Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chimeric antigen receptor T cell therapy for autoimmune disease

Abstract

Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of protein markers during B cell development and differentiation.
Fig. 2: Key components of CARs.
Fig. 3: Select types of CAR constructs.
Fig. 4: Engineered Treg cell properties.

Similar content being viewed by others

References

  1. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mikkilineni, L. & Kochenderfer, J. N. CAR T cell therapies for patients with multiple myeloma. Nat. Rev. Clin. Oncol. 18, 71–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Neelapu, S. S. et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 141, 2307–2315 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chong, E. A., Ruella, M. & Schuster, S. J., Lymphoma Program Investigators at the University of Pennsylvania. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N. Engl. J. Med. 384, 673–674 (2021).

    Article  PubMed  Google Scholar 

  7. Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022). This work presents the first reported series of five patients with SLE treated with anti-CD19 CAR T cell therapy.

    Article  CAS  PubMed  Google Scholar 

  10. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021). This work presents the first case report of a patient with refractory lupus nephritis successfully treated with anti-CD19 CAR T cell therapy.

    Article  PubMed  Google Scholar 

  11. Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023). This work presents the first case report of a patient with severe systemic sclerosis successfully treated with anti-CD19 CAR T cell therapy.

    Article  PubMed  Google Scholar 

  12. Fischbach, F. et al. CD19-targeted chimeric antigen receptor T cell therapy in two patients with multiple sclerosis. Med https://doi.org/10.1016/j.medj.2024.03.002 (2024). This work presents the first case report of two patients with multiple sclerosis successfully treated with anti-CD19 CAR T cell therapy.

  13. Müller, F. et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet 401, 815–818 (2023). This work presents the case report of a patient with anti-synthetase syndrome successfully treated with anti-CD19 CAR T cell therapy.

    Article  PubMed  Google Scholar 

  14. Pecher, A. C. et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 329, 2154–2162 (2023). This work presents the case report of a patient with myositis and interstitial lung disease associated with anti-synthetase syndrome successfully treated with anti-CD19 CAR T cell therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haghikia, A. et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023). This work presents the first case report of a patient with myasthenia gravis successfully treated with anti-CD19 CAR T cell therapy.

    Article  CAS  PubMed  Google Scholar 

  16. Chang, H. D. et al. Pathogenic memory plasma cells in autoimmunity. Curr. Opin. Immunol. 61, 86–91 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bluestone, J. A., McKenzie, B. S., Beilke, J. & Ramsdell, F. Opportunities for Treg cell therapy for the treatment of human disease. Front. Immunol. 14, 1166135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boardman, D. A. & Levings, M. K. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. J. Allergy Clin. Immunol. 149, 1–11 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Boardman, D. A. et al. Flagellin-specific human CAR Tregs for immune regulation in IBD. J. Autoimmun. 134, 102961 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Dall’Era, M. et al. Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. Arthritis Rheumatol. 71, 431–440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goschl, L., Scheinecker, C. & Bonelli, M. Treg cells in autoimmunity: from identification to Treg-based therapies. Semin. Immunopathol. 41, 301–314 (2019).

    Article  PubMed  Google Scholar 

  23. Tuomela, K., Salim, K. & Levings, M. K. Eras of designer Tregs: harnessing synthetic biology for immune suppression. Immunol. Rev. 320, 250–267 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Arjomandnejad, M., Kopec, A. L. & Keeler, A. M. CAR-T regulatory (CAR-Treg) cells: engineering and applications. Biomedicines 10, 287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 25, 625–638 (2019). This paper reviews CAR T cell toxicities and summarizes the American Society for Transplantation and Cellular Therapy (ASTCT) consensus guidelines for grading CRS and ICANS.

    Article  CAS  Google Scholar 

  27. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024). This work presents a case series of 15 patients with autoimmune diseases treated with anti-CD19 CAR T cell therapy with reported efficacy and long-term follow-up.

    Article  PubMed  Google Scholar 

  29. Taubmann, J. et al. Tolerability of CAR T cell therapy in autoimmune disease. Arthritis Rheumatol. 75 (Suppl. 9), abstr. 0783 (2023).

    Google Scholar 

  30. Ludwig, R. J. et al. Mechanisms of autoantibody-induced pathology. Front. Immunol. 8, 603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meffre, E. & O’Connor, K. C. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol. Rev. 292, 90–101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinnunen, T. et al. Specific peripheral B cell tolerance defects in patients with multiple sclerosis. J. Clin. Invest. 123, 2737–2741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Gruijter, N. M., Jebson, B. & Rosser, E. C. Cytokine production by human B cells: role in health and autoimmune disease. Clin. Exp. Immunol. 210, 253–262 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rastogi, I. et al. Role of B cells as antigen presenting cells. Front. Immunol. 13, 954936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Genentech, Inc. RITUXAN® (rituximab). US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/103705s5464lbl.pdf (2021).

  36. Hauser, S. L. et al. Ocrelizumab versus interferon β-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394, 1352–1363 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Furie, R. et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N. Engl. J. Med. 383, 1117–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kamburova, E. G. et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am. J. Transpl. 13, 1503–1511 (2013).

    Article  CAS  Google Scholar 

  43. Pepper, R. J., Reddy, V., Henderson, S. & Leandro, M. J. Discrepancy in rituximab-induced B-cell depletion in peripheral blood and the kidney and relationship with clinical response in patients with lupus nephritis. Arthritis Rheumatol. 68 (Suppl. 10), abstr. 746 (2016).

    Google Scholar 

  44. Thurlings, R. M. et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann. Rheum. Dis. 67, 917–925 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Boonstra, M. et al. Rituximab in early systemic sclerosis. RMD Open. 3, e000384 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cartron, G., Watier, H., Golay, J. & Solal-Celigny, P. From the bench to the bedside: ways to improve rituximab efficacy. Blood 104, 2635–2642 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Glennie, M. J., French, R. R., Cragg, M. S. & Taylor, R. P. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 44, 3823–3837 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Mossner, E. et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115, 4393–4402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chan, H. T. et al. CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res. 63, 5480–5489 (2003).

    CAS  PubMed  Google Scholar 

  50. Cragg, M. S. & Glennie, M. J. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103, 2738–2743 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Gong, Q. et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J. Immunol. 174, 817–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Ferrara, C. et al. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous β1, 4-N-acetylglucosaminyltransferase III and Golgi ɑ-mannosidase II. Biotechnol. Bioeng. 93, 851–861 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Marinov, A. D. et al. The type II anti-CD20 antibody obinutuzumab (GA101) is more effective than rituximab at depleting B cells and treating disease in a murine lupus model. Arthritis Rheumatol. 73, 826–836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Furie, R. A. et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 100–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Forsthuber, T. G., Cimbora, D. M., Ratchford, J. N., Katz, E. & Stuve, O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther. Adv. Neurol. Disord. 11, 1756286418761697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tedder, T. F. CD19: a promising B cell target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 572–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhoj, V. G. et al. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 128, 360–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gallagher, S. et al. MEDI-551 treatment effectively depletes B cells and reduces serum titers of autoantibodies in mice transgenic for Sle1 and human CD19. Arthritis Rheumatol. 68, 965–976 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Korell, F., Berger, T. R. & Maus, M. V. Understanding CAR T cell–tumor interactions: paving the way for successful clinical outcomes. Med 3, 538–564 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Amgen, Inc. BLINCYTO® (blinatumomab). US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/125557s023s026lbl.pdf (2023).

  64. Genentech, Inc. LUNSUMIO™ (mosunetuzumab-axgb). US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761263s000lbl.pdf (2022).

  65. Zhai, Y. et al. Comparison of blinatumomab and CAR T-cell therapy in relapsed/refractory acute lymphoblastic leukemia: a systematic review and meta-analysis. Expert. Rev. Hematol. 17, 67–76 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Trabolsi, A., Arumov, A. & Schatz, J. H. Bispecific antibodies and CAR-T cells: dueling immunotherapies for large B-cell lymphomas. Blood Cancer J. 14, 27 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cappell, K. M. et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. J. Clin. Oncol. 38, 3805–3815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, aav1648 (2019). This paper presents a preclinical demonstration of the impact of surrogate anti-CD19 CAR T cells in two mouse models of lupus nephritis.

    Article  Google Scholar 

  71. Jin, X. et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol. Immunol. 18, 1896–1903 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Hill, J. A. et al. Durable preservation of antiviral antibodies after CD19-directed chimeric antigen receptor T-cell immunotherapy. Blood Adv. 3, 3590–3601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hale, M., Rawlings, D. J. & Jackson, S. W. The long and the short of it: insights into the cellular source of autoantibodies as revealed by B cell depletion therapy. Curr. Opin. Immunol. 55, 81–88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cappell, K. M. & Kochenderfer, J. N. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat. Rev. Clin. Oncol. 18, 715–727 (2021). This work presents a comprehensive review of CD28 versus 4-1BB CAR co-stimulatory domains.

    Article  CAS  PubMed  Google Scholar 

  75. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  PubMed  Google Scholar 

  76. Lam, N. et al. Development of a bicistronic anti-CD19/CD20 CAR construct including abrogation of unexpected nucleic acid sequence deletions. Mol. Ther. Oncolytics 30, 132–149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. O’Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hawkins, E. R., D’Souza, R. R. & Klampatsa, A. Armored CAR T-cells: the next chapter in T-cell cancer immunotherapy. Biologics 15, 95–105 (2021).

    PubMed  PubMed Central  Google Scholar 

  80. Mosmann, T. R. & Moore, K. W. The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunol. Today 12, A49–A53 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, Y. et al. IL-10-expressing CAR T cells resist dysfunction and mediate durable clearance of solid tumors and metastases. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02060-8 (2024).

  82. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016). This original paper demonstrates the concept of targeting autoreactive B cells with receptors that make use of the autoantigen as a targeting moiety.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lam, N. et al. Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat. Commun. 11, 283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Alabanza, L. et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol. Ther. 25, 2452–2465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020). This paper shows how anti-CD19 CAR structural design can affect clinical toxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Crump, M. et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130, 1800–1808 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hudecek, M. et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19, 3153–3164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cameron, B. J. et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl. Med. 5, 197ra103 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yuan, Y. et al. POS1134 Novel approach to treat systemic lupus erythematosus, by targeting the “root cause”, B cells and plasma cells, using BCMA-CD19 compound CAR. Ann. Rheum. Dis. 82, 895–895 (2023).

    Google Scholar 

  93. Zhang, W. et al. Treatment of systemic lupus erythematosus using BCMA-CD19 compound CAR. Stem Cell Rev. Rep. 17, 2120–2123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Myers, R. M. et al. Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia. J. Clin. Oncol. 39, 3044–3055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Talotta, R., Rucci, F., Canti, G. & Scaglione, F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunotherapy 11, 241–254 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Combier, A. et al. Immunization to rituximab is more frequent in systemic autoimmune diseases than in rheumatoid arthritis: ofatumumab as alternative therapy. Rheumatology 59, 1347–1354 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Wincup, C. et al. Presence of anti-rituximab antibodies predicts infusion-related reactions in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 78, 1140–1142 (2019).

    Article  PubMed  Google Scholar 

  101. Novartis Pharmaceuticals Corporation. KESIMPTA® (ofatumumab). US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125326s070lbl.pdf (2020).

  102. Santomasso, B. D. et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 8, 958–971 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Finney, H. M., Lawson, A. D., Bebbington, C. R. & Weir, A. N. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J. Immunol. 161, 2791–2797 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  PubMed  Google Scholar 

  107. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Combadiere, B. et al. Qualitative and quantitative contributions of the T cell receptor ζ chain to mature T cell apoptosis. J. Exp. Med. 183, 2109–2117 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116, 3875–3886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Velasco Cardenas, R. M. et al. Harnessing CD3 diversity to optimize CAR T cells. Nat. Immunol. 24, 2135–2149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Levine, B. L. et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 30, 338–341 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Balke-Want, H. et al. Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing. Mol. Cancer 22, 100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Laetsch, T. W. et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J. Clin. Oncol. 41, 1664–1669 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Salmon, J. E. Arming T cells against B cells in systemic lupus erythematosus. Nat. Med. 28, 2009–2010 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Merkt, W. et al. Third-generation CD19.CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann. Rheumatic Dis. https://doi.org/10.1136/ard-2023-225174 (2023). This work presents the first report of a third generation anti-CD19 CAR T cell successfully used to treat a patient with systemic sclerosis.

  119. Feng, J. et al. Safety and efficacy of CD19 CAR-T cells for refractory systemic sclerosis: a phase I clinical trial. Blood 140, 10335–10336 (2022).

    Article  Google Scholar 

  120. Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130, 2295–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hill, J. A., Giralt, S., Torgerson, T. R. & Lazarus, H. M. CAR-T — and a side order of IgG, to go? — Immunoglobulin replacement in patients receiving CAR-T cell therapy. Blood Rev. 38, 100596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fowler, N. H. et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat. Med. 28, 325–332 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Aleissa, M. M. et al. Severe acute respiratory syndrome coronavirus 2 vaccine immunogenicity among chimeric antigen receptor T cell therapy recipients. Transpl. Cell Ther. 29, 398.e1–398.e5 (2023).

    Article  CAS  Google Scholar 

  125. Busca, A. et al. COVID-19 and CAR T cells: a report on current challenges and future directions from the EPICOVIDEHA survey by EHA-IDWP. Blood Adv. 6, 2427–2433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Janssen Biotech, Inc. DARZALEX® (daratumumab). US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761036s041lbl.pdf (2022).

  127. Takeda Pharmaceuticals. VELCADE® (bortezomib). US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021602s046lbl.pdf (2021).

  128. Ostendorf, L. et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N. Engl. J. Med. 383, 1149–1155 (2020). This work reports on two patients with SLE successfully treated with a plasma cell-targeting agent (daratumumab).

    Article  CAS  PubMed  Google Scholar 

  129. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 74, 1474–1478 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023). This work presents a phase II trial of transiently transduced anti-BCMA CAR T cells in patients with myasthenia gravis.

    Article  CAS  PubMed  Google Scholar 

  131. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Joly, P. et al. A single cycle of rituximab for the treatment of severe pemphigus. N. Engl. J. Med. 357, 545–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Werth, V. P. et al. Rituximab versus mycophenolate mofetil in patients with pemphigus vulgaris. N. Engl. J. Med. 384, 2295–2305 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Toyka, K. V., Brachman, D. B., Pestronk, A. & Kao, I. Myasthenia gravis: passive transfer from man to mouse. Science 190, 397–399 (1975).

    Article  CAS  PubMed  Google Scholar 

  135. Yi, J. S., Guptill, J. T., Stathopoulos, P., Nowak, R. J. & O’Connor, K. C. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve 57, 172–184 (2018).

    Article  PubMed  Google Scholar 

  136. Borges, L. S. & Richman, D. P. Muscle-specific kinase myasthenia gravis. Front. Immunol. 11, 707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Piehl, F. et al. Efficacy and safety of rituximab for new-onset generalized myasthenia gravis: the RINOMAX randomized clinical trial. JAMA Neurol. 79, 1105–1112 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003). This paper is an initial report of the critical role of FOXP3 to support a suppressive programme in Treg cells.

    Article  CAS  PubMed  Google Scholar 

  140. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004). This work is a seminal review on the role of Treg cells in immune system homeostasis.

    Article  CAS  PubMed  Google Scholar 

  141. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Miyara, M., Ito, Y. & Sakaguchi, S. Treg-cell therapies for autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 10, 543–551 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 395, 1627–1639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chandran, S. et al. Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants. Am. J. Transpl. 17, 2945–2954 (2017).

    Article  CAS  Google Scholar 

  147. Todo, S. et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 64, 632–643 (2016). This work presents a short clinical trial of patients who are recipients of a liver transplant treated with Treg cells.

    Article  CAS  PubMed  Google Scholar 

  148. Trzonkowski, P. et al. Treatment of graft-versus-host disease with naturally occurring T regulatory cells. BioDrugs 27, 605–614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dawson, N. A. J. & Levings, M. K. Antigen-specific regulatory T cells: are police CARs the answer? Transl. Res. 187, 53–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Tang, Q. et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R. M. CD25+CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sagoo, P. et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci. Transl. Med. 3, 83ra42 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Veerapathran, A., Pidala, J., Beato, F., Yu, X. Z. & Anasetti, C. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood 118, 5671–5680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mohseni, Y. R. et al. The future of regulatory T cell therapy: promises and challenges of implementing CAR technology. Front. Immunol. 11, 1608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Obarorakpor, N. et al. Regulatory T cells targeting a pathogenic MHC class II: insulin peptide epitope postpone spontaneous autoimmune diabetes. Front. Immunol. 14, 1207108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rosado-Sanchez, I. & Levings, M. K. Building a CAR-Treg: going from the basic to the luxury model. Cell Immunol. 358, 104220 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Imura, Y., Ando, M., Kondo, T., Ito, M. & Yoshimura, A. CD19-targeted CAR regulatory T cells suppress B cell pathology without GvHD. JCI Insight 5, e136185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bolivar-Wagers, S. et al. Murine CAR19 Tregs suppress acute graft-versus-host disease and maintain graft-versus-tumor responses. JCI Insight 7, e160674 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Good, Z. et al. Post-infusion CAR Treg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28, 1860–1871 (2022). This work presents a serendipitous observation of the clinical relevance of CAR-transduced Treg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Guo, J. & Zhou, X. Regulatory T cells turn pathogenic. Cell Mol. Immunol. 12, 525–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, Z., Li, D., Tsun, A. & Li, B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol. Immunol. 12, 558–565 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Spanier, J. A. et al. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J. Clin. Invest. 133, e168601 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Yang, S. J. et al. Pancreatic islet-specific engineered Tregs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models. Sci. Transl. Med. 14, eabn1716 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. De Paula Pohl, A. et al. Engineered regulatory T cells expressing myelin-specific chimeric antigen receptors suppress EAE progression. Cell Immunol. 358, 104222 (2020).

    Article  PubMed  Google Scholar 

  169. Saetzler, V. et al. Development of β-amyloid-specific CAR-Tregs for the treatment of Alzheimer’s disease. Cells 12, 2115 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Skuljec, J. et al. Chimeric antigen receptor-redirected regulatory T cells suppress experimental allergic airway inflammation, a model of asthma. Front. Immunol. 8, 1125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Fu, R. Y. et al. CD4+ T cells engineered with FVIII-CAR and murine Foxp3 suppress anti-factor VIII immune responses in hemophilia A mice. Cell Immunol. 358, 104216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rana, J. et al. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol. Ther. 29, 2660–2676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mukhatayev, Z., Ostapchuk, Y. O., Fang, D. & Le Poole, I. C. Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmun. Rev. 20, 102761 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, R. et al. An obligate cell-intrinsic function for CD28 in Tregs. J. Clin. Invest. 123, 580–593 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, e126194 (2019).

    Article  PubMed  Google Scholar 

  176. Lamarthee, B. et al. Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nat. Commun. 12, 6446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Boroughs, A. C. et al. A distinct transcriptional program in human CAR T cells bearing the 4-1BB signaling domain revealed by scRNA-seq. Mol. Ther. 28, 2577–2592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rosado-Sánchez, I. et al. Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. JCI Insight 8, e167215 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Pierini, A. et al. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight 2, e92865 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Freeborn, R. A., Strubbe, S. & Roncarolo, M. G. Type 1 regulatory T cell-mediated tolerance in health and disease. Front. Immunol. 13, 1032575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mohseni, Y. R. et al. Chimeric antigen receptor-modified human regulatory T cells that constitutively express IL-10 maintain their phenotype and are potently suppressive. Eur. J. Immunol. 51, 2522–2530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lam, A. J. et al. Innate control of tissue-reparative human regulatory T cells. J. Immunol. 202, 2195–2209 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Mizoguchi, A. et al. Clinical importance of IL-22 cascade in IBD. J. Gastroenterol. 53, 465–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Kim, Y. C. et al. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 92, 77–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gravano, D. M. & Vignali, D. A. The battle against immunopathology: infectious tolerance mediated by regulatory T cells. Cell Mol. Life Sci. 69, 1997–2008 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Jonuleit, H. et al. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med. 196, 255–260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  188. Yeh, W. I. et al. Avidity and bystander suppressive capacity of human regulatory T cells expressing de novo autoreactive T-cell receptors in type 1 diabetes. Front. Immunol. 8, 1313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Brudno, J. N. et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34, 1112–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dumitru, C. A., Moses, K., Trellakis, S., Lang, S. & Brandau, S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol. Immunother. 61, 1155–1167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005). This paper describes the importance and mechanisms of a lymphocyte-depleting conditioning regimen prior to adoptive T cell therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. North, R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 155, 1063–1074 (1982).

    Article  CAS  PubMed  Google Scholar 

  194. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Martin, T. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 41, 1265–1274 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Ligon, J. A. et al. Fertility and CAR T-cells: current practice and future directions. Transpl. Cell Ther. 28, 605.e1–605.e8 (2022).

    Article  CAS  Google Scholar 

  197. Bishop, R. J. et al. Rapid vision loss associated with fludarabine administration. Retina 30, 1272–1277 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ghilardi, G. et al. Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas. Ann. Oncol. 33, 916–928 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Bharadwaj, S. et al. Analysis of bendamustine lymphodepletion, CD19 CART expansion, safety and efficacy in patients with rel/ref non-Hodgkin lymphoma. Blood 140, 10371–10373 (2022).

    Article  Google Scholar 

  200. Pfizer, Inc. Bendamustine hydrochloride. US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/211530s000lbl.pdf (2022).

  201. Beyer, M. et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106, 2018–2025 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Kanakry, C. G. et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci. Transl. Med. 5, 211ra157 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ikegawa, S. & Matsuoka, K. I. Harnessing Treg homeostasis to optimize posttransplant immunity: current concepts and future perspectives. Front. Immunol. 12, 713358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schreeb, K. et al. Study design: human leukocyte antigen class I molecule A*02-chimeric antigen receptor regulatory T cells in renal transplantation. Kidney Int. Rep. 7, 1258–1267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Liu, S. et al. Corticosteroids do not influence the efficacy and kinetics of CAR-T cells for B-cell acute lymphoblastic leukemia. Blood Cancer J. 10, 15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lakomy, T. et al. Early use of corticosteroids following CAR T-cell therapy correlates with reduced risk of high-grade CRS without negative impact on neurotoxicity or treatment outcome. Biomolecules 13, 382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Whitehouse, G. et al. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. Proc. Natl Acad. Sci. USA 114, 7083–7088 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Huang, X. et al. Autologous hematopoietic stem cell transplantation for refractory lupus nephritis. Clin. J. Am. Soc. Nephrol. 14, 719–727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Alexander, T. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113, 214–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  213. Cui, J. et al. Risk prediction models for incident systemic lupus erythematosus among women in the Nurses’ Health Study cohorts using genetics, family history, and lifestyle and environmental factors. Semin. Arthritis Rheum. 58, 152143 (2023).

    Article  PubMed  Google Scholar 

  214. Yoon, J. et al. FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII. Blood 129, 238–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tyndall, A. Hematopoietic stem cell transplantation for autoimmune diseases: more than just prolonged immunosuppression. Curr. Opin. Hematol. 25, 433–440 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Swart, J. F. et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat. Rev. Rheumatol. 13, 244–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Sullivan, K. M., Goldmuntz, E. A. & Furst, D. E. Autologous stem-cell transplantation for severe scleroderma. N. Engl. J. Med. 378, 1066–1067 (2018).

    Article  PubMed  Google Scholar 

  218. Kawai, K., Uchiyama, M., Hester, J., Wood, K. & Issa, F. Regulatory T cells for tolerance. Hum. Immunol. 79, 294–303 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Issa, F. & Wood, K. J. CD4+ regulatory T cells in solid organ transplantation. Curr. Opin. Organ. Transpl. 15, 757–764 (2010).

    Article  Google Scholar 

  220. Cassano, A., Chong, A. S. & Alegre, M. L. Tregs in transplantation tolerance: role and therapeutic potential. Front. Transplant. https://doi.org/10.3389/frtra.2023.1217065 (2023).

  221. González-Galarza, F. F. et al. Allele Frequency Net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 43, D784–D788 (2015).

    Article  PubMed  Google Scholar 

  222. Boardman, D. A. et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am. J. Transpl. 17, 931–943 (2017).

    Article  CAS  Google Scholar 

  223. Gille, I., Claas, F. H. J., Haasnoot, G. W., Heemskerk, M. H. M. & Heidt, S. Chimeric antigen receptor (CAR) regulatory T-cells in solid organ transplantation. Front. Immunol. 13, 874157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Noyan, F. et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am. J. Transpl. 17, 917–930 (2017).

    Article  CAS  Google Scholar 

  225. Sicard, A. et al. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. Am. J. Transpl. 20, 1562–1573 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to James N. Kochenderfer.

Ethics declarations

Competing interests

J.B.C. and D.B. are employees of Kyverna Therapeutics. J.N.B. is a scientific adviser for Kyverna Therapeutics (unpaid position). J.N.K is principal investigator of research agreements between the National Cancer Institute and Kite Pharma (Gilead Sciences) and Celgene (Bristol Myers Squibb); has received royalties from Kite, Celgene and Kyverna Therapeutics; and is also an inventor on multiple patent applications and patents for chimeric antigen receptors (CARs).

Peer review

Peer review information

Nature Reviews Immunology thanks Megan Levings, Marko Radic and the other anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J.B., Brudno, J.N., Borie, D. et al. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01035-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01035-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing