Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases

Abstract

The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FOXP3-centred gene regulatory network: epigenetic modulation of Treg cell function and stability.
Fig. 2: cis-Regulatory elements in the FOXP3 locus that control Treg cell induction, maintenance, stability and function.
Fig. 3: Transcription factors that regulate Treg cell differentiation and function in the periphery.
Fig. 4: Activation of the SGK1–FOXO1 axis is common to dysfunctional Treg cells and pathogenic TH17 cells.

Similar content being viewed by others

References

  1. Lu, L., Barbi, J. & Pan, F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 17, 703–717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. & Campbell, D. J. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector TH cells. Blood 119, 4430–4440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Halim, L. et al. An atlas of human regulatory T helper-like cells reveals features of TH2-like Tregs that support a tumorigenic environment. Cell Rep. 20, 757–770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheru, N., Hafler, D. A. & Sumida, T. S. Regulatory T cells in peripheral tissue tolerance and diseases. Front. Immunol. 14, 1154575 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P. & Yamaguchi, T. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21, 1105–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt, A., Oberle, N. & Krammer, P. H. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trujillo-Ochoa, J. L., Kazemian, M. & Afzali, B. The role of transcription factors in shaping regulatory T cell identity. Nat. Rev. Immunol. 23, 842–856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carbone, F. et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat. Med. 20, 69–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. John, K. et al. Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis. 8, 3219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Wildin, R. S. et al. X-Linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baecher-Allan, C. M. et al. CD2 costimulation reveals defective activity by human CD4+CD25hi regulatory cells in patients with multiple sclerosis. J. Immunol. 186, 3317–3326 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Brusko, T. M., Wasserfall, C. H., Clare-Salzler, M. J., Schatz, D. A. & Atkinson, M. A. Functional defects and the influence of age on the frequency of CD4+CD25+ T-cells in type 1 diabetes. Diabetes 54, 1407–1414 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Haseda, F., Imagawa, A., Murase-Mishiba, Y., Terasaki, J. & Hanafusa, T. CD4+CD45RAFoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin. Exp. Immunol. 173, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Roon, J. A., Hartgring, S. A., van der Wurff-Jacobs, K. M., Bijlsma, J. W. & Lafeber, F. P. Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intra-articularly and have impaired suppressive function in RA patients. Rheumatology 49, 2084–2089 (2010).

    Article  PubMed  Google Scholar 

  22. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Bonelli, M. et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int. Immunol. 20, 861–868 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 37, 803–811 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Tran, D. Q., Ramsey, H. & Shevach, E. M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J. Exp. Med. 209, 1723–1742, S1 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szurek, E. et al. Differences in expression level of helios and neuropilin-1 do not distinguish thymus-derived from extrathymically-induced CD4+Foxp3+ regulatory T cells. PLoS ONE 10, e0141161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elkord, E. Helios should not be cited as a marker of human thymus-derived Tregs. Commentary: Helios+ and Helios cells coexist within the natural FOXP3+ T regulatory cell subset in humans. Front. Immunol. 7, 276 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haribhai, D. et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35, 109–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gottschalk, R. A., Corse, E. & Allison, J. P. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J. Exp. Med. 207, 1701–1711 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turner, M. S., Kane, L. P. & Morel, P. A. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J. Immunol. 183, 4895–4903 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Gabrysova, L. et al. Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur. J. Immunol. 41, 1242–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hawse, W. F., Boggess, W. C. & Morel, P. A. TCR signal strength regulates Akt substrate specificity to induce alternate murine TH and T regulatory cell differentiation programs. J. Immunol. 199, 589–597 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyao, T. et al. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Lam, A. J. et al. Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Rep. 36, 109494 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. van der Veeken, J. et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity 55, 1173–1184.e7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holohan, D. R., Van Gool, F. & Bluestone, J. A. Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model. PLoS ONE 14, e0217728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Ohkura, N. et al. Regulatory T cell-specific epigenomic region variants are a key determinant of susceptibility to common autoimmune diseases. Immunity 52, 1119–1132.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Andersen, K. G., Nissen, J. K. & Betz, A. G. Comparative genomics reveals key gain-of-function events in Foxp3 during regulatory T cell evolution. Front. Immunol. 3, 113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie, X. et al. The regulatory T cell lineage factor Foxp3 regulates gene expression through several distinct mechanisms mostly independent of direct DNA binding. PLoS Genet. 11, e1005251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee, W. & Lee, G. R. Transcriptional regulation and development of regulatory T cells. Exp. Mol. Med. 50, e456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kitagawa, Y. et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18, 173–183 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Placek, K. et al. MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat. Immunol. 18, 1035–1045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Loo, C. S. et al. A genome-wide CRISPR screen reveals a role for the non-canonical nucleosome-remodeling BAF complex in Foxp3 expression and regulatory T cell function. Immunity 53, 143–157 e148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Akamatsu, M. et al. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol. 4, eaaw2707 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Dikiy, S. et al. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 54, 931–946.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schuster, C., Jonas, F., Zhao, F. & Kissler, S. Peripherally induced regulatory T cells contribute to the control of autoimmune diabetes in the NOD mouse model. Eur. J. Immunol. 48, 1211–1216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim, H. P. & Leonard, W. J. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, Q., Kim, Y. C., Laurence, A., Punkosdy, G. A. & Shevach, E. M. IL-2 controls the stability of Foxp3 expression in TGF-β-induced Foxp3+ T cells in vivo. J. Immunol. 186, 6329–6337 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Li, X., Liang, Y., LeBlanc, M., Benner, C. & Zheng, Y. Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158, 734–748 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rudra, D. et al. Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 10, 1170–1177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kitoh, A. et al. Indispensable role of the Runx1–Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31, 609–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, L. et al. Mbd2 promotes foxp3 demethylation and T-regulatory-cell function. Mol. Cell Biol. 33, 4106–4115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huehn, J. & Beyer, M. Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Semin. Immunol. 27, 10–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Feng, Y. et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature 528, 132–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kawakami, R. et al. Distinct Foxp3 enhancer elements coordinate development, maintenance, and function of regulatory T cells. Immunity 54, 947–961.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Kressler, C. et al. Targeted de-methylation of the FOXP3-TSDR is sufficient to induce physiological FOXP3 expression but not a functional Treg phenotype. Front. Immunol. 11, 609891 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Okada, M., Kanamori, M., Someya, K., Nakatsukasa, H. & Yoshimura, A. Stabilization of Foxp3 expression by CRISPR–dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 10, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. de Zoeten, E. F. et al. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. Mol. Cell Biol. 31, 2066–2078 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Su, Q. et al. Impaired Tip60-mediated Foxp3 acetylation attenuates regulatory T cell development in rheumatoid arthritis. J. Autoimmun. 100, 27–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. de Zoeten, E. F., Wang, L., Sai, H., Dillmann, W. H. & Hancock, W. W. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 138, 583–594 (2010).

    Article  PubMed  Google Scholar 

  84. Beier, U. H. et al. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci. Signal. 5, ra45 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dahiya, S. et al. HDAC10 deletion promotes Foxp3+ T-regulatory cell function. Sci. Rep. 10, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beier, U. H. et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell Biol. 31, 1022–1029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, L. et al. FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3. J. Clin. Invest. 125, 1111–1123 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xiao, H. et al. HDAC5 controls the functions of Foxp3+ T-regulatory and CD8+ T cells. Int. J. Cancer 138, 2477–2486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Beier, U. H. et al. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J. 29, 2315–2326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, H. J., Chun, M. & Kandror, K. V. Tip60 and HDAC7 interact with the endothelin receptor A and may be involved in downstream signaling. J. Biol. Chem. 276, 16597–16600 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Axisa, P. P. et al. A multiple sclerosis-protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Sci. Transl Med. 14, eabl3651 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. International Multiple Sclerosis Genetics Consortium. Low-frequency and rare-coding variation contributes to multiple sclerosis risk. Cell 175, 1679–1687.e7 (2018).

    Article  Google Scholar 

  93. Di Giorgio, E. et al. MEF2D sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity. J. Clin. Invest. 130, 6242–6260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Di Giorgio, E. et al. A biological circuit involving Mef2c, Mef2d, and Hdac9 controls the immunosuppressive functions of CD4+Foxp3+ T-regulatory cells. Front. Immunol. 12, 703632 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol. 13, 1010–1019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arvey, A. et al. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 15, 580–587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. DuPage, M. et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42, 227–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bamidele, A. O. et al. Disruption of FOXP3–EZH2 interaction represents a pathobiological mechanism in intestinal inflammation. Cell Mol. Gastroenterol. Hepatol. 7, 55–71 (2019).

    Article  PubMed  Google Scholar 

  101. Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33, 127–148 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Hou, S. et al. FoxP3 and Ezh2 regulate TFR cell suppressive function and transcriptional program. J. Exp. Med. 216, 605–620 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tumes, D. J. et al. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity 39, 819–832 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Cortez, J. T. et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ren, J. et al. Foxp1 is critical for the maintenance of regulatory T-cell homeostasis and suppressive function. PLoS Biol. 17, e3000270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Konopacki, C., Pritykin, Y., Rubtsov, Y., Leslie, C. S. & Rudensky, A. Y. Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat. Immunol. 20, 232–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ferraro, A. et al. Interindividual variation in human T regulatory cells. Proc. Natl Acad. Sci. USA 111, E1111–E1120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kwon, H. K., Chen, H. M., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ramirez, R. N., Chowdhary, K., Leon, J., Mathis, D. & Benoist, C. FoxP3 associates with enhancer-promoter loops to regulate Treg-specific gene expression. Sci. Immunol. 7, eabj9836 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ramirez, R. N., Chowdhary, K., Leon, J., Mathis, D. & Benoist, C. FoxP3 associates with enhancer-promoter loops to regulate Treg-specific gene expression. Preprint at bioRxiv https://doi.org/10.1101/2021.11.12.468430 (2021).

  114. Yang, B. H. et al. TCF1 and LEF1 control Treg competitive survival and TFR development to prevent autoimmune diseases. Cell Rep. 27, 3629–3645.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tanaka, A. et al. Construction of a T cell receptor signaling range for spontaneous development of autoimmune disease. J. Exp. Med. 220, e20220386 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vahl, J. C. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41, 722–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, Z. et al. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528, 225–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dikiy, S. et al. Terminal differentiation and persistence of effector regulatory T cells essential for the prevention of intestinal inflammation. Preprint at bioRxiv https://doi.org/10.1101/2022.05.16.492030 (2023).

  120. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Okamoto, M. et al. A genetic method specifically delineates TH1-type Treg cells and their roles in tumor immunity. Cell Rep. 42, 112813 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory TH1 and TH17 cell responses. Immunity 40, 569–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang, B. H. et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sefik, E. et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bhaumik, S., Mickael, M. E., Moran, M., Spell, M. & Basu, R. RORγt promotes Foxp3 expression by antagonizing the effector program in colonic regulatory T cells. J. Immunol. 207, 2027–2038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dorsey, N. J. et al. STAT6 controls the number of regulatory T cells in vivo, thereby regulating allergic lung inflammation. J. Immunol. 191, 1517–1528 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, Y., Su, M. A. & Wan, Y. Y. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35, 337–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wohlfert, E. A. et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yu, F., Sharma, S., Edwards, J., Feigenbaum, L. & Zhu, J. Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance. Nat. Immunol. 16, 197–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Di Giovangiulio, M. et al. Tbet expression in regulatory T cells is required to initiate TH1-mediated colitis. Front. Immunol. 10, 2158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Voo, K. S. et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc. Natl Acad. Sci. USA 106, 4793–4798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bhela, S. et al. Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J. Immunol. 194, 2180–2189 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Sumida, T. et al. Activated β-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nat. Immunol. 19, 1391–1402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Overacre-Delgoffe, A. E. et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, H. et al. Protection of regulatory T cells from fragility and inactivation in the tumor microenvironment. Cancer Immunol. Res. 10, 1490–1505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wheaton, J. D., Yeh, C. H. & Ciofani, M. Cutting edge: c-Maf is required for regulatory T cells to adopt RORγt+ and follicular phenotypes. J. Immunol. 199, 3931–3936 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Kitz, A. et al. AKT isoforms modulate TH1-like Treg generation and function in human autoimmune disease. EMBO Rep. 17, 1169–1183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lucca, L. E. et al. TIGIT signaling restores suppressor function of TH1 Tregs. JCI Insight 4, e124427 (2019).

  145. McCormick, J. A., Bhalla, V., Pao, A. C. & Pearce, D. SGK1: a rapid aldosterone-induced regulator of renal sodium reabsorption. Physiology 20, 134–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Invest. 125, 4212–4222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wu, C. et al. SGK1 governs the reciprocal development of TH17 and regulatory T cells. Cell Rep. 22, 653–665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Di Pietro, N. et al. Serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates adipocyte differentiation via forkhead box O1. Mol. Endocrinol. 24, 370–380 (2010).

    Article  PubMed  Google Scholar 

  151. Paling, D. et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain 136, 2305–2317 (2013).

    Article  PubMed  Google Scholar 

  152. Sumida, T. S. et al. An autoimmune transcriptional circuit driving Foxp3+ regulatory T cell dysfunction. Preprint at bioRxiv https://doi.org/10.1101/2022.12.02.518871 (2022).

  153. Heikamp, E. B. et al. The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. Nat. Immunol. 15, 457–464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Keerthivasan, S. et al. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci. Transl Med. 6, 225ra228 (2014).

    Article  Google Scholar 

  155. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Depis, F., Kwon, H. K., Mathis, D. & Benoist, C. Unstable FoxP3+ T regulatory cells in NZW mice. Proc. Natl Acad. Sci. USA 113, 1345–1350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Crow, M. K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Guo, C. et al. Single-cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus. Cell Rep. 41, 111606 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Sumida, T. S. et al. Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat. Immunol. 23, 632–642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gangaplara, A. et al. Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathog. 14, e1006985 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Metidji, A. et al. IFN-α/β receptor signaling promotes regulatory T cell development and function under stress conditions. J. Immunol. 194, 4265–4276 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Namdar, A., Nikbin, B., Ghabaee, M., Bayati, A. & Izad, M. Effect of IFN-β therapy on the frequency and function of CD4+CD25+ regulatory T cells and Foxp3 gene expression in relapsing–remitting multiple sclerosis (RRMS): a preliminary study. J. Neuroimmunol. 218, 120–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Moradi, B. et al. CD4+CD25+/highCD127low/– regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints—analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res. Ther. 16, R97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Cao, D., van Vollenhoven, R., Klareskog, L., Trollmo, C. & Malmstrom, V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther. 6, R335–R346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jiao, Z. et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand. J. Rheumatol. 36, 428–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Mottonen, M. et al. CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin. Exp. Immunol. 140, 360–367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Simone, D. et al. Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates. Commun. Biol. 4, 1395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jule, A. M. et al. TH1 polarization defines the synovial fluid T cell compartment in oligoarticular juvenile idiopathic arthritis. JCI Insight 6, e149185 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Afzali, B. et al. CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. Eur. J. Immunol. 43, 2043–2054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Henderson, L. A. et al. Next-generation sequencing reveals restriction and clonotypic expansion of Treg cells in juvenile idiopathic arthritis. Arthritis Rheumatol. 68, 1758–1768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lutter, L. et al. Human regulatory T cells locally differentiate and are functionally heterogeneous within the inflamed arthritic joint. Clin. Transl. Immunol. 11, e1420 (2022).

    Article  CAS  Google Scholar 

  173. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Asashima, H. et al. PD-1highCXCR5CD4+ peripheral helper T cells promote CXCR3+ plasmablasts in human acute viral infection. Cell Rep. 42, 111895 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

    Article  PubMed Central  Google Scholar 

  177. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Amariuta, T. et al. IMPACT: genomic annotation of cell-state-specific regulatory elements inferred from the epigenome of bound transcription factors. Am. J. Hum. Genet. 104, 879–895 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Mackay, T. F., Stone, E. A. & Ayroles, J. F. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Arvey, A. et al. Genetic and epigenetic variation in the lineage specification of regulatory T cells. eLife 4, e07571 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Bossini-Castillo, L. et al. Immune disease variants modulate gene expression in regulatory CD4+ T cells. Cell Genom. 2, 100117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nasrallah, R. et al. A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature 583, 447–452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xu, C. et al. BATF regulates T regulatory cell functional specification and fitness of triglyceride metabolism in restraining allergic responses. J. Immunol. 206, 2088–2100 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Hayatsu, N. et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47, 268–283.e9 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Delacher, M. et al. Precursors for nonlymphoid-tissue Treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity 52, 295–312.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Itahashi, K. et al. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors. Sci. Immunol. 7, eabk0957 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Tikka, C. et al. BATF sustains homeostasis and functionality of bone marrow Treg cells to preserve homeostatic regulation of hematopoiesis and development of B cells. Front. Immunol. 14, 1026368 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Sakai, R. et al. Kidney GATA3+ regulatory T cells play roles in the convalescence stage after antibody-mediated renal injury. Cell Mol. Immunol. 18, 1249–1261 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Alvisi, G. et al. IRF4 instructs effector Treg differentiation and immune suppression in human cancer. J. Clin. Invest. 130, 3137–3150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Roychoudhuri, R. et al. BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 498, 506–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Grant, F. M. et al. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. J. Exp. Med. 217, e20190711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sidwell, T. et al. Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat. Commun. 11, 252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Osman, A. et al. TCF-1 controls Treg cell functions that regulate inflammation, CD8+ T cell cytotoxicity and severity of colon cancer. Nat. Immunol. 22, 1152–1162 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499, 485–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chapman, N. M. et al. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat. Commun. 9, 2095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491, 554–559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Charbonnier, L. M. et al. Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat. Immunol. 20, 1208–1219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Luo, C. T., Liao, W., Dadi, S., Toure, A. & Li, M. O. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 529, 532–536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Nagasaki, J. & Togashi, Y. A variety of ‘exhausted’ T cells in the tumor microenvironment. Int. Immunol. 34, 563–570 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, B., Chikuma, S., Hori, S., Fagarasan, S. & Honjo, T. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc. Natl Acad. Sci. USA 113, 8490–8495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tan, C. L. et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. 218, e20182232 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Yang, K. et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 548, 602–606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. van Gulijk, M. et al. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance. Sci. Immunol. 8, eabn6173 (2023).

    Article  PubMed  Google Scholar 

  212. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kumagai, S. et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40, 201–218.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Lowther, D. E. et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 1, e85935 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Sambucci, M. et al. FoxP3 isoforms and PD-1 expression by T regulatory cells in multiple sclerosis. Sci. Rep. 8, 3674 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lamarche, C. et al. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proc. Natl Acad. Sci. USA 120, e2219086120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Coish for proofreading the manuscript.

Funding

This work was supported by grants to N.T.C. from the National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH) (T32 AI155387), to T.S.S. from the National Multiple Sclerosis Society (NMSS) (JF-2208-40314) and Race to Erase MS, and to D.A.H. from the NIH (U19 AI089992, R25 NS079193, P01 AI073748, U24 AI11867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974 and R01 CA227473), NMSS (CA 1061−A-18 and RG-1802-30153), Nancy Taylor Foundation for Chronic Diseases and Race to Erase MS. The article’s contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIAID or NIH.

Author information

Authors and Affiliations

Authors

Contributions

N.T.C. and T.S.S. wrote the manuscript with input from all authors. The article conception and overall direction were initiated by T.S.S. and D.A.H., who were responsible for the strategic planning. All authors made substantial contributions to the article and collectively endorsed the final submitted version.

Corresponding authors

Correspondence to Tomokazu S. Sumida or David A. Hafler.

Ethics declarations

Competing interests

D.A.H. has received research funding from Bristol-Myers Squibb, Novartis, Sanofi and Genentech, and has been a consultant for Bayer Pharmaceuticals, Repertoire, Bristol-Myers Squibb, Compass Therapeutics, EMD Serono, Genentech, Juno therapeutics, Novartis Pharmaceuticals, Proclara Biosciences, Sage Therapeutics and Sanofi Genzyme.

Peer review

Peer review information

Nature Reviews Immunology thanks Penelope A. Morel, Margarita Dominguez-Villar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumida, T.S., Cheru, N.T. & Hafler, D.A. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 24, 503–517 (2024). https://doi.org/10.1038/s41577-024-00994-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-024-00994-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing