Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bone marrow inflammation in haematological malignancies

Abstract

Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normal bone marrow niches.
Fig. 2: Bone marrow niches for leukaemic and myeloma cells.
Fig. 3: Common and divergent features of bone marrow inflammation.

Similar content being viewed by others

References

  1. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tokoyoda, K., Hauser, A. E., Nakayama, T. & Radbruch, A. Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 10, 193–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Barreyro, L., Chlon, T. M. & Starczynowski, D. T. Chronic immune response dysregulation in MDS pathogenesis. Blood 132, 1553–1560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mei, Y. et al. Bone marrow-confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia. J. Clin. Invest. 132, e152673 (2022). This study identifies IL-6 as an essential factor mediating progression of MDS to AML in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carey, A. et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep. 18, 3204–3218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dosani, T. et al. Host-related immunodeficiency in the development of multiple myeloma. Leuk. Lymphoma 59, 1127–1132 (2018).

    Article  PubMed  Google Scholar 

  7. Zavidij, O. et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat. Cancer 1, 493–506 (2020). This study identifies the changes in NK cells, memory T cells and monocytes in the bone marrow of individuals with precursor stages of MM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brück, O. et al. Immune profiles in acute myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and survival. Blood Adv. 4, 274–286 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deb, G., Cicala, A., Papadas, A. & Asimakopoulos, F. Matrix proteoglycans in tumor inflammation and immunity. Am. J. Physiol. Cell Physiol. 323, C678–C693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pirillo, C. et al. Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness. Blood Adv. 6, 3126–3141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goselink, H. M., Willemze, R. & Falkenburg, J. H. F. Tumor necrosis factor alpha (TNFα) production by acute myeloid leukemic (AML) blasts results in impaired proliferation of normal hematopoietic progenitor cells (HPC). Exp. Hematol. 28, 69–70 (2000).

    Article  Google Scholar 

  12. Corradi, G. et al. Release of IFNγ by acute myeloid leukemia cells remodels bone marrow immune microenvironment by inducing regulatory T cells. Clin. Cancer Res. 28, 3141–3155 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Young, D. C. & Griffin, J. D. Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood 68, 1178–1181 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Medzhitov, R. The spectrum of inflammatory responses. Science 374, 1070–1075 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Naik, S., Larsen, S. B., Cowley, C. J. & Fuchs, E. Two to tango: dialog between immunity and stem cells in health and disease. Cell 175, 908–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cosgrove, J., Hustin, L. S. P., de Boer, R. J. & Perié, L. Hematopoiesis in numbers. Trends Immunol. 42, 1100–1112 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Méndez-Ferrer, S. et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 20, 285–298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beerman, I., Luis, T. C., Singbrant, S., Celso, C. L. & Méndez-Ferrer, S. The evolving view of the hematopoietic stem cell niche. Exp. Hematol. 50, 22–26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reynaud, D. et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20, 661–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernitz, J. M., Daniel, M. G., Fstkchyan, Y. S. & Moore, K. Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice. Blood 129, 1901–1912 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Orelio, C., Haak, E., Peeters, M. & Dzierzak, E. Interleukin-1–mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo. Blood 112, 4895–4904 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mendelson, A. & Frenette, P. S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20, 833–846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zehentmeier, S. et al. Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells. Eur. J. Immunol. 44, 2306–2317 (2014). In this study, imaging of mouse bone marrow reveals stromal cell niches for plasma cells and provides evidence for a contribution of neutrophil-derived signals.

    Article  CAS  PubMed  Google Scholar 

  25. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Jourdan, M. et al. IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia 28, 1647–1656 (2014). This study identifies essential roles for IL-6 and APRIL in the generation and maintenance of long-lived plasma cells.

    Article  CAS  PubMed  Google Scholar 

  27. Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12, 151–159 (2011). This study establishes the importance of eosinophils for plasma cell retention and survival in the bone marrow.

    Article  CAS  PubMed  Google Scholar 

  28. Matthes, T. et al. Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow. Blood 118, 1838–1844 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Cheng, Q. et al. CXCR4-CXCL12 interaction is important for plasma cell homing and survival in NZB/W mice. Eur. J. Immunol. 48, 1020–1029 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Kennel, K. B., Bozlar, M., De Valk, A. F. & Greten, F. R. Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin. Cancer Res. 29, 1009–1016 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, S. et al. Massive parallel RNA sequencing of highly purified mesenchymal elements in low-risk MDS reveals tissue-context-dependent activation of inflammatory programs. Leukemia 30, 1938–1942 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Balderman, S. R. et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood 127, 616–625 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010). This paper establishes the concept of stromal niche-induced oncogenesis in the haematopoietic system in mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129, 1097–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong, L. et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 539, 304–308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ribezzo, F. et al. Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome. Leukemia 33, 1759–1772 (2019). In vivo demonstration that clonal cells of the myeloid lineage can induce inflammatory alterations in bone marrow stromal cells.

    Article  CAS  PubMed  Google Scholar 

  39. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019). Single-cell RNA sequencing of bone marrow stromal cells from healthy and leukaemic mice identifies tumour cell-induced stromal changes that reduce normal haematopoietic capacity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geyh, S. et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27, 1841–1851 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Zambetti, N. A. et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 19, 613–627 (2016). This study establishes that inflammatory stromal signalling may induce genotoxic stress in haematopoietic stem cells and its relevance for human MDS.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, L. et al. A single-cell taxonomy predicts inflammatory niche remodeling to drive tissue failure and outcome in human AML. Blood Cancer Discov. 4, 394–417 (2023). This study presents a comprehensive single-cell taxonomy of stromal niche-haematopoietic stem and progenitor cell signalling in human normal and leukaemic bone marrow, identifying stromal inflammation as a driver of tissue failure and outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ping, Z. et al. Activation of NF-κB driven inflammatory programs in mesenchymal elements attenuates hematopoiesis in low-risk myelodysplastic syndromes. Leukemia 33, 536–541 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Arranz, L. et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78–81 (2014). This study implicates the neuronal system in the regulation of bone marrow niches and its involvement in the pathogenesis of myeloproliferative neoplasms.

    Article  CAS  PubMed  Google Scholar 

  45. Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77.e66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laouedj, M. et al. S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood 129, 1980–1990 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, P. et al. S100A9-induced overexpression of PD-1/PD-L1 contributes to ineffective hematopoiesis in myelodysplastic syndromes. Leukemia 33, 2034–2046 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Villatoro, A. et al. Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation. Nat. Commun. 14, 12 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Boer, B. et al. The IL1-IL1RAP axis plays an important role in the inflammatory leukemic niche that favors acute myeloid leukemia proliferation over normal hematopoiesis. Haematologica 106, 3067–3078 (2021).

    Article  PubMed  Google Scholar 

  50. Kagoya, Y. et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J. Clin. Invest. 124, 528–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Volk, A. et al. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. J. Exp. Med. 211, 1093–1108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pronk, E. & Raaijmakers, M. The mesenchymal niche in MDS. Blood 133, 1031–1038 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X., Zhang, Z. & Yao, C. Survivin is upregulated in myeloma cell lines cocultured with mesenchymal stem cells. Leuk. Res. 34, 1325–1329 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, J. et al. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br. J. Haematol. 158, 336–346 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xu, S. et al. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 30, 266–279 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. de Jong, M. M. E. et al. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat. Immunol. 22, 769–780 (2021). This study provides a comprehensive single-cell RNA sequencing atlas of the bone marrow microenvironment of patients with newly diagnosed MM, identifying the presence of an activated and pro-inflammatory stromal niche with potential to support tumour cells.

    Article  PubMed  Google Scholar 

  58. Cassese, G. et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol. 171, 1684–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Wallace, S. R., Oken, M. M., Lunetta, K. L., Panoskaltsis-Mortari, A. & Masellis, A. M. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 91, 1219–1230 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Corre, J. et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21, 1079–1088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arnulf, B. et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21, 158–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Giallongo, C. et al. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget 7, 85764–85775 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhou, Y. et al. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell 38, 818–828.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Blau, O. et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 118, 5583–5592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garayoa, M. et al. Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23, 1515–1527 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Jann, J.-C. et al. Bone marrow derived stromal cells from myelodysplastic syndromes are altered but not clonally mutated in vivo. Nat. Commun. 12, 6170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Y. et al. Interleukin-1β inhibits normal hematopoietic expansion and promotes acute myeloid leukemia progression via the bone marrow niche. Cytotherapy 22, 127–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, T. Y. et al. IL-6 blockade reverses bone marrow failure induced by human acute myeloid leukemia. Sci. Transl. Med. 12, eaax5104 (2020). This study identifies inflammatory signal as a druggable target to mitigate bone marrow failure in haematopoietic neoplasms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tobler, A. et al. Constitutive expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia. Blood 82, 2517–2525 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Starczynowski, D. T. et al. Identification of miR-145 and miR-146a as mediators of the 5q–syndrome phenotype. Nat. Med. 16, 49–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Smith, M. A. et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat. Cell Biol. 21, 640–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fuster, J. J. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep. 33, 108326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maratheftis, C. I., Andreakos, E., Moutsopoulos, H. M. & Voulgarelis, M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin. Cancer Res. 13, 1154–1160 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Gamlen, H. A. et al. miR-196b-TLR7/8 signaling axis regulates innate immune signaling and myeloid maturation in DNMT3A-mutant AML. Clin. Cancer Res. 28, 4574–4586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhong, C. et al. NLRP3 inflammasome promotes the progression of acute myeloid leukemia via IL-1β pathway. Front. Immunol. 12, 661939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goyette, J. & Geczy, C. L. Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41, 821–842 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Shi, L. et al. Cellular senescence induced by S100A9 in mesenchymal stromal cells through NLRP3 inflammasome activation. Aging 11, 9626–9642 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, B.-Y. et al. SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood 135, 2271–2285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Basiorka, A. A. et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128, 2960–2975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fucikova, J. et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 128, 3113–3124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nicolas, E. et al. Expression of S100A8 in leukemic cells predicts poor survival in de novo AML patients. Leukemia 25, 57–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Karjalainen, R. et al. Elevated expression of S100A8 and S100A9 correlates with resistance to the BCL-2 inhibitor venetoclax in AML. Leukemia 33, 2548–2553 (2019).

    Article  PubMed  Google Scholar 

  85. Barreyro, L. et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 120, 1290–1298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grauers Wiktorin, H. et al. Impact of IL-1β and the IL-1R antagonist on relapse risk and survival in AML patients undergoing immunotherapy for remission maintenance. Oncoimmunology 10, 1944538 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dybedal, I., Bryder, D., Fossum, A., Rusten, L. S. & Jacobsen, S. E. W. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 98, 1782–1791 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Sanchez-Correa, B. et al. Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine 61, 885–891 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Cimino, G. et al. Serum interleukin-2 (IL-2), soluble IL-2 receptors and tumor necrosis factor-alfa levels are significantly increased in acute myeloid leukemia patients. Leukemia 5, 32–35 (1991).

    CAS  PubMed  Google Scholar 

  90. Shi, X. et al. The inflammatory cytokine profile of myelodysplastic syndromes: a meta-analysis. Medicine 98, e15844 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Everson, M. P., Brown, C. B. & Lilly, M. B. Interleukin-6 and granulocyte-macrophage colony-stimulating factor are candidate growth factors for chronic myelomonocytic leukemia cells. Blood 74, 1472–1476 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki, T. et al. Effects of interleukin-6 and granulocyte colony-stimulating factor on the proliferation of leukemic blast progenitors from acute myeloblastic leukemia patients. Jpn J. Cancer Res. 81, 979–986 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hou, D. et al. Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis. Ann. Transl. Med. 8, 1346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Al-Matary, Y. S. et al. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a growth factor independence 1 dependent manner. Haematologica 101, 1216–1227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brauneck, F. et al. TIGIT blockade repolarizes AML-associated TIGIT+ M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis. J. Immunother. Cancer 10, e004794 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yang, X. et al. Repolarizing heterogeneous leukemia-associated macrophages with more M1 characteristics eliminates their pro-leukemic effects. OncoImmunology 7, e1412910 (2018).

    Article  PubMed  Google Scholar 

  97. Yeaton, A. et al. The impact of inflammation-induced tumor plasticity during myeloid transformation. Cancer Discov. 12, 2392–2413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, K. et al. Single-cell analysis reveals the chemotherapy-induced cellular reprogramming and novel therapeutic targets in relapsed/refractory acute myeloid leukemia. Leukemia 37, 308–325 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Saito, Y. et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci. Transl. Med. 2, 17ra19 (2010).

    Article  Google Scholar 

  100. Lv, M., Wang, K. & Huang, X. J. Myeloid-derived suppressor cells in hematological malignancies: friends or foes. J. Hematol. Oncol. 12, 105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yu, S., Ren, X. & Li, L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp. Hematol. Oncol. 11, 43 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hofbauer, D. et al. β2-Microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. Immunity 54, 1772–1787.e9 (2021). This study provides evidence for inflammasome activation in macrophages by β2-microglobulin in a mouse model of myeloma.

    Article  CAS  PubMed  Google Scholar 

  103. Chen, J. et al. BAFF is involved in macrophage-induced bortezomib resistance in myeloma. Cell Death Dis. 8, e3161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tai, Y.-T. et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 127, 3225–3236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kawano, M. et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332, 83–85 (1988).

    Article  CAS  PubMed  Google Scholar 

  106. Tsuyama, N. et al. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3. Biochem. Biophys. Res. Commun. 337, 201–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Rutsch, S. et al. IL-6 and MYC collaborate in plasma cell tumor formation in mice. Blood 115, 1746–1754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gunn, W. G. et al. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24, 986–991 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Peruzzi, B. et al. c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nat. Commun. 3, 630 (2012).

    Article  PubMed  Google Scholar 

  110. Hashizume, M., Hayakawa, N. & Mihara, M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology 47, 1635–1640 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Akhmetzyanova, I. et al. Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα. Blood Adv. 5, 3592–3608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jourdan, M. et al. Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. Eur. Cytokine Netw. 10, 65–70 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bharti, A. C. et al. Nuclear factor-κB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103, 3175–3184 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Gu, J. et al. Cytokine profiles in patients with newly diagnosed multiple myeloma: survival is associated with IL-6 and IL-17A levels. Cytokine 138, 155358 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Jia, X., Liu, X. & Yang, W. Predictive value analysis of serum Ig A, Ig G, and TNF-α in recurrence of multiple myeloma. Dis. Markers 2022, 2095696 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Thompson, M. A. et al. Plasma levels of tumour necrosis factor alpha and interleukin-6 predict progression-free survival following thalidomide therapy in patients with previously untreated multiple myeloma. Br. J. Haematol. 123, 305–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Zheng, Y. et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114, 3625–3628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, H. et al. High numbers of CD163+ tumor-associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib-based regimens. J. Cancer 10, 3239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Suyanı, E. et al. Tumor-associated macrophages as a prognostic parameter in multiple myeloma. Ann. Hematol. 92, 669–677 (2013).

    Article  PubMed  Google Scholar 

  120. Litmanovich, A., Khazim, K. & Cohen, I. The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol. Ther. 6, 109–127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jibril, A. et al. Plasma cell derived mtDAMPs activate macrophage STING pathway which promotes myeloma progression. Blood 141, 3065–3077 (2023). This study provides evidence for macrophage activation by myeloma cell-derived mitochondrial DNA in an animal model of MM.

    CAS  PubMed  Google Scholar 

  122. Tirier, S. M. et al. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single‐cell transcriptomics. Nat. Commun. 12, 6960 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. De Beule, N. et al. Tumour-associated macrophage-mediated survival of myeloma cells through STAT3 activation. J. Pathol. 241, 534–546 (2017).

    Article  PubMed  Google Scholar 

  124. Beyar-Katz, O. et al. Proinflammatory macrophages promote multiple myeloma resistance to bortezomib therapy. Mol. Cancer Res. 17, 2331–2340 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Dosani, T. et al. Significance of the absolute lymphocyte/monocyte ratio as a prognostic immune biomarker in newly diagnosed multiple myeloma. Blood Cancer J. 7, e579 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ong, S.-M. et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis. 9, 266 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Le Gallou, S. et al. Nonclassical monocytes are prone to migrate into tumor in diffuse large B-cell lymphoma. Front. Immunol. 12, 755623 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen, H. et al. Increased M2 macrophages in multiple myeloma patients with progressive disease and down-regulated polarization with the JAK2 inhibitor ruxolitinib. Blood 124, 4106 (2014).

    Article  Google Scholar 

  129. Wichert, S., Pettersson, Å., Hellmark, T., Johansson, Å. & Hansson, M. Bone marrow eosinophils in plasma cell disorders. Exp. Hematol. 66, 27–31.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Wong, T. W. et al. Induction of malignant plasma cell proliferation by eosinophils. PloS ONE 8, e70554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wong, D. et al. Eosinophils and megakaryocytes support the early growth of murine MOPC315 myeloma cells in their bone marrow niches. PloS ONE 9, e109018 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lin, C. et al. S100A8/S100A9 promote progression of multiple myeloma via expansion of megakaryocytes. Cancer Res. Commun. 3, 420–430 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Matthes, T. et al. Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow. Leukemia 29, 1882–1890 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Perez, C. et al. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood 136, 199–209 (2020). This study provides a framework for the identification of granulocytic myeloid-derived suppressor cells and identifies a correlation between neutrophil numbers and patient outcome in newly diagnosed myeloma.

    Article  PubMed  Google Scholar 

  135. Shi, L. et al. Elevated neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio and decreased platelet-to-lymphocyte ratio are associated with poor prognosis in multiple myeloma. Oncotarget 8, 18792–18801 (2017).

    Article  PubMed  Google Scholar 

  136. Colombo, M. et al. Multiple myeloma-derived Jagged ligands increases autocrine and paracrine interleukin-6 expression in bone marrow niche. Oncotarget 7, 56013–56029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Furukawa, M. et al. Autocrine and paracrine interactions between multiple myeloma cells and bone marrow stromal cells by growth arrest-specific gene 6 cross-talk with interleukin-6. J. Biol. Chem. 292, 4280–4292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tsubaki, M. et al. Inhibition of the tumour necrosis factor-alpha autocrine loop enhances the sensitivity of multiple myeloma cells to anticancer drugs. Eur. J. Cancer 49, 3708–3717 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Costes, V. et al. Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br. J. Haematol. 103, 1152–1160 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Demchenko, Y. N. et al. Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115, 3541–3552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Feyen, J. et al. Myeloid cells promote interferon signaling-associated deterioration of the hematopoietic system. Nat. Commun. 13, 7657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pioli, P. D., Casero, D., Montecino-Rodriguez, E., Morrison, S. L. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bailur, J. K. et al. Early alterations in stem-like/marrow-resident T cells and innate and myeloid cells in preneoplastic gammopathy. JCI Insight 4, e127807 (2019).

    Article  PubMed Central  Google Scholar 

  147. Schinke, C. et al. Characterizing the role of the immune microenvironment in multiple myeloma progression at a single-cell level. Blood Adv. 6, 5873–5883 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Damasceno, D. et al. Monocyte subsets and serum inflammatory and bone-associated markers in monoclonal gammopathy of undetermined significance and multiple myeloma. Cancers 13, 1454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Marnell, C. S., Bick, A. & Natarajan, P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell Cardiol. 161, 98–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014). Together with Jaiswal et al. (2014), this paper demonstrates age-associated clonal presence in the haematopoietic system.

    Article  PubMed  PubMed Central  Google Scholar 

  152. SanMiguel, J. M. et al. Distinct tumor necrosis factor alpha receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 12, 2763–2773 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28, 1428–1442.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Trowbridge, J. J. & Starczynowski, D. T. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J. Exp. Med. 218, e20201544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Avagyan, S. et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 374, 768–772 (2021). This study provides proof-of-concept in a zebrafish model that resistance to inflammatory signalling may promote the expansion of clonal haematopoietic cells.

    Article  CAS  PubMed  Google Scholar 

  156. Balandrán, J. C., Lasry, A. & Aifantis, I. The role of inflammation in the initiation and progression of myeloid neoplasms. Blood Cancer Discov. 4, 254–266 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rodriguez-Meira, A. et al. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat. Genet. 55, 1531–1541 (2023). Experimental support for the view that inflammatory signalling may drive the expansion of TP53 mutant cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Maia, C. et al. Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma. Blood 135, 2375–2387 (2020).

    Article  PubMed  Google Scholar 

  159. Chitre, S. et al. Clonal hematopoiesis in patients with multiple myeloma undergoing autologous stem cell transplantation. Leukemia 32, 2020–2024 (2018).

    Article  PubMed  Google Scholar 

  160. Mouhieddine, T. H. et al. Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nat. Commun. 11, 2996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Slavin, T. P. et al. Association between clonal hematopoiesis and late nonrelapse mortality after autologous hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 25, 2517–2521 (2019).

    Article  CAS  Google Scholar 

  162. Da Vià, M. C. et al. MGUS and clonal hematopoiesis show unrelated clinical and biological trajectories in an older population cohort. Blood Adv. 6, 5702–5706 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Hudson, W. H. et al. Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements. Nat. Commun. 9, 1337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Holstein, S. A. & McCarthy, P. L. Immunomodulatory drugs in multiple myeloma: mechanisms of action and clinical experience. Drugs 77, 505–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zeidner, J. F. & Foster, M. C. Immunomodulatory drugs: IMiDs in acute myeloid leukemia (AML). Curr. Drug Targets 18, 304–314 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Corral, L. G. et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J. Immunol. 163, 380–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Henry, J. Y. et al. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs immunomodulatory compounds lenalidomide and pomalidomide. Immunology 139, 377–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Görgün, G. et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 116, 3227–3237 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Keifer, J. A., Guttridge, D. C., Ashburner, B. P. & Baldwin, A. S. Jr. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J. Biol. Chem. 276, 22382–22387 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Gupta, D. et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15, 1950–1961 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014). This study describes identification of the mechanistic underpinnings of lenalidomide effects on myeloma cells.

    Article  PubMed  Google Scholar 

  173. Garcia-Manero, G. et al. Clinical and biological effects of canakinumab in lower-risk myelodysplastic syndromes (MDS): results from a phase 2 clinical trial. Blood 140, 2078–2080 (2022).

    Article  Google Scholar 

  174. Lust, J. A. et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1β-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin. Proc. 84, 114–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Orlowski, R. Z. et al. A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am. J. Hematol. 90, 42–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Baron, F. et al. Value of infliximab (Remicade®) in patients with low-risk myelodysplastic syndrome: final results of a randomized phase II trial (EORTC trial 06023) of the EORTC Leukemia Group. Haematologica 97, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Baila, L. et al. Assessment of two doses of infliximab in patients with low/intermediate risk IPSS myelodysplastic syndrome (MDS): an EORTC Leukemia Group (LG) randomized phase II trial (06023). Blood 110, 1456 (2007).

    Article  Google Scholar 

  178. Scott, B. L. et al. Anti-thymocyte globulin plus etanercept as therapy for myelodysplastic syndromes (MDS): a phase II study. Br. J. Haematol. 149, 706–710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tsimberidou, A. M., Waddelow, T., Kantarjian, H. M., Albitar, M. & Giles, F. J. Pilot study of recombinant human soluble tumor necrosis factor (TNF) receptor (p75) fusion protein (TNFR:Fc; Enbrel) in patients with refractory multiple myeloma: increase in plasma TNF alpha levels during treatment. Leuk. Res. 27, 375–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Garcia-Manero, G. et al. A clinical study of OPN-305, a Toll-like receptor 2 (TLR-2) antibody, in patients with lower risk myelodysplastic syndromes (MDS) that have received prior hypomethylating agent (HMA) therapy. Blood 128, 227 (2016).

    Article  Google Scholar 

  181. Chakraborty, S. et al. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J. 11, 152 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Abdel-Wahab, O. et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J. Exp. Med. 210, 2641–2659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Obeng, E. A. et al. Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30, 404–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mupo, A. et al. Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia 31, 720–727 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Kumar, S. K. et al. Multiple myeloma. Nat. Rev. Dis. Prim. 3, 17046 (2017).

    Article  PubMed  Google Scholar 

  187. Paiva, B. et al. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia 25, 697–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rhyasen, G. W. et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 24, 90–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. National Cancer Institute SEER Program. Cancer stat facts: acute myeloid leukemia (2012–2018). National Institutes of Health https://seer.cancer.gov/statfacts/html/amyl.html (2020).

  191. Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 562, 526–531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cancer Genome Atlas Research Network, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

    Article  Google Scholar 

  193. Döhner, H. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 140, 1345–1377 (2022).

    Article  PubMed  Google Scholar 

  194. Lubeck, D. P. et al. Systematic literature review of the global incidence and prevalence of myelodysplastic syndrome and acute myeloid leukemia. Blood 128, 5930 (2016).

    Article  Google Scholar 

  195. Sekeres, M. A. & Taylor, J. Diagnosis and treatment of myelodysplastic syndromes: a review. JAMA 328, 872–880 (2022).

    Article  PubMed  Google Scholar 

  196. Li, H., Hu, F., Gale, R. P., Sekeres, M. A. & Liang, Y. Myelodysplastic syndromes. Nat. Rev. Dis. Prim. 8, 74 (2022).

    Article  PubMed  Google Scholar 

  197. Ogawa, S. Genetics of MDS. Blood 133, 1049–1059 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. National Cancer Institute SEER Program. Cancer stat facts: myeloma (2013–2019). National Institutes of Health https://seer.cancer.gov/statfacts/html/mulmy.html (2020).

  199. Marinac, C. R., Ghobrial, I. M., Birmann, B. M., Soiffer, J. & Rebbeck, T. R. Dissecting racial disparities in multiple myeloma. Blood Cancer J. 10, 19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Kyle, R. A. et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 378, 241–249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rajkumar, S. V. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am. J. Hematol. 97, 1086–1107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ferrajoli, A. et al. The clinical significance of tumor necrosis factor-α plasma level in patients having chronic lymphocytic leukemia. Blood 100, 1215–1219 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Fayad, L. et al. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 97, 256–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Warzocha, K. et al. Plasma levels of tumour necrosis factor and its soluble receptors correlate with clinical features and outcome of Hodgkin’s disease patients. Br. J. Cancer 77, 2357–2362 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bao, C. et al. Cytokine profiles in patients with newly diagnosed diffuse large B-cell lymphoma: IL-6 and IL-10 levels are associated with adverse clinical features and poor outcomes. Cytokine 169, 156289 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Tefferi, A. et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J. Clin. Oncol. 29, 1356–1363 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Isidro-Hernández, M. et al. Inhibition of inflammatory signaling in Pax5 mutant cells mitigates B-cell leukemogenesis. Sci. Rep. 10, 19189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Søegaard, S. H. et al. Neonatal inflammatory markers are associated with childhood B-cell precursor acute lymphoblastic leukemia. Cancer Res. 78, 5458–5463 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Saint Fleur-Lominy, S. et al. STIM1 and STIM2 mediate cancer-induced inflammation in T cell acute lymphoblastic leukemia. Cell Rep. 24, 3045–3060.e5 (2018).

    Article  PubMed Central  Google Scholar 

  211. Haas, S. et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17, 422–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Grover, A. et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7, 11075 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Malara, A. et al. EDA fibronectin-TLR4 axis sustains megakaryocyte expansion and inflammation in bone marrow fibrosis. J. Exp. Med. 216, 587–604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Gleitz, H. F. E. et al. Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood 136, 2051–2064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Gätjen, M. et al. Splenic marginal zone granulocytes acquire an accentuated neutrophil B-cell helper phenotype in chronic lymphocytic leukemia. Cancer Res. 76, 5253–5265 (2016).

    Article  PubMed  Google Scholar 

  216. Hanna, B. et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia 30, 570–579 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Jaeger, A. et al. Activated granulocytes and inflammatory cytokine signaling drive T-cell lymphoma progression and disease symptoms. Blood 141, 2824–2840 (2023).

    CAS  PubMed  Google Scholar 

  218. Nishio, M. et al. Nurse-like cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1α. Blood 106, 1012–1020 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hanna, B. S., Öztürk, S. & Seiffert, M. Beyond bystanders: myeloid cells in chronic lymphocytic leukemia. Mol. Immunol. 110, 77–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Balandrán, J. C. et al. Pro-inflammatory-related loss of CXCL12 niche promotes acute lymphoblastic leukemic progression at the expense of normal lymphopoiesis. Front. Immunol. 7, 666 (2016).

    PubMed  Google Scholar 

  221. Mourcin, F. et al. Follicular lymphoma triggers phenotypic and functional remodeling of the human lymphoid stromal cell landscape. Immunity 54, 1788–1806.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  222. Grégoire, M. et al. Neutrophils trigger a NF-κB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas. Oncotarget 6, 16471–16487 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Leimkühler, N. B. et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell 28, 637–652.e8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Cordeiro-Spinetti, E., Taichman, R. S. & Balduino, A. The bone marrow endosteal niche: how far from the surface? J. Cell. Biochem. 116, 6–11 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Yan, M. et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat. Med. 12, 945–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  226. Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Collins, E. C., Pannell, R., Simpson, E. M., Forster, A. & Rabbitts, T. H. Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep. 1, 127–132 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Dobson, C. L., Warren, A. J., Pannell, R., Forster, A. & Rabbitts, T. H. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J. 19, 843–851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hofgaard, P. O. et al. A novel mouse model for multiple myeloma (MOPC315.BM) that allows noninvasive spatiotemporal detection of osteolytic disease. PloS ONE 7, e51892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lin, Y. W., Slape, C., Zhang, Z. & Aplan, P. D. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 106, 287–295 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Chesi, M. et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13, 167–180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.C. is supported by a translational research award from the International Myeloma Society and Paula and Rodger Riney foundation. M.H.G.P.R. is supported by grants from the Dutch Cancer Society (KWF Kankerbestrijding, grant EMCRs 10488 and 11092).

Author information

Authors and Affiliations

Authors

Contributions

L.C. and M.H.G.P.R. researched data related to MDS and AML and contributed to the writing of sections related to these malignancies. M.M.E.D.J. and T.C. researched data for the article and wrote the manuscript. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Tom Cupedo.

Ethics declarations

Competing interests

The authors have no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks A.-K. Eisfeld and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

AML1-ETO9a leukaemic mice

Model for human AML. Mouse HSCs are transduced with the AML1-ETO fusion oncoprotein, associated with translocation t(8;21) in patients225, and transplanted into lethally irradiated recipient mice that will rapidly develop a severe leukaemia resembling human AML226.

MLL-AF9 leukaemic mice

Model for human AML. Mouse HSCs are transduced with the MLL-AF9 fusion oncoprotein, which mimics the t(9;11)(p22;q23) translocation found in human AML. Transfer of transduced cells in recipient mice induces AML227. MLL-AF9 knock-in mice were also generated, which spontaneously develop AML around 6 months of age228,229.

MOPC-315.BM BALB/c myeloma mouse model

Model for human MM. Disease is established by intravenous injection of bone marrow-homing mouse myeloma cells (MOPC-315.BM) that were isolated and culture-adapted from a mineral oil-induced plasmacytoma in a BALB/c mouse230.

NUP98-HOXD13 transgenic mice

Model for human MDS. Transgenic mice express a fusion oncoprotein of NUP98 and HOXD13, implicated in human MDS and AML. NUP98-HOXD13 transgenic mice develop features of human MDS, including cytopenias (bone marrow failure). Leukaemic transformation occurs in a subset of mice231.

Vκ*MYC myeloma mouse model

Model for human MM. Spontaneous model driven by sporadic activation-induced cytidine deaminase (AID)-dependent MYC transgene expression in post-germinal centre B cells, leading to the development of MM in aged mice. Transplant of splenocytes of diseased Vκ*MYC mice to congenic mice can induce early-onset disease232.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jong, M.M.E., Chen, L., Raaijmakers, M.H.G.P. et al. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 24, 543–558 (2024). https://doi.org/10.1038/s41577-024-01003-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-024-01003-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer