola, S. M. et al. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40, 268–280 (2008).

    Article  CAS  Google Scholar 

  239. 239.

    Malda, J. et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.M. acknowledges the Dutch Province of Limburg and the European Research Council (grant #637308) for funding. J.A.B. thanks the AO foundation for funding. S.J.L. and J.J.Y. were supported by the US National Institutes of Health (1P41EB023833-01). S.T. and Y.M. thank A. Shima, S. Nagata and F. Ozawa for valuable discussion.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Lorenzo Moroni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Taylor & Francis Ltd: http://www.tandfonline.com

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moroni, L., Burdick, J.A., Highley, C. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater 3, 21–37 (2018). https://doi.org/10.1038/s41578-018-0006-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing