Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease

Abstract

Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eosinophil tissue distribution and roles in homeostasis, transient immunity and inflammation.
Fig. 2: Molecular mechanisms of eosinophil homeostatic and reparative functions.
Fig. 3: Molecular mechanisms of eosinophils in infection.
Fig. 4: Mechanisms of eosinophil-mediated tissue damage.
Fig. 5: Emerging mechanisms of eosinophil antitumorigenic activities.

Similar content being viewed by others

References

  1. Rothenberg, M. E. & Hogan, S. P. The eosinophil. Annu. Rev. Immunol. 24, 147–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Mack, E. A. & Pear, W. S. Transcription factor and cytokine regulation of eosinophil lineage commitment. Curr. Opin. Hematol. 27, 27–33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13, 9–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103, 1719–1727 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xenakis, J. J. et al. Resident intestinal eosinophils constitutively express antigen presentation markers and include two phenotypically distinct subsets of eosinophils. Immunology 154, 298–308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foster, P. S. et al. Elemental signals regulating eosinophil accumulation in the lung. Immunol. Rev. 179, 173–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gigon, L., Fettrelet, T., Yousefi, S., Simon, D. & Simon, H. U. Eosinophils from A to Z. Allergy 78, 1810–1846 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, M. et al. Eotaxin-2 and IL-5 cooperate in the lung to regulate IL-13 production and airway eosinophilia and hyperreactivity. J. Allergy Clin. Immunol. 112, 935–943 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Ben Baruch-Morgenstern, N. et al. Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat. Immunol. 15, 36–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Moshkovits, I. et al. CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis. Mucosal Immunol. 7, 292–303 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Verjan Garcia, N. et al. SIRPalpha/CD172a regulates eosinophil homeostasis. J. Immunol. 187, 2268–2277 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Munitz, A. et al. The inhibitory receptor IRp60 (CD300a) suppresses the effects of IL-5, GM-CSF, and eotaxin on human peripheral blood eosinophils. Blood 107, 1996–2003 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Gurtner, A. et al. Active eosinophils regulate host defence and immune responses in colitis. Nature 615, 151–157 (2023). The first comprehensive single-cell RNA sequencing analysis of eosinophils, which describes the spatial and tissue-specific adaptation of GI eosinophils.

    Article  CAS  PubMed  Google Scholar 

  15. Gurtner, A., Crepaz, D. & Arnold, I. A. Emerging functions of tissue-resident eosinophils. J. Exp. Med. 220, e20221435 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wen, T. et al. The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia. J. Immunol. 188, 1075–1082 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Diny, N. L. et al. The aryl hydrocarbon receptor contributes to tissue adaptation of intestinal eosinophils in mice. J. Exp. Med. 219, e20210970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, Y. et al. Neuromedin U programs eosinophils to promote mucosal immunity of the small intestine. Science 381, 1189–1196 (2023). This study demonstrates that neuromedin U has a crucial role in controlling epithelial cell differentiation and barrier immunity through the activation of NMUR1-expresssing eosinophills in the small intestine, emphasizing the significance of neuroimmune–epithelial communication in sustaining tissue equilibrium.

    Article  CAS  PubMed  Google Scholar 

  19. Larsen, L. D., Dockstader, K., Olbrich, C. L., Cartwright, I. M. & Spencer, L. A. Modulation of surface CD11c expression tracks plasticity in murine intestinal tissue eosinophils. J. Leukoc. Biol. 111, 943–952 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Kutyavin, V. I., Korn, L. L. & Medzhitov, R. Nutrient-derived signals regulate eosinophil adaptation to the small intestine. Proc. Natl Acad. Sci. USA 121, e2316446121 (2024).

    Article  CAS  Google Scholar 

  21. Munitz, A. et al. Resistin-like molecule alpha enhances myeloid cell activation and promotes colitis. J. Allergy Clin. Immunol. 122, 1200–1207.e1 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schanz, O. et al. Dietary AhR ligands regulate AhRR expression in intestinal immune cells and intestinal microbiota composition. Int. J. Mol. Sci. 21, 3189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, J. J., Jacobsen, E. A., McGarry, M. P., Schleimer, R. P. & Lee, N. A. Eosinophils in health and disease: the LIAR hypothesis. Clin. Exp. Allergy 40, 563–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jacobsen, E. A. et al. Eosinophil knockout humans: uncovering the role of eosinophils through eosinophil-directed biological therapies. Annu. Rev. Immunol. 39, 719–757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jackson, D. J. & Pavord, I. D. Living without eosinophils: evidence from mouse and man. Eur. Respir. J. 61, 2201217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ignacio, A. et al. Small intestinal resident eosinophils maintain gut homeostasis following microbial colonization. Immunity 55, 1250–1267.e12 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Chu, V. T. et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40, 582–593 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Jung, Y. et al. IL-1beta in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol. 8, 930–942 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sturm, N. et al. Spatial heterogeneity for APRIL production by eosinophils in the small intestine. J. Leukoc. Biol. 113, 376–382 (2023).

    Article  PubMed  Google Scholar 

  30. Sugawara, R. et al. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J. Exp. Med. 213, 555–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fallegger, A. et al. TGF-β production by eosinophils drives the expansion of peripherally induced neuropilin RORγ+ regulatory T-cells during bacterial and allergen challenge. Mucosal Immunol. 15, 504–514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGuire, J. K., Li, Q. & Parks, W. C. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am. J. Pathol. 162, 1831–1843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. FitzPatrick, R. D. et al. Littermate-controlled experiments reveal eosinophils are not essential for maintaining steady-state IgA and demonstrate the influence of rearing conditions on antibody phenotypes in eosinophil-deficient mice. Front. Immunol. 11, 557960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Loffredo, L. F. et al. Eosinophil accumulation in postnatal lung is specific to the primary septation phase of development. Sci. Rep. 10, 4425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saluzzo, S. et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 18, 1893–1905 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mesnil, C. et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Invest. 126, 3279–3295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chojnacki, A. et al. Intravital imaging allows real-time characterization of tissue resident eosinophils. Commun. Biol. 2, 181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, C. et al. Homeostatic and early-recruited CD101 eosinophils suppress endotoxin-induced acute lung injury. Eur. Respir. J. 56,1902354 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Masterson, J. C. et al. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut 64, 1236–1247 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Dolitzky, A. et al. Mouse resident lung eosinophils are dependent on IL-5. Allergy 77, 2822–2825 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Throsby, M., Herbelin, A., Pleau, J. M. & Dardenne, M. CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J. Immunol. 165, 1965–1975 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Gatti, D. M. et al. MHCII+CD80+ thymic eosinophils increase in abundance during neonatal development in mice and their accumulation is microbiota dependent. J. Leukoc. Biol. 114, 223–236 (2023).

    Article  PubMed  Google Scholar 

  44. Odemuyiwa, S. O. et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J. Immunol. 173, 5909–5913 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Muller, E. Localization of eosinophils in the thymus by the peroxidase reaction. Histochemistry 52, 273–279 (1977).

    Article  CAS  PubMed  Google Scholar 

  46. Rytomaa, T. Organ distribution and histochemical properties of eosinophil granulocytes in rat. Acta Pathol. Microbiol. Scand. Suppl. 50 (Suppl. 140), 1–118 (1960).

    CAS  Google Scholar 

  47. Ross, R. & Klebanoff, S. J. The eosinophilic leukocyte. Fine structure studies of changes in the uterus during the estrous cycle. J. Exp. Med. 124, 653–660 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cosway, E. J. et al. Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Sci. Immunol. 7, eabn3286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dolitzky, A. et al. Differential regulation of type 1 and type 2 mouse eosinophil activation by apoptotic cells. Front. Immunol. 13, 1041660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, Z. et al. The FGF21–CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to type 2 immunity. Cell Metab. 26, 493–508.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Rana, B. M. J. et al. A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. J. Exp. Med. 216, 1999–2009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, E. H. et al. Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Sci. Rep. 8, 9894 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brigger, D. et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat. Metab. 2, 688–702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bolus, W. R. et al. Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol. Metab. 8, 86–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Dolitzky, A. et al. Transcriptional profiling of mouse eosinophils identifies distinct gene signatures following cellular activation. Front. Immunol. 12, 802839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shim, W. S. et al. The association of total and differential white blood cell count with metabolic syndrome in type 2 diabetic patients. Diabetes Res. Clin. Pract. 73, 284–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Sunadome, H. et al. Correlation between eosinophil count, its genetic background and body mass index: the Nagahama study. Allergol. Int. 69, 46–52 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Hashiguchi, M. et al. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. Eur. J. Immunol. 45, 876–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Brychta, R. J. & Chen, K. Y. Cold-induced thermogenesis in humans. Eur. J. Clin. Nutr. 71, 345–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Bang, I. H. et al. Sirtuin 6 promotes eosinophil differentiation by activating GATA-1 transcription factor. Aging Cell 20, e13418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fischer, K. et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat. Med. 23, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Withers, S. B. et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci. Rep. 7, 44571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021).

    Article  PubMed  Google Scholar 

  69. Goh, Y. P. et al. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc. Natl Acad. Sci. USA 110, 9914–9919 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu, L. et al. Hepatic recruitment of eosinophils and their protective function during acute liver injury. J. Hepatol. 77, 344–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Y. et al. Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Sci. Transl Med. 13, eabb6576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hart, K. M. et al. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. Sci. Transl Med. 9, eaal3694 (2017).

    Article  PubMed  Google Scholar 

  73. Sciorati, C., Rigamonti, E., Manfredi, A. A. & Rovere-Querini, P. Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ. 23, 927–937 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang, L. et al. Eosinophils and IL-4 support nematode growth coincident with an innate response to tissue injury. PLoS Pathog. 11, e1005347 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kastenschmidt, J. M. et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 35, 108997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sek, A. C. et al. Eosinophils do not drive acute muscle pathology in the mdx mouse model of duchenne muscular dystrophy. J. Immunol. 203, 476–484 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Pan, D. et al. IL-4 expressing cells are recruited to nerve after injury and promote regeneration. Exp. Neurol. 347, 113909 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Liebendorfer, A. et al. Loss of Gata1 decreased eosinophils, macrophages, and type 2 cytokines in regenerating nerve and delayed axon regeneration after a segmental nerve injury. Exp. Neurol. 362, 114327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mitre, E. & Klion, A. D. Eosinophils and helminth infection: protective or pathogenic. Semin. Immunopathol. 43, 363–381 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Gaur, P. et al. The regulatory role of eosinophils in viral, bacterial, and fungal infections. Clin. Exp. Immunol. 209, 72–82 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14, 949–953 (2008). This study demonstrates a previously undescribed mechanism of eosinophil-mediated innate immune responses via the release of mitochondrial DNA in a catapult-like manner.

    Article  CAS  PubMed  Google Scholar 

  83. Cheung, P. F., Wong, C. K., Ip, W. K. & Lam, C. W. FAK-mediated activation of ERK for eosinophil migration: a novel mechanism for infection-induced allergic inflammation. Int. Immunol. 20, 353–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Driss, V. et al. TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood 113, 3235–3244 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Plotz, S. G. et al. The interaction of human peripheral blood eosinophils with bacterial lipopolysaccharide is CD14 dependent. Blood 97, 235–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Arnold, I. C. et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J. Exp. Med. 215, 2055–2072 (2018). This study demonstrates that intestinal eosinophils regulate tissue homeostasis by suppressing TH1 cell responses and can display bactericidal activities towards Citrobacter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bohrer, A. C. et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J. Exp. Med. 218, e20210469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bohrer, A. C. et al. Rapid GPR183-mediated recruitment of eosinophils to the lung after Mycobacterium tuberculosis infection. Cell Rep. 40, 111144 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Phipps, S. et al. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110, 1578–1586 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Yoon, J., Ponikau, J. U., Lawrence, C. B. & Kita, H. Innate antifungal immunity of human eosinophils mediated by a beta 2 integrin, CD11b. J. Immunol. 181, 2907–2915 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Matsuwaki, Y. et al. Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J. Immunol. 183, 6708–6716 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Ishikawa, T., Yu, M. C. & Arbesman, C. E. Electron microscopic demonstration of phagocytosis of Candida albicans by human eosinophilic leukocytes. J. Allergy Clin. Immunol. 50, 183–187 (1972).

    Article  CAS  PubMed  Google Scholar 

  94. Ueki, S. et al. Eosinophil extracellular trap cell death-derived DNA traps: their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 137, 258–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Lilly, L. M. et al. Eosinophil deficiency compromises lung defense against Aspergillus fumigatus. Infect. Immun. 82, 1315–1325 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kobayashi, T., Kouzaki, H. & Kita, H. Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J. Immunol. 184, 6350–6358 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Lotfi, R. et al. Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J. Immunol. 183, 5023–5031 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Jans, J. et al. Fc gamma receptors in respiratory syncytial virus infections: implications for innate immunity. Rev. Med. Virol. 24, 55–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Erbe, D. V., Pfefferkorn, E. R. & Fanger, M. W. Functions of the various IgG Fc receptors in mediating killing of Toxoplasma gondii. J. Immunol. 146, 3145–3151 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Ikeda, Y., Mita, H., Kudo, M., Hasegawa, M. & Akiyama, K. Degranulation of eosinophils by IgG antibody to Candida antigen [Japanese]. Arerugi 48, 546–553 (1999).

    CAS  PubMed  Google Scholar 

  101. Esnault, S. et al. Eosinophil cytolysis on Immunoglobulin G is associated with microtubule formation and suppression of rho-associated protein kinase signalling. Clin. Exp. Allergy 50, 198–212 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Bartemes, K. R., Cooper, K. M., Drain, K. L. & Kita, H. Secretory IgA induces antigen-independent eosinophil survival and cytokine production without inducing effector functions. J. Allergy Clin. Immunol. 116, 827–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Pleass, R. J., Lang, M. L., Kerr, M. A. & Woof, J. M. IgA is a more potent inducer of NADPH oxidase activation and degranulation in blood eosinophils than IgE. Mol. Immunol. 44, 1401–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Gounni, A. S. et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Seltmann, J., Werfel, T. & Wittmann, M. Evidence for a regulatory loop between IFN-gamma and IL-33 in skin inflammation. Exp. Dermatol. 22, 102–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Dahlgren, M. W. et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50, 707–722.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dwyer, G. K., D’Cruz, L. M. & Turnquist, H. R. Emerging functions of IL-33 in homeostasis and immunity. Annu. Rev. Immunol. 40, 15–43 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Bouffi, C. et al. IL-33 markedly activates murine eosinophils by an NF-κB-dependent mechanism differentially dependent upon an IL-4-driven autoinflammatory loop. J. Immunol. 191, 4317–4325 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Shik, D., Moshkovits, I., Karo-Atar, D., Reichman, H. & Munitz, A. Interleukin-33 requires CMRF35-like molecule-1 expression for induction of myeloid cell activation. Allergy 69, 719–729 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 205, 2191–2198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buonomo, E. L. et al. Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Rep. 16, 432–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tang, W. et al. IL-25 and IL-25 receptor expression on eosinophils from subjects with allergic asthma. Int. Arch. Allergy Immunol. 163, 5–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hatano, Y. et al. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. APMIS 117, 115–123 (2009).

    Article  PubMed  Google Scholar 

  115. Lehrer, R. I. et al. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol. 142, 4428–4434 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. Melo, R. C. & Weller, P. F. Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol. Histopathol. 25, 1341–1354 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Ueki, S. et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121, 2074–2083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ueki, S. et al. Charcot–Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood 132, 2183–2187 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Muniz, V. S. et al. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J. Allergy Clin. Immunol. 141, 571–585.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Ehrens, A. et al. Microfilariae trigger eosinophil extracellular DNA traps in a dectin-1-dependent manner. Cell Rep. 34, 108621 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Gigon, L., Yousefi, S., Karaulov, A. & Simon, H. U. Mechanisms of toxicity mediated by neutrophil and eosinophil granule proteins. Allergol. Int. 70, 30–38 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Svensson, L. & Wenneras, C. Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect. 7, 720–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Khatun, A., Sakurai, M., Okada, K., Sakai, Y. & Morimoto, M. Detection of alpha-defensin in eosinophils in helminth-infected mouse model. J. Vet. Med. Sci. 80, 1887–1894 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Harris, T. A. et al. Resistin-like molecule alpha provides vitamin-A-dependent antimicrobial protection in the skin. Cell Host Microbe 25, 777–788.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cogan, E. & Roufosse, F. Clinical management of the hypereosinophilic syndromes. Expert Rev. Hematol. 5, 275–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Egan, M. & Furuta, G. T. Eosinophilic gastrointestinal diseases beyond eosinophilic esophagitis. Ann. Allergy Asthma Immunol. 121, 162–167 (2018).

    Article  PubMed  Google Scholar 

  127. O’Shea, K. M. et al. Pathophysiology of eosinophilic esophagitis. Gastroenterology 154, 333–345 (2018).

    Article  PubMed  Google Scholar 

  128. Mishra, A. et al. Esophageal remodeling develops as a consequence of tissue specific IL-5-induced eosinophilia. Gastroenterology 134, 204–214 (2008).

    Article  PubMed  Google Scholar 

  129. Rothenberg, M. E. et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat. Genet. 42, 289–291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sleiman, P. M. et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat. Commun. 5, 5593 (2014).

    Article  PubMed  Google Scholar 

  131. Blanchard, C. et al. IL-13 involvement in eosinophilic esophagitis: transcriptome analysis and reversibility with glucocorticoids. J. Allergy Clin. Immunol. 120, 1292–1300 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Mueller, S., Aigner, T., Neureiter, D. & Stolte, M. Eosinophil infiltration and degranulation in oesophageal mucosa from adult patients with eosinophilic oesophagitis: a retrospective and comparative study on pathological biopsy. J. Clin. Pathol. 59, 1175–1180 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dunn, J. L. M. et al. Esophageal type 2 cytokine expression heterogeneity in eosinophilic esophagitis in a multisite cohort. J. Allergy Clin. Immunol. 145, 1629–1640.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mavi, P., Rajavelu, P., Rayapudi, M., Paul, R. J. & Mishra, A. Esophageal functional impairments in experimental eosinophilic esophagitis. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1347–G1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kliewer, K. L. et al. Benralizumab for eosinophilic gastritis: a single-site, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 803–815 (2023).

    Article  PubMed  Google Scholar 

  136. Tappata, M. et al. Association of mast cells with clinical, endoscopic, and histologic findings in adults with eosinophilic esophagitis. Allergy 73, 2088–2092 (2018).

    Article  PubMed  Google Scholar 

  137. Morgan, D. M. et al. Clonally expanded, GPR15-expressing pathogenic effector TH2 cells are associated with eosinophilic esophagitis. Sci. Immunol. 6, eabi5586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jeziorska, M., Haboubi, N., Schofield, P. & Woolley, D. E. Distribution and activation of eosinophils in inflammatory bowel disease using an improved immunohistochemical technique. J. Pathol. 194, 484–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Forbes, E. et al. Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase. J. Immunol. 172, 5664–5675 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Loktionov, A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J. Gastroenterol. 25, 3503–3526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Manousou, P. et al. Increased expression of chemokine receptor CCR3 and its ligands in ulcerative colitis: the role of colonic epithelial cells in in vitro studies. Clin. Exp. Immunol. 162, 337–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ahrens, R. et al. Intestinal macrophage/epithelial cell-derived CCL11/eotaxin-1 mediates eosinophil recruitment and function in pediatric ulcerative colitis. J. Immunol. 181, 7390–7399 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Filippone, R. T. et al. Potent CCR3 receptor antagonist, SB328437, suppresses colonic eosinophil chemotaxis and inflammation in the winnie murine model of spontaneous chronic colitis. Int. J. Mol. Sci. 23, 7780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jacobs, I. et al. Role of eosinophils in intestinal inflammation and fibrosis in inflammatory bowel disease: an overlooked villain? Front. Immunol. 12, 754413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Filippone, R. T., Sahakian, L., Apostolopoulos, V. & Nurgali, K. Eosinophils in inflammatory bowel disease. Inflamm. Bowel Dis. 25, 1140–1151 (2019).

    Article  PubMed  Google Scholar 

  146. Nishitani, H., Okabayashi, M., Satomi, M., Shimoyama, T. & Dohi, Y. Infiltration of peroxidase-producing eosinophils into the lamina propria of patients with ulcerative colitis. J. Gastroenterol. 33, 189–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Saitoh, O. et al. Fecal eosinophil granule-derived proteins reflect disease activity in inflammatory bowel disease. Am. J. Gastroenterol. 94, 3513–3520 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Griseri, T. et al. Granulocyte macrophage colony-stimulating factor-activated eosinophils promote interleukin-23 driven chronic colitis. Immunity 43, 187–199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kobori, A. et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J. Gastroenterol. 45, 999–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. De Salvo, C. et al. IL-33 drives eosinophil infiltration and pathogenic type 2 helper T-cell immune responses leading to chronic experimental ileitis. Am. J. Pathol. 186, 885–898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Masterson, J. C. et al. Eosinophils and IL-33 perpetuate chronic inflammation and fibrosis in a pediatric population with stricturing Crohn’s ileitis. Inflamm. Bowel Dis. 21, 2429–2440 (2015).

    PubMed  Google Scholar 

  152. Villanacci, V. et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol. Motil. 20, 1009–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Smyth, C. M. et al. Activated eosinophils in association with enteric nerves in inflammatory bowel disease. PLoS ONE 8, e64216 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Filippone, R. T. et al. Targeting eotaxin-1 and CCR3 receptor alleviates enteric neuropathy and colonic dysfunction in TNBS-induced colitis in guinea pigs. Neurogastroenterol. Motil. 30, e13391 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Lampinen, M. et al. Eosinophil granulocytes are activated during the remission phase of ulcerative colitis. Gut 54, 1714–1720 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McBrien, C. N. & Menzies-Gow, A. The biology of eosinophils and their role in asthma. Front. Med. 4, 93 (2017).

    Article  Google Scholar 

  157. Nakagome, K. & Nagata, M. Innate immune responses by respiratory viruses, including rhinovirus, during asthma exacerbation. Front. Immunol. 13, 865973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bousquet, J. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. Price, D. B. et al. Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir. Med. 3, 849–858 (2015).

    Article  PubMed  Google Scholar 

  160. Yancey, S. W. et al. Biomarkers for severe eosinophilic asthma. J. Allergy Clin. Immunol. 140, 1509–1518 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014). A key study demonstrating that targeting eosinophils via neutralizing IL-5 (using mepolizumab) reduced asthma exacerbations and was associated with improvements in markers of asthma control.

    Article  PubMed  Google Scholar 

  162. FitzGerald, J. M. et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388, 2128–2141 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Gundel, R. H., Letts, L. G. & Gleich, G. J. Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J. Clin. Invest. 87, 1470–1473 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Coyle, A. J., Ackerman, S. J., Burch, R., Proud, D. & Irvin, C. G. Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J. Clin. Invest. 95, 1735–1740 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Piliponsky, A. M., Pickholtz, D., Gleich, G. J. & Levi-Schaffer, F. Human eosinophils induce histamine release from antigen-activated rat peritoneal mast cells: a possible role for mast cells in late-phase allergic reactions. J. Allergy Clin. Immunol. 107, 993–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Makinde, T., Murphy, R. F. & Agrawal, D. K. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol. Cell Biol. 85, 348–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Humbles, A. A. et al. A critical role for eosinophils in allergic airways remodeling. Science 305, 1776–1779 (2004). This study uses eosinophil-deficent ΔdblGATA mice to demonstrate that eosinophils contribute to tissue remodelling in asthma.

    Article  CAS  PubMed  Google Scholar 

  169. Lee, J. J. et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305, 1773–1776 (2004). This study describes the generation of an additional eosinophil-deficient mouse line (PHIL mice), which was used to demonstrate the requirement of eosinophils for the development of pulmonary mucus accumulation and AHR associated with asthma.

    Article  CAS  PubMed  Google Scholar 

  170. Drake, M. G. et al. Eosinophil and airway nerve interactions in asthma. J. Leukoc. Biol. 104, 61–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Persson, E. K. et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 364, eaaw4295 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Nyenhuis, S. M. et al. Charcot–Leyden crystal protein/galectin-10 is a surrogate biomarker of eosinophilic airway inflammation in asthma. Biomark. Med. 13, 715–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kaur, R. & Chupp, G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J. Allergy Clin. Immunol. 144, 1–12 (2019).

    Article  PubMed  Google Scholar 

  174. Flood-Page, P. et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med. 176, 1062–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Bafadhel, M. et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am. J. Respir. Crit. Care Med. 184, 662–671 (2011).

    Article  PubMed  Google Scholar 

  176. Pavord, I. D. et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N. Engl. J. Med. 377, 1613–1629 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Criner, G. J. et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir. Med. 8, 158–170 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Bafadhel, M. et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am. J. Respir. Crit. Care Med. 186, 48–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Eltboli, O. et al. COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils. BMC Pulm. Med. 14, 112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Tworek, D. et al. The association between airway eosinophilic inflammation and IL-33 in stable non-atopic COPD. Respir. Res. 19, 108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Jacobsen, E. A. et al. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice. Allergy 70, 1148–1159 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Doyle, A. D. et al. Eosinophil-derived IL-13 promotes emphysema. Eur. Respir. J. 53, 1801291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Calus, L. et al. Twelve-year follow-up study after endoscopic sinus surgery in patients with chronic rhinosinusitis with nasal polyposis. Clin. Transl. Allergy 9, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Simon, H. U. et al. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J. Immunol. 158, 3902–3908 (1997).

    Article  CAS  PubMed  Google Scholar 

  185. Yun, Y. et al. Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergol. Int. 69, 232–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Hauser, L. J., Chandra, R. K., Li, P. & Turner, J. H. Role of tissue eosinophils in chronic rhinosinusitis-associated olfactory loss. Int. Forum Allergy Rhinol. 7, 957–962 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Saitoh, T. et al. Relationship between epithelial damage or basement membrane thickness and eosinophilic infiltration in nasal polyps with chronic rhinosinusitis. Rhinology 47, 275–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Howarth, P. et al. Severe eosinophilic asthma with nasal polyposis: a phenotype for improved sinonasal and asthma outcomes with mepolizumab therapy. J. Allergy Clin. Immunol. 145, 1713–1715 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Han, J. K. et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 9, 1141–1153 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Stevens, W. W. et al. Cytokines in chronic rhinosinusitis. Role in eosinophilia and aspirin-exacerbated respiratory disease. Am. J. Respir. Crit. Care Med. 192, 682–694 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gevaert, E. et al. Charcot–Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J. Allergy Clin. Immunol. 145, 427–430.e4 (2020).

    Article  PubMed  Google Scholar 

  192. Kiehl, P., Falkenberg, K., Vogelbruch, M. & Kapp, A. Tissue eosinophilia in acute and chronic atopic dermatitis: a morphometric approach using quantitative image analysis of immunostaining. Br. J. Dermatol. 145, 720–729 (2001).

    Article  CAS  PubMed  Google Scholar 

  193. Cheng, J. F. et al. Dermal eosinophils in atopic dermatitis undergo cytolytic degeneration. J. Allergy Clin. Immunol. 99, 683–692 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. Morshed, M., Yousefi, S., Stockle, C., Simon, H. U. & Simon, D. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy 67, 1127–1137 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Simon, D. et al. Eosinophil extracellular DNA traps in skin diseases. J. Allergy Clin. Immunol. 127, 194–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Nakashima, C., Ishida, Y., Kitoh, A., Otsuka, A. & Kabashima, K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp. Dermatol. 28, 1405–1411 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Ruzicka, T. & Mihara, R. Anti-interleukin-31 receptor A antibody for atopic dermatitis. N. Engl. J. Med. 376, 2093 (2017).

    Article  PubMed  Google Scholar 

  198. Lee, J. J. et al. Eosinophil-dependent skin innervation and itching following contact toxicant exposure in mice. J. Allergy Clin. Immunol. 135, 477–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Kang, E. G. et al. Efficacy and safety of mepolizumab administered subcutaneously for moderate to severe atopic dermatitis. Allergy 75, 950–953 (2020).

    Article  PubMed  Google Scholar 

  200. Kimura, R., Sugita, K., Horie, T. & Yamamoto, O. Dual role of basophils in the pathogenesis of bullous pemphigoid elucidated by pathological and ultrastructural studies. Eur. J. Dermatol. 32, 322–333 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. Limberg, M. M. et al. Eosinophils, basophils, and neutrophils in bullous pemphigoid. Biomolecules 13, 1019 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. de Graauw, E. et al. Evidence for a role of eosinophils in blister formation in bullous pemphigoid. Allergy 72, 1105–1113 (2017).

    Article  PubMed  Google Scholar 

  203. Amber, K. T., Chernyavsky, A., Agnoletti, A. F., Cozzani, E. & Grando, S. A. Mechanisms of pathogenic effects of eosinophil cationic protein and eosinophil-derived neurotoxin on human keratinocytes. Exp. Dermatol. 27, 1322–1327 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Rudrich, U. et al. Eosinophils are a major source of interleukin-31 in bullous pemphigoid. Acta Derm. Venereol. 98, 766–771 (2018).

    Article  PubMed  Google Scholar 

  205. Grisaru-Tal, S. et al. Primary tumors from mucosal barrier organs drive unique eosinophil infiltration patterns and clinical associations. Oncoimmunology 10, 1859732 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Grisaru-Tal, S., Itan, M., Klion, A. D. & Munitz, A. A new dawn for eosinophils in the tumour microenvironment. Nat. Rev. Cancer 20, 594–607 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Munitz, A. et al. 2B4 (CD244) is expressed and functional on human eosinophils. J. Immunol. 174, 110–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Kataoka, S., Konishi, Y., Nishio, Y., Fujikawa-Adachi, K. & Tominaga, A. Antitumor activity of eosinophils activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA Cell Biol. 23, 549–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Simson, L. et al. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J. Immunol. 178, 4222–4229 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Lucarini, V. et al. IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncoimmunology 6, e1317420 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Gatault, S. et al. IL-18 is involved in eosinophil-mediated tumoricidal activity against a colon carcinoma cell line by upregulating LFA-1 and ICAM-1. J. Immunol. 195, 2483–2492 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Legrand, F. et al. Human eosinophils exert TNF-alpha and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. J. Immunol. 185, 7443–7451 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Andreone, S. et al. IL-33 promotes CD11b/CD18-mediated adhesion of eosinophils to cancer cells and synapse-polarized degranulation leading to tumor cell killing. Cancers 11, 1664 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Reichman, H. et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol. Res. 7, 388–400 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Mattes, J. et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. 197, 387–393 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ikutani, M. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Grisaru-Tal, S. et al. Metastasis-entrained eosinophils enhance lymphocyte-mediated antitumor immunity. Cancer Res. 81, 5555–5571 (2021). This study demonstrates that the TME in lung metastasis shapes eosinophils to acquire lymphocyte-dependent antitumorigenic activities.

    Article  CAS  PubMed  Google Scholar 

  220. Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16, 609–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Arnold, I. C. et al. The GM-CSF–IRF5 signaling axis in eosinophils promotes antitumor immunity through activation of type 1 T cell responses. J. Exp. Med. 217, e20190706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Onyema, O. O. et al. Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight 4, e128241 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Zaynagetdinov, R. et al. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res. 75, 1624–1634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Li, F. et al. Eosinophilic inflammation promotes CCL6-dependent metastatic tumor growth. Sci. Adv. 7, eabb5943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Grisaru-Tal, S., Rothenberg, M. E. & Munitz, A. Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nat. Immunol. 23, 1309–1316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zheng, X. et al. CTLA4 blockade promotes vessel normalization in breast tumors via the accumulation of eosinophils. Int. J. Cancer 146, 1730–1740 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Blomberg, O. S. et al. IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer. Cancer Cell 41, 106–123.e10 (2023). This study demonstrates that eosinophils contribute to the beneficial response after treatment with ICB by actively recruiting cytotoxic T cells into the tumour.

    Article  CAS  PubMed  Google Scholar 

  229. Jia, Q. et al. Peripheral eosinophil counts predict efficacy of anti-CD19 CAR-T cell therapy against B-lineage non-Hodgkin lymphoma. Theranostics 11, 4699–4709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Cheng, J. N. et al. Radiation-induced eosinophils improve cytotoxic T lymphocyte recruitment and response to immunotherapy. Sci. Adv. 7, eabc7609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lai, W. et al. Human pluripotent stem cell-derived eosinophils reveal potent cytotoxicity against solid tumors. Stem Cell Rep. 16, 1697–1704 (2021).

    Article  CAS  Google Scholar 

  232. Hollande, C. et al. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat. Immunol. 20, 257–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Auciello, F. R. et al. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9, 617–627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bhattacharyya, S. et al. Autotaxin-lysolipid signaling suppresses a CCL11-eosinophil axis to promote pancreatic cancer progression. Nat. Cancer 5, 283–298 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Fulkerson, P. C. Transcription factors in eosinophil development and as therapeutic targets. Front. Med. 4, 115 (2017).

    Article  Google Scholar 

  236. Iwasaki, H. et al. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J. Exp. Med. 201, 1891–1897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Mori, Y. et al. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206, 183–193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Querfurth, E. et al. Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev. 14, 2515–2525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16, 829–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Lu, T. X. et al. MiR-223 deficiency increases eosinophil progenitor proliferation. J. Immunol. 190, 1576–1582 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. Lu, T. X. et al. Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth. PLoS ONE 8, e59397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wagner, L. A. et al. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood 109, 5191–5198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sanderson, C. J. Interleukin-5, eosinophils, and disease. Blood 79, 3101–3109 (1992).

    Article  CAS  PubMed  Google Scholar 

  244. Collins, P. D., Marleau, S., Griffiths Johnson, D. A., Jose, P. J. & Williams, T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).

    Article  CAS  PubMed  Google Scholar 

  245. Rothenberg, M. E. et al. IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J. Immunol. 143, 2311–2316 (1989).

    Article  CAS  PubMed  Google Scholar 

  246. Johnston, L. K. et al. IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis. J. Immunol. 197, 3445–3453 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Martens, A. et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin. Cancer Res. 22, 2908–2918 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Lang, B. M. et al. Long-term survival with modern therapeutic agents against metastatic melanoma—vemurafenib and ipilimumab in a daily life setting. Med. Oncol. 35, 24 (2018).

    Article  CAS  PubMed  Google Scholar 

  249. Simon, S. C. S. et al. Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncoimmunology 9, 1727116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an Eccellenza Professorial Fellowship (PCEFP3_187021) and a Consolidator Grant (TMCG-3_213857) from the Swiss National Science Foundation to I.C.A., the US–Israel Bi-national Science Foundation (grant no. 2015163), Israel Science Foundation (grants no. 542/20), Israel Cancer Research Fund, Israel Cancer Association, Dotan Hemato-oncology Fund, Cancer Biology Research Center, Tel Aviv University and Azrieli Foundation Canada-Israel to A.M.

Author information

Authors and Affiliations

Authors

Contributions

I.C.A. and A.M conceived and wrote the manuscript.

Corresponding authors

Correspondence to Isabelle C. Arnold or Ariel Munitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Lisa Spencer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ΔdblGATA mice

Genetically modified mice that have been engineered to lack both copies of GATA1 in their genome, resulting in complete ablation of the eosinophil lineage.

Alarmins

A termed used for a group of endogenous proteins or peptides with chemotactic and immune cell-activating properties that are released upon cell injury or death.

Alanine transaminase

(ALT). An enzyme mainly expressed in the liver, but released into the blood following liver cell damage. An ALT test measures the amount of ALT in the blood.

Alternatively activated macrophage

A term used to describe macrophages activated in vitro in an anti-inflammatory manner with IL-4 or IL-10. In vivo macrophages are highly specialized, transcriptomically dynamic and extremely heterogeneous with regard to their phenotypes and functions, which are continuously shaped by their tissue microenvironment.

Central tolerance

A crucial process in the immune system that occurs in the thymus where developing T cells that recognize self-antigens with high affinity undergo apoptotic cell death or are rendered functionally inactive.

Fibro-adipogenic progenitors

(FAPs). A type of mesenchymal stem cell found within skeletal muscle tissues that have significant roles in the context of muscle regeneration by differentiating into myofibroblasts and subsequently contributing to the generation of new muscle fibres.

Fractional exhaled nitric oxide

(FeNO). A noninvasive biomarker that is used to assess airway inflammation, particularly in diseases such as asthma. It measures the concentration of nitric oxide gas in a person’s exhaled breath.

Pruritus

A medical term used to describe the sensation that prompts a desire to scratch an affected area of the skin.

Side-scatter

(SSC). A term used in flow cytometry to describe a measurement that can be used to measure the granularity or internal complexity of a cell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, I.C., Munitz, A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01048-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01048-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing