Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a unifying model for B-cell receptor triggering

Abstract

Antibodies are exceptionally versatile molecules with remarkable flexibility in their binding properties. Their natural targets range from small-molecule toxins, across viruses of different sizes, to bacteria and large multicellular parasites. The molecular determinants bound by antibodies include proteins, peptides, carbohydrates, nucleic acids, lipids and even synthetic molecules that have never existed in nature. Membrane-anchored antibodies also serve as receptors on the surface of the B cells that produce them. Despite recent structural insights, there is still no unifying molecular mechanism to explain how antibody targets (antigens) trigger the activation of these B-cell receptors (BCRs). After cognate antigen encounter, somatic hypermutation and class-switch recombination allow BCR affinity maturation and immunoglobulin class-specific responses, respectively. This raises the fundamental question of how one receptor activation mechanism can accommodate a plethora of variant receptors and ligands, and how it can ensure that individual B cells remain responsive to antigen after somatic hypermutation and class switching. There is still no definite answer. Here we give a brief historical account of the different models proposed to explain BCR triggering and discuss their merit in the context of the current knowledge of the structure of BCRs, their dynamic membrane distribution, and recent biochemical and cell biological insights.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The four main models of B-cell receptor (BCR) triggering.
Fig. 2: Overview of some B-cell transmembrane receptors.
Fig. 3: Nature and diversity of antigens.

Similar content being viewed by others

References

  1. Burnet, F. M. A modification of Jerne’s theory of antibody production using the concept of clonal selection (reprinted from Australian Journal of Science Vol. 20, 1957). Nat. Immunol. 8, 1024–1026 (2007).

    Google Scholar 

  2. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. & Tonegawa, S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature 286, 676–683 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Eisen, H. N. Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol. Res. 2, 381–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Metzger, H. Transmembrane signaling: the joy of aggregation. J. Immunol. 149, 1477–1487 (1992). This paper presents a synthesis of much data suggesting that aggregation of receptors, including the BCR, can serve as a generic mechanism for transmembrane signaling.

    Article  CAS  PubMed  Google Scholar 

  5. Yang, J. & Reth, M. The dissociation activation model of B cell antigen receptor triggering. FEBS Lett. 584, 4872–κ4877 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Tolar, P. & Pierce, S. K. A conformation-induced oligomerization model for B cell receptor microclustering and signaling. Curr. Top. Microbiol. Immunol. 340, 155–169 (2010). This is the first suggestion of a conformation-induced oligomerization model for BCR activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferapontov, A. et al. Antigen footprint governs activation of the B cell receptor. Nat. Commun. 14, 976 (2023). This is the first suggestion that kinetic segregation may control BCR activation and that it is governed by the footprint of the antigen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khan, W. N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling. Nat. Immunol. 4, 849–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Ziegler, C. G. K. et al. Constitutive activation of the B cell receptor underlies dysfunctional signaling in chronic lymphocytic leukemia. Cell Rep. 28, 923–937 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomes de Castro, M. A. et al. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat. Commun. 10, 820 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duhren-von Minden, M. et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489, 309–312 (2012).

    Article  PubMed  Google Scholar 

  15. Minici, C. et al. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nat. Commun. 8, 15746 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zikherman, J., Parameswaran, R. & Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489, 160–164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schweighoffer, E. et al. The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity 38, 475–488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fanger, M. W., Hart, D. A., Wells, J. V. & Nisonoff, A. Requirement for cross-linkage in the stimulation of transformation of rabbit peripheral lymphocytes by antiglobulin reagents. J. Immunol. 105, 1484–1492 (1970).

    Article  CAS  PubMed  Google Scholar 

  19. Monroe, J. G. & Cambier, J. C. B cell activation. I. Anti-immunoglobulin-induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes. J. Exp. Med. 157, 2073–2086 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Schreiner, G. F. & Unanue, E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand–surface immunoglobulin interaction. Adv. Immunol. 24, 37–165 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. Edelman, G. M. Dissociation of γ-globulin. J. Am. Chem. Soc. 81, 3155–3156 (2002).

    Article  Google Scholar 

  22. Porter, R. R. The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem. J. 73, 119–126 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Metzger, H. Effect of antigen binding on the properties of antibody. Adv. Immunol. 18, 169–207 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Murphy, K., Weaver, C., Berg, L. & Barton, G. Janeway’s Immunobiology 10th edn (W.W. Norton & Company, 2022).

  25. Kato, Y. et al. Multifaceted effects of antigen valency on B cell response composition and differentiation in vivo. Immunity 53, 548–563.e548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burger, J. A. & Chiorazzi, N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 34, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tolar, P., Hanna, J., Krueger, P. D. & Pierce, S. K. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30, 44–55 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, Y. M. et al. Monovalent ligation of the B cell receptor induces receptor activation but fails to promote antigen presentation. Proc. Natl Acad. Sci. USA 103, 3327–3332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schamel, W. W. & Reth, M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13, 5–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Qi, S., Krogsgaard, M., Davis, M. M. & Chakraborty, A. K. Molecular flexibility can influence the stimulatory ability of receptor–ligand interactions at cell–cell junctions. Proc. Natl Acad. Sci. USA 103, 4416–4421 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y. et al. Structural insights into immunoglobulin M. Science 367, 1014–1017 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Sharp, T. H. et al. Insights into IgM-mediated complement activation based on in situ structures of IgM–C1–C4b. Proc. Natl Acad. Sci. USA 116, 11900–11905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ugurlar, D. et al. Structures of C1–IgG1 provide insights into how danger pattern recognition activates complement. Science 359, 794–797 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Dong, Y. et al. Structural principles of B-cell antigen receptor assembly. Preprint at bioRxiv https://doi.org/10.1101/2022.08.13.503858 (2022).

  36. Davis, S. J. & van der Merwe, P. A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187 (1996). This paper presents the kinetic segregation model for TCR activation.

    Article  CAS  PubMed  Google Scholar 

  37. Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Thomas, M. L. The regulation of B- and T-lymphocyte activation by the transmembrane protein tyrosine phosphatase CD45. Curr. Opin. Cell Biol. 6, 247–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Nishizumi, H., Horikawa, K., Mlinaric-Rascan, I. & Yamamoto, T. A double-edged kinase Lyn: a positive and negative regulator for antigen receptor-mediated signals. J. Exp. Med. 187, 1343–1348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith, K. G., Tarlinton, D. M., Doody, G. M., Hibbs, M. L. & Fearon, D. T. Inhibition of the B cell by CD22: a requirement for Lyn. J. Exp. Med. 187, 807–811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, W., Skrzypczynska, K. M. & Weiss, A. Acute Csk inhibition hinders B cell activation by constraining the PI3 kinase pathway. Proc. Natl Acad. Sci. USA 118, e2108957118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wan, Z. et al. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold. eLife 4, e06925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, Q., Menon, R., Calder, L. J., Tolar, P. & Rosenthal, P. B. Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nat. Commun. 13, 6314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hobeika, E., Maity, P. C. & Jumaa, H. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol. 37, 310–320 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Amendt, T. et al. Primary immune responses and affinity maturation are controlled by IgD. Front. Immunol. 12, 709240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Setz, C. S. et al. Pten controls B-cell responsiveness and germinal center reaction by regulating the expression of IgD BCR. EMBO J. 38, e100249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ubelhart, R. et al. Responsiveness of B cells is regulated by the hinge region of IgD. Nat. Immunol. 16, 534–543 (2015).

    Article  PubMed  Google Scholar 

  48. Noviski, M. et al. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. eLife 7, e35074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haniuda, K., Fukao, S., Kodama, T., Hasegawa, H. & Kitamura, D. Autonomous membrane IgE signaling prevents IgE-memory formation. Nat. Immunol. 17, 1109–1117 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Z. et al. Regulation of B cell fate by chronic activity of the IgE B cell receptor. eLife 5, e21238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Knight, A. M., Lucocq, J. M., Prescott, A. R., Ponnambalam, S. & Watts, C. Antigen endocytosis and presentation mediated by human membrane IgG1 in the absence of the Igα/Igβ dimer. EMBO J. 16, 3842–3850 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Engels, N. et al. Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat. Immunol. 10, 1018–1025 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Engels, N. & Wienands, J. Memory control by the B cell antigen receptor. Immunol. Rev. 283, 150–160 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Minguet, S., Dopfer, E. P. & Schamel, W. W. Low-valency, but not monovalent, antigens trigger the B-cell antigen receptor (BCR). Int. Immunol. 22, 205–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Avalos, A. M. et al. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J. Exp. Med. 211, 365–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Volkmann, C. et al. Molecular requirements of the B-cell antigen receptor for sensing monovalent antigens. EMBO J. 35, 2371–2381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Dongen, M. A., Dougherty, C. A. & Banaszak Holl, M. M. Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules 15, 3215–3234 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zapadka, K. L., Becher, F. J., Gomes Dos Santos, A. L. & Jackson, S. E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interf. Focus 7, 20170030 (2017).

    Article  Google Scholar 

  59. Yang, J. & Reth, M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 467, 465–469 (2010). This is the first suggestion of the dissociation–activation model for BCR activation.

    Article  CAS  PubMed  Google Scholar 

  60. Dintzis, H. M., Dintzis, R. Z. & Vogelstein, B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl Acad. Sci. USA 73, 3671–3675 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mukherjee, S. et al. Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci. Signal. 6, ra1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stepanek, O., Draber, P., Drobek, A., Horejsi, V. & Brdicka, T. Nonredundant roles of Src-family kinases and Syk in the initiation of B-cell antigen receptor signaling. J. Immunol. 190, 1807–1818 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Natkanski, E. et al. B cells use mechanical energy to discriminate antigen affinities. Science 340, 1587–1590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lavoie, T. B., Drohan, W. N. & Smith-Gill, S. J. Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme. J. Immunol. 148, 503–513 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Tsourkas, P. K., Liu, W., Das, S. C., Pierce, S. K. & Raychaudhuri, S. Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement. Cell Mol. Immunol. 9, 62–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Brooks, J. F. et al. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. Nat. Immunol. 24, 1762–1777 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Nowosad, C. R., Spillane, K. M. & Tolar, P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17, 870–877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tolar, P. Cytoskeletal control of B cell responses to antigens. Nat. Rev. Immunol. 17, 621–634 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Khalil, A. M., Cambier, J. C. & Shlomchik, M. J. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336, 1178–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Al Qaraghuli, M. M., Kubiak-Ossowska, K., Ferro, V. A. & Mulheran, P. A. Antibody-protein binding and conformational changes: identifying allosteric signalling pathways to engineer a better effector response. Sci. Rep. 10, 13696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen, Z. et al. Conformational change within the extracellular domain of B cell receptor in B cell activation upon antigen binding. eLife 8, e42271 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Scharf, L. et al. Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody. Proc. Natl Acad. Sci. 110, 6049–6054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma, X. et al. Cryo-EM structures of two human B cell receptor isotypes. Science 377, 880–885 (2022). This is one of three contemporaneous papers showing the first atomic-resolution structures of the BCR complex solubilized in detergent.

    Article  CAS  PubMed  Google Scholar 

  76. Su, Q. et al. Cryo-EM structure of the human IgM B cell receptor. Science 377, 875–880 (2022). This is one of three contemporaneous papers showing the first atomic-resolution structures of the BCR complex solubilized in detergent.

    Article  CAS  PubMed  Google Scholar 

  77. Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Resch-Genger, U. et al. How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J. Fluoresc. 15, 337–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Baumgart, F., Arnold, A. M., Rossboth, B. K., Brameshuber, M. & Schutz, G. J. What we talk about when we talk about nanoclusters. Methods Appl. Fluoresc. 7, 013001 (2018).

    Article  PubMed  Google Scholar 

  80. Maity, P. C. et al. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci. Signal. 8, ra93 (2015).

    Article  PubMed  Google Scholar 

  81. Klasener, K., Maity, P. C., Hobeika, E., Yang, J. & Reth, M. B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. eLife 3, e02069 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee, J., Sengupta, P., Brzostowski, J., Lippincott-Schwartz, J. & Pierce, S. K. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells. Mol. Biol. Cell 28, 511–523 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mattila, P. K. et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38, 461–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Gasparrini, F. et al. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J. 35, 258–280 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Garcia-Parajo, M. F., Cambi, A., Torreno-Pina, J. A., Thompson, N. & Jacobson, K. Nanoclustering as a dominant feature of plasma membrane organization. J. Cell Sci. 127, 4995–5005 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nicolson, G. L. & Ferreira de Mattos, G. The fluid-mosaic model of cell membranes: A brief introduction, historical features, some general principles, and its adaptation to current information. Biochim. Biophys. Acta Biomembr. 1865, 184135 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Bernardino de la Serna, J., Schutz, G. J., Eggeling, C. & Cebecauer, M. There is no simple model of the plasma membrane organization. Front. Cell Dev. Biol. 4, 106 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shevchenko, A. & Simons, K. Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11, 593–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aman, M. J. & Ravichandran, K. S. A requirement for lipid rafts in B cell receptor induced Ca2+ flux. Curr. Biol. 10, 393–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Cheng, P. C., Brown, B. K., Song, W. & Pierce, S. K. Translocation of the B cell antigen receptor into lipid rafts reveals a novel step in signaling. J. Immunol. 166, 3693–3701 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Stone, M. B., Shelby, S. A., Nunez, M. F., Wisser, K. & Veatch, S. L. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6, e19891 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nunez, M. F., Wisser, K. & Veatch, S. L. Synergistic factors control kinase-phosphatase organization in B-cells engaged with supported bilayers. Mol. Biol. Cell 31, 667–682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Petrie, R. J., Schnetkamp, P. P., Patel, K. D., Awasthi-Kalia, M. & Deans, J. P. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J. Immunol. 165, 1220–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Awasthi-Kalia, M., Schnetkamp, P. P. & Deans, J. P. Differential effects of filipin and methyl-β-cyclodextrin on B cell receptor signaling. Biochem. Biophys. Res. Commun. 287, 77–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Shelby, S. A., Castello-Serrano, I., Wisser, K. C., Levental, I. & Veatch, S. L. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat. Chem. Biol. 19, 750–758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Treanor, B. et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32, 187–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Becker, M., Hobeika, E., Jumaa, H., Reth, M. & Maity, P. C. CXCR4 signaling and function require the expression of the IgD-class B-cell antigen receptor. Proc. Natl Acad. Sci. USA 114, 5231–5236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kwak, K. et al. B cell responses to membrane-presented antigens require the function of the mechanosensitive cation channel Piezo1. Sci. Signal. 16, eabq5096 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saltukoglu, D. et al. Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J. 42, e112030 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lu, C. H. et al. Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Commun. Biol. 2, 177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Putney, J. W. Jr. Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169, 381–382 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Berry, C. T. et al. BCR-induced Ca2+ signals dynamically tune survival, metabolic reprogramming, and proliferation of naive B cells. Cell Rep. 31, 107474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kurosaki, T. Genetic analysis of B cell antigen receptor signaling. Annu. Rev. Immunol. 17, 555–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Zhou, D. & Zhu, J. Structure of CD148 fibronectin type III domain 1 and 2. Protein Data Bank https://doi.org/10.2210/pdb7U08/pdb (2022).

  110. Izumi, K., Yoshida, M., Hayashi, F., Yokoyama, S. & RIKEN Structural Genomics/Proteomics Initiative (RSGI) Solution structure of the fourth fn3 domain of human receptor-type tyrosine-protein phosphatase eta. Protein Data Bank https://doi.org/10.2210/pdb2DLE/pdb (2006).

  111. Barr, A. J. et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136, 352–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat. Immunol. 17, 574–582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Symons, A., Willis, A. C. & Barclay, A. N. Domain organization of the extracellular region of CD45. Protein Eng. 12, 885–892 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Nam, H. J., Poy, F., Saito, H. & Frederick, C. A. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J. Exp. Med. 201, 441–452 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Harris, L. J., Skaletsky, E. & McPherson, A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275, 861–872 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Mimoto, F. et al. Engineered antibody Fc variant with selectively enhanced FcγRIIb binding over both FcγRIIa(R131) and FcγRIIa(H131). Protein Eng. Des. Sel. 26, 589–598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Susa, K. J., Rawson, S., Kruse, A. C. & Blacklow, S. C. Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81. Science 371, 300–305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gilbert, H. E., Asokan, R., Holers, V. M. & Perkins, S. J. The 15 SCR flexible extracellular domains of human complement receptor type 2 can mediate multiple ligand and antigen interactions. J. Mol. Biol. 362, 1132–1147 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Galaxy, C. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).

    Article  Google Scholar 

  122. Bhattacharya, A. A., Curry, S. & Franks, N. P. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J. Biol. Chem. 275, 38731–38738 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Rodnin, M. V. et al. Histidine protonation and conformational switching in diphtheria toxin translocation domain. Toxins 15, 410 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Venkadesh, S., Mandal, P. K. & Gautham, N. Crystal structure of the decamer CGGGCGCCCG forming a Holliday junction. Protein Data Base https://doi.org/10.2210/pdb3hqe/pdb (2009).

  125. Eichert, A. et al. The crystal structure of an ‘all locked’ nucleic acid duplex. Nucleic Acids Res. 38, 6729–6736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nielsen, K. M. E., Petersen, M., Hakansson, A. E., Wengel, J. & Jacobsen, J. P. α-L-LNA (α-L-ribo configured locked nucleic acid) recognition of DNA: an NMR spectroscopic study. Chemistry 8, 3001–3009 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Hombach, J., Tsubata, T., Leclercq, L., Stappert, H. & Reth, M. Molecular components of the B-cell antigen receptor complex of the IgM class. Nature 343, 760–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  129. Cambier, J. C. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol. Today 16, 110 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Dong, Y. et al. Structural principles of B cell antigen receptor assembly. Nature 612, 156–161 (2022). This is one of three contemporaneous papers showing the first atomic-resolution structures of the BCR complex solubilized in detergent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pao, L. I. & Famiglietti, S. J. & Cambier, J. C. Asymmetrical phosphorylation and function of immunoreceptor tyrosine-based activation motif tyrosines in B cell antigen receptor signal transduction. J. Immunol. 160, 3305–3314 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Burkhardt, A. L., Brunswick, M., Bolen, J. B. & Mond, J. J. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc. Natl Acad. Sci. USA 88, 7410–7414 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mocsai, A., Ruland, J. & Tybulewicz, V. L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chiu, C. W., Dalton, M., Ishiai, M., Kurosaki, T. & Chan, A. C. BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins. EMBO J. 21, 6461–6472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fu, C., Turck, C. W., Kurosaki, T. & Chan, A. C. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Goitsuka, R. et al. Cutting edge: BASH, a novel signaling molecule preferentially expressed in B cells of the bursa of Fabricius. J. Immunol. 161, 5804–5808 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Wienands, J. et al. SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188, 791–795 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fu, C. & Chan, A. C. Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cγ, Grb2, and Vav after B cell antigen receptor activation. J. Biol. Chem. 272, 27362–27368 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Hashimoto, S. et al. Identification of the SH2 domain binding protein of Bruton’s tyrosine kinase as BLNK — functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 94, 2357–2364 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Ishiai, M. et al. BLNK required for coupling Syk to PLCγ2 and Rac1-JNK in B cells. Immunity 10, 117–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Su, Y.-W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 29, 3702–3711 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Burbage, M. et al. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity. J. Exp. Med. 212, 53–72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Janssen, E., Zhu, M., Zhang, W., Koonpaew, S. & Zhang, W. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4, 117–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Malhotra, S., Kovats, S., Zhang, W. & Coggeshall, K. M. Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB. J. Biol. Chem. 284, 36202–36212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Trebak, M. & Kinet, J. P. Calcium signalling in T cells. Nat. Rev. Immunol. 19, 154–169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Braun, J., Sha’afi, R. I. & Unanue, E. R. Crosslinking by ligands to surface immunoglobulin triggers mobilization of intracellular 45Ca2+ in B lymphocytes. J. Cell Biol. 82, 755–766 (1979).

    Article  CAS  PubMed  Google Scholar 

  147. Baba, Y. & Kurosaki, T. Role of calcium signaling in B cell activation and biology. Curr. Top. Microbiol. Immunol. 393, 143–174 (2016).

    CAS  PubMed  Google Scholar 

  148. Matsumoto, A. K. et al. Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J. Exp. Med. 173, 55–64 (1991).

    Article  CAS  PubMed  Google Scholar 

  149. Bradbury, L. E., Kansas, G. S., Levy, S., Evans, R. L. & Tedder, T. F. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J. Immunol. 149, 2841–2850 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Fujimoto, M. et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13, 47–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Okada, T., Maeda, A., Iwamatsu, A., Gotoh, K. & Kurosaki, T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 13, 817–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Castello, A. et al. Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K–Akt pathway in B cells. Nat. Immunol. 14, 966–975 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Sicheri, F. & Kuriyan, J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Dai, X. et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Invest. 123, 2024–2036 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nada, S., Okada, M., MacAuley, A., Cooper, J. A. & Nakagawa, H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351, 69–72 (1991).

    Article  CAS  PubMed  Google Scholar 

  156. de la Fuente-Garcı́a, M. A. et al. CD148 is a membrane protein tyrosine phosphatase present in all hematopoietic lineages and is involved in signal transduction on lymphocytes. Blood 91, 2800–2809 (1998).

    Article  PubMed  Google Scholar 

  157. Zhu, J. W., Brdicka, T., Katsumoto, T. R., Lin, J. & Weiss, A. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity 28, 183–196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Getahun, A., Beavers, N. A., Larson, S. R., Shlomchik, M. J. & Cambier, J. C. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J. Exp. Med. 213, 751–769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Smith, M. J. et al. Elevated PTEN expression maintains anergy in human B cells and reveals unexpectedly high repertoire autoreactivity. JCI Insight 4, e123384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gabbiani, G., Chaponnier, C., Zumbe, A. & Vassalli, P. Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes. Nature 269, 697–698 (1977).

    Article  CAS  PubMed  Google Scholar 

  161. Schreiner, G. F., Fujiwara, K., Pollard, T. D. & Unanue, E. R. Redistribution of myosin accompanying capping of surface Ig. J. Exp. Med. 145, 1393–1398 (1977).

    Article  CAS  PubMed  Google Scholar 

  162. Liu, C. et al. Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. J. Immunol. 188, 3237–3246 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.E.D. is supported by the Danish National Research Foundation Centre of Excellence, CellPAT, the Center for Cellular Signal Patterns (DNRF135), the Lundbeck Foundation (R238-2016-2954), the LEO Foundation (LF-OC-22-000977), and the Independent Research Fund Denmark through a Sapere Aude Research Leader grant (9060-00038), as well as a Carlsberg Foundation Distinguished Fellowship (CF18-0446). P.T. is supported by the Wellcome Trust (grant 223196/Z/21/Z) and the UK Medical Research Council (grant MR/X009254/1).

Author information

Authors and Affiliations

Authors

Contributions

S.E.D. and P.T. co-wrote the first draft, revised and finalized the manuscript.

Corresponding author

Correspondence to Søren E. Degn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allostery

Derived from the Greek ‘allos’ meaning ‘other’ and ‘stereos’ meaning ‘solid, three-dimensional’. It describes the phenomenon whereby binding at one site causes effects transmitted through the protein to a distal site.

Antigen

Originally defined as a substance able to elicit an antibody response, but since expanded to encompass targets that elicit a T-cell response. This definition does not include haptens, which in monovalent form and in the absence of a carrier would not elicit an antibody response. However, here in the context of BCR triggering, we loosely refer to antigens as substances that may trigger antigen-specific BCR activation, whether or not this would lead to a productive downstream antibody response.

B-cell activation

The threshold activation of a B cell, driven by BCR signalling and/or auxiliary signalling pathways, such as those downstream of CD19/CD21/CD81, CD40 and cytokine receptors, and modified by inhibitory signalling from (for example) FcγRIIb, CD22, CD72 and LILRB.

BCR engagement

Binding of antigen to the BCR. This may, or may not, trigger (activate) the BCR.

BCR signalling

Describes the whole pathway triggered by antigen engagement of the BCR, and hence encompasses both BCR activation or triggering and signalling downstream of the BCR.

BCR triggering

The event(s) that translate(s) antigen binding in the Fab region(s) to a signal on the intracellular side of the membrane.

Epitope

The molecular determinant recognized by a given antibody/BCR (or T-cell receptor for peptide–MHC), often a smaller component of a given antigen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degn, S.E., Tolar, P. Towards a unifying model for B-cell receptor triggering. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01073-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01073-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing