Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to adaptive immune memory

Abstract

Immune memory — comprising T cells, B cells and plasma cells and their secreted antibodies — is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This ‘guide to’ article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune memory and pathogen susceptibility over the human lifespan.
Fig. 2: The generation and localization of immune memory.
Fig. 3: Memory T cell dynamics.
Fig. 4: Models for the generation of memory T cells.
Fig. 5: B cell memory differentiation.

Similar content being viewed by others

References

  1. Bekkering, S., Dominguez-Andres, J., Joosten, L. A. B., Riksen, N. P. & Netea, M. G. Trained immunity: reprogramming innate immunity in health and disease. Annu. Rev. Immunol. 39, 667–693 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Fuentes, S., Coyle, E. M., Beeler, J., Golding, H. & Khurana, S. Antigenic fingerprinting following primary RSV infection in young children identifies novel antigenic sites and reveals unlinked evolution of human antibody repertoires to fusion and attachment glycoproteins. PLoS Pathog. 12, e1005554 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gouma, S. et al. Middle-aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility. Nat. Commun. 11, 4566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng, Z., Warren, J. L., Shapiro, E. D., Pitzer, V. E. & Weinberger, D. M. Estimated incidence of respiratory hospitalizations attributable to RSV infections across age and socioeconomic groups. Pneumonia 14, 6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Driscoll, M. et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590, 140–145 (2021).

    Article  PubMed  Google Scholar 

  6. Horita, N. & Fukumoto, T. Global case fatality rate from COVID-19 has decreased by 96.8% during 2.5 years of the pandemic. J. Med. Virol. 95, e28231 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Farber, D. L. Tissues, not blood, are where immune cells act. Nature 593, 506–509 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poon, M. M. L. et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci. Immunol. 6, eabl9105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weisel, N. M. et al. Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood 136, 2774–2785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tarlinton, D. M., Ding, Z., Tellier, J. & Nutt, S. L. Making sense of plasma cell heterogeneity. Curr. Opin. Immunol. 81, 102297 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Brink, R. et al. Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J. Exp. Med. 176, 991–1005 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Pape, K. A., Khoruts, A., Mondino, A. & Jenkins, M. K. Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells. J. Immunol. 159, 591–598 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Marzo, A. L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol. 6, 793–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parga-Vidal, L. et al. Hobit identifies tissue-resident memory T cell precursors that are regulated by Eomes. Sci. Immunol. 6, eabg3533 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Harrington, L. E., Janowski, K. M., Oliver, J. R., Zajac, A. J. & Weaver, C. T. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452, 356–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Luthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012).

    Article  PubMed  Google Scholar 

  20. Budd, R. C. et al. Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J. Immunol. 138, 3120–3129 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, S. H., Brown, M. H., Rowe, D., Callard, R. E. & Beverley, P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology 58, 63–70 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Clark, R. A. Resident memory T cells in human health and disease. Sci. Transl. Med. 7, 269rv261 (2015).

    Article  Google Scholar 

  23. Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, X., Ramachandran, S., Mann, M. & Popkin, D. L. Role of lymphocytic choriomeningitis virus (LCMV) in understanding viral immunology: past, present and future. Viruses 4, 2650–2669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pepper, M. et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11, 83–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Swain, S. L. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1, 543–552 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Ahmadzadeh, M., Hussain, S. F. & Farber, D. L. Effector CD4 T cells are biochemically distinct from the memory subset: evidence for long-term persistence of effectors in vivo. J. Immunol. 163, 3053–3063 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Ahmadzadeh, M., Hussain, S. F. & Farber, D. L. Heterogeneity of the memory CD4 T cell response: persisting effectors and resting memory T cells. J. Immunol. 166, 926–935 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Moulton, V. R., Bushar, N. D., Leeser, D. B., Patke, D. S. & Farber, D. L. Divergent generation of heterogeneous memory CD4 T cells. J. Immunol. 177, 869–876 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Christophersen, A. Peptide-MHC class I and class II tetramers: from flow to mass cytometry. HLA 95, 169–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan, Y. G. et al. Vaccination reshapes the virus-specific T cell repertoire in unexposed adults. Immunity 54, 1245–1256.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Poon, M. M. L. et al. Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Rep. 37, 110071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dan, J. M. et al. A cytokine-independent approach to identify antigen-specific human germinal center T follicular helper cells and rare antigen-specific CD4+ T cells in blood. J. Immunol. 197, 983–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Reiss, S. et al. Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS ONE 12, e0186998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Sette, A., Sidney, J. & Crotty, S. T cell responses to SARS-CoV-2. Annu. Rev. Immunol. 41, 343–373 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12, 306–315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, K. et al. Augmentation in expression of activation-induced genes differentiates memory from naive CD4+ T cells and is a molecular mechanism for enhanced cellular response of memory CD4+ T cells. J. Immunol. 166, 7335–7344 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Araki, Y., Fann, M., Wersto, R. & Weng, N. P. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J. Immunol. 180, 8102–8108 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30, 912–925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Youngblood, B., Davis, C. W. & Ahmed, R. Making memories that last a lifetime: heritable functions of self-renewing memory CD8 T cells. Int. Immunol. 22, 797–803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fahmy, T. M., Bieler, J. G., Edidin, M., Schneck, J. P. & Increased, T. C. R. Avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14, 135–143 (2001).

    CAS  PubMed  Google Scholar 

  54. Croft, M., Bradley, L. M. & Swain, S. L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol. 152, 2675–2685 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Ndejembi, M. P. et al. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. J. Immunol. 177, 7698–7706 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Glinos, D. A. et al. Genomic profiling of T-cell activation suggests increased sensitivity of memory T cells to CD28 costimulation. Genes Immun. 21, 390–408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arkatkar, T. et al. Memory T cells possess an innate-like function in local protection from mucosal infection. J. Clin. Invest. 133, e162800 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, W. & August, A. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation. J. Leukoc. Biol. 97, 477–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Freeman, B. E., Hammarlund, E., Raue, H. P. & Slifka, M. K. Regulation of innate CD8+ T-cell activation mediated by cytokines. Proc. Natl Acad. Sci. USA 109, 9971–9976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farber, D. L. Biochemical signaling pathways for memory T cell recall. Semin. Immunol. 21, 84–91 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Farber, D. L. T cell memory: heterogeneity and mechanisms. Clin. Immunol. 95, 173–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Derhovanessian, E. et al. Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J. Gen. Virol. 92, 2746–2756 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Gordon, C. L. et al. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. J. Exp. Med. 214, 651–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Darrah, P. A. et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13, 843–850 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bingaman, A. W. et al. Novel phenotypes and migratory properties distinguish memory CD4 T cell subsets in lymphoid and lung tissue. Eur. J. Immunol. 35, 3173–3186 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Patke, D. S. & Farber, D. L. Modulation of memory CD4 T cell function and survival potential by altering the strength of the recall stimulus. J. Immunol. 174, 5433–5443 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Abdelsamed, H. A. et al. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. J. Exp. Med. 214, 1593–1606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kratchmarov, R., Magun, A. M. & Reiner, S. L. TCF1 expression marks self-renewing human CD8+ T cells. Blood Adv. 2, 1685–1690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosenblum, M. D., Way, S. S. & Abbas, A. K. Regulatory T cell memory. Nat. Rev. Immunol. 16, 90–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brincks, E. L. et al. Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J. Immunol. 190, 3438–3446 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Sanchez, A. M., Zhu, J., Huang, X. & Yang, Y. The development and function of memory regulatory T cells after acute viral infections. J. Immunol. 189, 2805–2814 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Sanchez Rodriguez, R. et al. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124, 1027–1036 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Thome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Mackay, L. K. & Kallies, A. Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol. 38, 94–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Milner, J. J. & Goldrath, A. W. Transcriptional programming of tissue-resident memory CD8+ T cells. Curr. Opin. Immunol. 51, 162–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dominguez, C. X. et al. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J. Exp. Med. 212, 2041–2056 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Crowl, J. T. et al. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 23, 1121–1131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hassert, M., Arumugam, S. & Harty, J. T. Memory CD8+ T cell-mediated protection against liver-stage malaria. Immunol. Rev. 316, 84–103 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Paik, D. H. & Farber, D. L. Anti-viral protective capacity of tissue resident memory T cells. Curr. Opin. Virol. 46, 20–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Luangrath, M. A., Schmidt, M. E., Hartwig, S. M. & Varga, S. M. Tissue-resident memory T cells in the lungs protect against acute respiratory syncytial virus infection. Immunohorizons 5, 59–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Zhao, J. et al. Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44, 1379–1391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wilk, M. M. et al. Lung CD4 tissue-resident memory T cells mediate adaptive immunity induced by previous infection of mice with Bordetella pertussis. J. Immunol. 199, 233–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Sakai, S. et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J. Immunol. 192, 2965–2969 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Strobl, J. & Haniffa, M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol. Rev. 316, 104–119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 7, 279ra239 (2015).

    Article  Google Scholar 

  106. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gray, J. I. & Farber, D. L. Tissue-resident immune cells in humans. Annu. Rev. Immunol. 40, 195–220 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Szabo, P. A. Axes of heterogeneity in human tissue-resident memory T cells. Immunol. Rev. 316, 23–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Poon, M. M. L. et al. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. Nat. Immunol. 24, 309–319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med. 4, 117ra117 (2012).

    Article  Google Scholar 

  111. Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. 7, 501–510 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205, 625–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hand, T. W., Morre, M. & Kaech, S. M. Expression of IL-7 receptor α is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl Acad. Sci. USA 104, 11730–11735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Ahmed, R., Bevan, M. J., Reiner, S. L. & Fearon, D. T. The precursors of memory: models and controversies. Nat. Rev. Immunol. 9, 662–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Grabnitz, F. et al. Asymmetric cell division safeguards memory CD8 T cell development. Cell Rep. 42, 112468 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, P. H. et al. Reciprocal transmission of activating and inhibitory signals and cell fate in regenerating T cells. Cell Rep. 42, 113155 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hondowicz, B. D. et al. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44, 155–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Connors, T. J. et al. Site-specific development and progressive maturation of human tissue-resident memory T cells over infancy and childhood. Immunity 56, 1894–1909.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Miron, M. et al. Maintenance of the human memory T cell repertoire by subset and tissue site. Genome Med. 13, 100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  PubMed  Google Scholar 

  133. Corrado, M. & Pearce, E. L. Targeting memory T cell metabolism to improve immunity. J. Clin. Invest. 132, e148546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Purton, J. F. et al. Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med. 204, 951–961 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Kassiotis, G., Garcia, S., Simpson, E. & Stockinger, B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat. Immunol. 3, 244–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Bushar, N. D., Corbo, E., Schmidt, M., Maltzman, J. S. & Farber, D. L. Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc. Natl Acad. Sci. USA 107, 827–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. De Boer, R. J. & Yates, A. J. Modeling T cell fate. Annu. Rev. Immunol. 41, 513–532 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Macallan, D. C. et al. Rapid turnover of effector-memory CD4+ T cells in healthy humans. J. Exp. Med. 200, 255–260 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. De Boer, R. J. & Perelson, A. S. Quantifying T lymphocyte turnover. J. Theor. Biol. 327, 45–87 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ladell, K. et al. Central memory CD8+ T cells appear to have a shorter lifespan and reduced abundance as a function of HIV disease progression. J. Immunol. 180, 7907–7918 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Costa Del Amo, P. et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS Biol. 16, e2005523 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Slutter, B. et al. Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci. Immunol. 2, eaag2031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pallett, L. J. et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mason, D. W. The class of surface immunoglobulin on cells carrying IgG memory in rat thoracic duct lymph: the size of the subpopulation mediating IgG memory. J. Exp. Med. 143, 1122–1130 (1976).

    Article  CAS  PubMed  Google Scholar 

  149. Okumura, K., Julius, M. H., Tsu, T., Herzenberg, L. A. & Herzenberg, L. A. Demonstration that IgG memory is carried by IgG-bearing cells. Eur. J. Immunol. 6, 467–472 (1976).

    Article  CAS  PubMed  Google Scholar 

  150. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Fooksman, D. R., Jing, Z. & Park, R. New insights into the ontogeny, diversity, maturation and survival of long-lived plasma cells. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-00991-0 (2024).

  152. Inoue, T. & Kurosaki, T. Memory B cells. Nat. Rev. Immunol. 24, 5–17 (2024).

    Article  CAS  PubMed  Google Scholar 

  153. Gray, D. Immunological memory. Annu. Rev. Immunol. 11, 49–77 (1993).

    Article  CAS  PubMed  Google Scholar 

  154. Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Krishnamurty, A. T. et al. Somatically hypermutated plasmodium-specific IgM+ memory B cells are rapid, plastic, early responders upon malaria rechallenge. Immunity 45, 402–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lyashchenko, K. P., Vordermeier, H. M. & Waters, W. R. Memory B cells and tuberculosis. Vet. Immunol. Immunopathol. 221, 110016 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Gil, D., Schamel, W. W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Schittek, B. & Rajewsky, K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346, 749–751 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. Weisel, F. & Shlomchik, M. Memory B cells of mice and humans. Annu. Rev. Immunol. 35, 255–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Good, K. L., Avery, D. T. & Tangye, S. G. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J. Immunol. 182, 890–901 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Good, K. L. & Tangye, S. G. Decreased expression of Kruppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses. Proc. Natl Acad. Sci. USA 104, 13420–13425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tangye, S. G., Avery, D. T., Deenick, E. K. & Hodgkin, P. D. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J. Immunol. 170, 686–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Price, M. J., Scharer, C. D., Kania, A. K., Randall, T. D. & Boss, J. M. Conserved epigenetic programming and enhanced heme metabolism drive memory B cell reactivation. J. Immunol. 206, 1493–1504 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Turner, J. S. et al. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 586, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mesin, L. et al. Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting. Cell 180, 92–106.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Manz, R. A., Lohning, M., Cassese, G., Thiel, A. & Radbruch, A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10, 1703–1711 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Koike, T. et al. Progressive differentiation toward the long-lived plasma cell compartment in the bone marrow. J. Exp. Med. 220, e20221717 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Tas, J. M. J. et al. Antibodies from primary humoral responses modulate the recruitment of naive B cells during secondary responses. Immunity 55, 1856–1871.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Schaefer-Babajew, D. et al. Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination. Nature 613, 735–742 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Hammarlund, E. et al. Plasma cell survival in the absence of B cell memory. Nat. Commun. 8, 1781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Maurer, D., Holter, W., Majdic, O., Fischer, G. F. & Knapp, W. CD27 expression by a distinct subpopulation of human B lymphocytes. Eur. J. Immunol. 20, 2679–2684 (1990).

    Article  CAS  PubMed  Google Scholar 

  174. Weisel, N. M. et al. Surface phenotypes of naive and memory B cells in mouse and human tissues. Nat. Immunol. 23, 135–145 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Pape, K. A., Taylor, J. J., Maul, R. W., Gearhart, P. J. & Jenkins, M. K. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331, 1203–1207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zuccarino-Catania, G. V. et al. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Agematsu, K. et al. B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur. J. Immunol. 27, 2073–2079 (1997).

    Article  CAS  PubMed  Google Scholar 

  180. Pascual, V. et al. Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med. 180, 329–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  181. Maurer, D. et al. IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. J. Immunol. 148, 3700–3705 (1992).

    Article  CAS  PubMed  Google Scholar 

  182. Grimsholm, O. et al. The interplay between CD27dull and CD27bright B cells ensures the flexibility, stability, and resilience of human B cell memory. Cell Rep. 30, 2963–2977.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Chappert, P. et al. Human anti-smallpox long-lived memory B cells are defined by dynamic interactions in the splenic niche and long-lasting germinal center imprinting. Immunity 55, 1872–1890.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Isnardi, I. et al. Complement receptor 2/CD21− human naive B cells contain mostly autoreactive unresponsive clones. Blood 115, 5026–5036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sullivan, R. T. et al. FCRL5 delineates functionally impaired memory B cells associated with plasmodium falciparum exposure. PLoS Pathog. 11, e1004894 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Weiss, G. E. et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 183, 2176–2182 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Jacobi, A. M. et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum. 58, 1762–1773 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205, 1797–1805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Charles, E. D. et al. Clonal B cells in patients with hepatitis C virus-associated mixed cryoglobulinemia contain an expanded anergic CD21low B-cell subset. Blood 117, 5425–5437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Stewart, A. et al. Single-cell transcriptomic analyses define distinct peripheral B cell subsets and discrete development pathways. Front. Immunol. 12, 602539 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nellore, A. et al. A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity 56, 847–863.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Berkowska, M. A. et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 118, 2150–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lopes de Assis, F. et al. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Rep. 42, 112780 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Steuten, J. et al. Distinct dynamics of antigen-specific induction and differentiation of different CD11c+Tbet+ B-cell subsets. J. Allergy Clin. Immunol. 152, 689–699.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Tellier, J. & Nutt, S. L. Standing out from the crowd: how to identify plasma cells. Eur. J. Immunol. 47, 1276–1279 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Staupe, R. P. et al. Single cell multi-omic reference atlases of non-human primate immune tissues reveals CD102 as a biomarker for long-lived plasma cells. Commun. Biol. 5, 1399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Joo, H. M., He, Y. & Sangster, M. Y. Broad dispersion and lung localization of virus-specific memory B cells induced by influenza pneumonia. Proc. Natl Acad. Sci. USA 105, 3485–3490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Allie, S. R. & Randall, T. D. Resident memory B cells. Viral Immunol. 33, 282–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Moran, I. et al. Memory B cells are reactivated in subcapsular proliferative foci of lymph nodes. Nat. Commun. 9, 3372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Matsumoto, R. et al. Induction of bronchus-associated lymphoid tissue is an early life adaptation for promoting human B cell immunity. Nat. Immunol. 24, 1370–1381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. MacLean, A. J. et al. Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites. Immunity 55, 718–733.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mathew, N. R. et al. Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Rep. 35, 109286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Oh, J. E. et al. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci. Immunol. 6, eabj5129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tan, H. X. et al. Lung-resident memory B cells established after pulmonary influenza infection display distinct transcriptional and phenotypic profiles. Sci. Immunol. 7, eabf5314 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Mamani-Matsuda, M. et al. The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 111, 4653–4659 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Bemark, M. et al. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat. Commun. 7, 12698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Robinson, M. J. et al. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 56, 1596–1612.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Kurosaki, T., Kometani, K. & Ise, W. Memory B cells. Nat. Rev. Immunol. 15, 149–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Glaros, V. et al. Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response. Immunity 54, 2005–2023.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Paus, D. et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203, 1081–1091 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Viant, C. et al. Antibody affinity shapes the choice between memory and germinal center B cell fates. Cell 183, 1298–1311.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ise, W. et al. T follicular helper cell-germinal center B cell interaction strength regulates entry into plasma cell or recycling germinal center cell fate. Immunity 48, 702–715.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Ribatti, D. The discovery of plasma cells: an historical note. Immunol. Lett. 188, 64–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. De Silva, N. S., Simonetti, G., Heise, N. & Klein, U. The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol. Rev. 247, 73–92 (2012).

    Article  PubMed  Google Scholar 

  217. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  219. Huang, C. et al. The BCL6 RD2 domain governs commitment of activated B cells to form germinal centers. Cell Rep. 8, 1497–1508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Schebesta, M., Heavey, B. & Busslinger, M. Transcriptional control of B-cell development. Curr. Opin. Immunol. 14, 216–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  221. Henry, B. & Laidlaw, B. J. Functional heterogeneity in the memory B-cell response. Curr. Opin. Immunol. 80, 102281 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Mayer, C. T. et al. The microanatomic segregation of selection by apoptosis in the germinal center. Science 358, eaao2602 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Shinnakasu, R. et al. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17, 861–869 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Feng, Y., Seija, N., Di Noia, J. M. & Martin, A. AID in antibody diversification: there and back again. Trends Immunol. 41, 586–600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  226. Li, G., Zan, H., Xu, Z. & Casali, P. Epigenetics of the antibody response. Trends Immunol. 34, 460–470 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Ripperger, T. J. & Bhattacharya, D. Transcriptional and metabolic control of memory B cells and plasma cells. Annu. Rev. Immunol. 39, 345–368 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Weisel, F. J. et al. Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat. Immunol. 21, 331–342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tew, J. G., Phipps, R. P. & Mandel, T. E. The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunol. Rev. 53, 175–201 (1980).

    Article  CAS  PubMed  Google Scholar 

  232. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  233. Haberman, A. M. & Shlomchik, M. J. Reassessing the function of immune-complex retention by follicular dendritic cells. Nat. Rev. Immunol. 3, 757–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  234. Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004).

    Article  CAS  PubMed  Google Scholar 

  235. Ackermann, J. A. et al. Syk tyrosine kinase is critical for B cell antibody responses and memory B cell survival. J. Immunol. 194, 4650–4656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Vieira, P. & Rajewsky, K. Persistence of memory B cells in mice deprived of T cell help. Int. Immunol. 2, 487–494 (1990).

    Article  CAS  PubMed  Google Scholar 

  237. Cancro, M. P. & Tomayko, M. M. Memory B cells and plasma cells: the differentiative continuum of humoral immunity. Immunol. Rev. 303, 72–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Macallan, D. C. et al. B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood 105, 3633–3640 (2005).

    Article  CAS  PubMed  Google Scholar 

  239. Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  240. Slifka, M. K. & Ahmed, R. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr. Opin. Immunol. 10, 252–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  241. Landsverk, O. J. et al. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214, 309–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Spalding, K. L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Benson, M. J. et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 180, 3655–3659 (2008).

    Article  CAS  PubMed  Google Scholar 

  244. Chu, V. T. et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40, 582–593 (2014).

    Article  CAS  PubMed  Google Scholar 

  245. Yewdell, J. W. et al. Antigenic sin: how original? How sinful? Cold Spring Harb. Perspect. Med. 11, a038786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Saggau, C. et al. The pre-exposure SARS-CoV-2-specific T cell repertoire determines the quality of the immune response to vaccination. Immunity 55, 1924–1939.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Schiepers, A. et al. Molecular fate-mapping of serum antibody responses to repeat immunization. Nature 615, 482–489 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Lee, J. H. et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609, 998–1004 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Laidlaw, B. J. & Ellebedy, A. H. The germinal centre B cell response to SARS-CoV-2. Nat. Rev. Immunol. 22, 7–18 (2022).

    Article  CAS  PubMed  Google Scholar 

  250. Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Goel, R. R. et al. Efficient recall of omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell 185, 1875–1887.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Muecksch, F. et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature 607, 128–134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Donna L. Farber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks R. Rutishauser, who co-reviewed with W. Hung, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody isotypes

The designation of an immunoglobulin chain in respect to its constant regions. Light chains can be of either κ or λ isotype. Heavy chains can be of μ, δ, γ, α or ε isotype, which determines IgM, IgD, IgG, IgA or IgE antibodies, respectively.

Antigen-presenting cells

(APCs). Immune cells such as dendritic cells, macrophages, Langerhans cells and B cells that process and present antigens on MHC molecules for recognition by the T cell receptor or B cell receptor of T cells or B cells, respectively.

ATAC-seq

Assay for transposase-accessible chromatin with sequencing, which is a method to identify open, accessible chromatin regions using mutated hyperactive transposase.

ChIP-seq

Chromatin immunoprecipitation followed by sequencing, which is a genome-wide method to identify DNA binding sites for transcription factors and other proteins.

Class-switch recombination

(CSR). A somatic gene recombination process in activated B cells that replaces the heavy-chain constant region of an immunoglobulin with one of a different isotype, for example inducing a switch from IgM or IgD to IgG, IgA or IgE.

Complement

A set of plasma proteins that can kill extracellular pathogens directly or coat (opsonize) them so that they can be removed by phagocytes.

Cytometry by time of flight

(CyTOF). An application of mass cytometry to study protein expression at the single-cell level.

DNA footprinting

A method to study whether a protein binds to a specific DNA region of interest.

Fate-mapping

Application of technologies to ‘mark’ cells and track their fate and the fate of their progeny.

Germinal centres

(GCs). Sites of high-level B cell proliferation and differentiation that develop in lymphoid follicles during an adaptive immune response.

Immunosenescence

Immune dysfunction that occurs with ageing, associated with defects in cell function and quantity.

MHC restriction

A property of T cells whereby the T cell receptor recognizes antigen only when bound to an MHC molecule on an antigen-presenting cell as a peptide–MHC complex.

MHC-tetramer

A complex of four antigen-specific, peptide-bound MHC molecules attached to a streptavidin-coated bead.

Neutralization

Inhibition of the infectivity of a virus or the toxicity of a toxin molecule by the direct binding of antibodies.

Opsonization

The coating of the surface of a pathogen by antibody and/or complement that makes it more readily ingested by phagocytes.

Retrospective 14C birth dating

A process through which levels of 14C in cellular DNA are measured and their chronological age calculated based on known levels of atmospheric 14C, which increased in the 1960s and 1970s because of nuclear weapons testing and declined thereafter.

Somatic hypermutation

(SHM). A mechanism by which mutations are induced in the variable-region DNA of rearranged immunoglobulin genes to produce variant immunoglobulins, some of which bind antigen with a greater affinity.

T follicular helper cells

(TFH cells). A CD4+ T cell subset found in lymphoid follicles that promotes B cell differentiation through interaction of the co-stimulatory molecule CD40L with CD40 on B cells and by producing the cytokine IL-21.

Time-stamping

A technology of in situ lineage tracing using the tamoxifen-inducible Cre-recombinase system.

Unfolded protein response

A cellular stress response that is activated when unfolded proteins accumulate in the endoplasmic reticulum in the cell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, N., Lee, Y. & Farber, D.L. A guide to adaptive immune memory. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01040-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01040-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing