Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to complement biology, pathology and therapeutic opportunity

Abstract

Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host–pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the complement cascade, its topology, regulation and key effector functions.
Fig. 2: Role of complement in microbial dysbiosis-driven inflammatory disease.
Fig. 3: Complement shapes tissue regenerative responses across evolution.
Fig. 4: Contextual roles of complement in cancer biology and immunotherapy.
Fig. 5: Role of complement in CNS development and neurodegeneration.
Fig. 6: Complement dysregulation drives pathology in PNH.
Fig. 7: Pathogenic role of complement dysregulation in ocular inflammatory diseases.
Fig. 8: Complement dysregulation supports COVID-19-associated immunothrombosis.

Similar content being viewed by others

References

  1. Hajishengallis, G., Reis, E. S., Mastellos, D. C., Ricklin, D. & Lambris, J. D. Novel mechanisms and functions of complement. Nat. Immunol. 18, 1288–1298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 6, 132–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cerenius, L., Kawabata, S., Lee, B. L., Nonaka, M. & Söderhäll, K. Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem. Sci. 35, 575–583 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Stevens, B. & Johnson, M. B. The complement cascade repurposed in the brain. Nat. Rev. Immunol. 21, 624–625 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I — molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kolev, M., Friec, G. L. & Kemper, C. Complement — tapping into new sites and effector systems. Nat. Rev. Immunol. 14, 811–820 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Kjaer, T. R., Thiel, S. & Andersen, G. R. Toward a structure-based comprehension of the lectin pathway of complement. Mol. Immunol. 56, 413–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Garred, P. et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol. Rev. 274, 74–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ricklin, D. Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology 217, 1057–1066 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263 (2014). This study provided structural insights into the activation of the classical pathway by hexameric antigen–IgG complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ugurlar, D. et al. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 359, 794–797 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Golay, J. & Taylor, R. P. The role of complement in the mechanism of action of therapeutic anti-cancer mAbs. Antibodies 9, 58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ricklin, D. & Lambris, J. D. Therapeutic control of complement activation at the level of the central component C3. Immunobiology 221, 740–746 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P. & Lambris, J. D. Complement component C3 — the ‘Swiss army knife’ of innate immunity and host defense. Immunol. Rev. 274, 33–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coulthard, L. G. & Woodruff, T. M. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J. Immunol. 194, 3542–3548 (2015). This review revisits the role of anaphylatoxins and provides a conceptual framework for understanding their broad immunomodulatory functions.

    Article  CAS  PubMed  Google Scholar 

  18. Parsons, E. S. et al. Single-molecule kinetics of pore assembly by the membrane attack complex. Nat. Commun. 10, 2066 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Irmscher, S. et al. Kallikrein cleaves C3 and activates complement. J. Innate Immun. 10, 94–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Amara, U. et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185, 5628–5636 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Békássy, Z. D. et al. Aliskiren inhibits renin-mediated complement activation. Kidney Int. 94, 689–700 (2018).

    Article  PubMed  Google Scholar 

  22. Skendros, P. et al. Complement C3 inhibition in severe COVID-19 using compstatin AMY-101. Sci. Adv. 8, eabo2341 (2022). This study provides biological insights into C3 inhibition in severe COVID-19 and the first clinical proof of concept for extrinsic routes of C3 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liszewski, M. K. et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 39, 1143–1157 (2013). This study provides evidence that complement activation may occur within various cells and may have broad physiological significance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puy, C. et al. Cross-talk between the complement pathway and the contact activation system of coagulation: activated factor XI neutralizes complement factor H. J. Immunol. 206, 1784–1792 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Wingrove, J. A. et al. Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J. Biol. Chem. 267, 18902–18907 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Tosi, M. F., Zakem, H. & Berger, M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J. Clin. Invest. 86, 300–308 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nilsson, P. H. et al. A conformational change of complement C5 is required for thrombin-mediated cleavage, revealed by a novel ex vivo human whole blood model preserving full thrombin activity. J. Immunol. 207, 1641–1651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dobó, J. et al. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked. Sci. Rep. 6, 31877 (2016). This study highlights the molecular basis of the tight interdependency of the lectin and alternative complement pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hayashi, M. et al. Cutting Edge: role of MASP-3 in the physiological activation of factor D of the alternative complement pathway. J. Immunol. 203, 1411–1416 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Selander, B. et al. Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J. Clin. Invest. 116, 1425–1434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farrar, C. A. et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J. Clin. Invest. 126, 1911–1925 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Laich, A., Patel, H., Zarantonello, A., Sim, R. B. & Inal, J. M. C2 by-pass: cross-talk between the complement classical and alternative pathways. Immunobiology 227, 152225 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Mannes, M. et al. Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity. Blood 137, 443–455 (2021). This study challenges the traditional assembly of C5 convertases, demonstrating C3 bypass activation of C5 and conformational activation of C5, which can bypass therapeutic C5 inhibitors.

    Article  CAS  PubMed  Google Scholar 

  34. Carroll, M. C. & Isenman, D. E. Regulation of humoral immunity by complement. Immunity 37, 199–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sorbara, M. T. et al. Complement C3 drives autophagy-dependent restriction of cyto-invasive bacteria. Cell Host Microbe 23, 644–652.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Lindorfer, M. A., Hahn, C. S., Foley, P. L. & Taylor, R. P. Heteropolymer-mediated clearance of immune complexes via erythrocyte CR1: mechanisms and applications. Immunol. Rev. 183, 10–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Thielen, A. J. F., Zeerleder, S. & Wouters, D. Consequences of dysregulated complement regulators on red blood cells. Blood Rev. 32, 280–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Torvell, M. et al. Genetic insights into the impact of complement in Alzheimer’s disease. Genes 12, 1990 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reis, E. S., Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. New insights into the immune functions of complement. Nat. Rev. Immunol. 19, 503–516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fearon, D. T. & Carroll, M. C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 18, 393–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Erdei, A. et al. New aspects in the regulation of human B cell functions by complement receptors CR1, CR2, CR3 and CR4. Immunol. Lett. 237, 42–57 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Kovács, K. G., Mácsik-Valent, B., Matkó, J., Bajtay, Z. & Erdei, A. Revisiting the coreceptor function of complement receptor type 2 (CR2, CD21); coengagement with the B-cell receptor inhibits the activation, proliferation, and antibody production of human B Cells. Front. Immunol. 12, 558 (2021).

    Article  Google Scholar 

  44. Kulik, L. et al. Targeting the immune complex-bound complement C3d ligand as a novel therapy for lupus. J. Immunol. 203, 3136–3147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schriek, P. et al. Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science 375, eabf7470 (2022). This study reveals a new role of C3 in antigen presentation via binding to peptide–MHC class II complexes on dendritic cells and CR2-dependent transfer of these complexes to marginal zone B cells.

    Article  CAS  PubMed  Google Scholar 

  46. Joly, E. & Hudrisier, D. What is trogocytosis and what is its purpose? Nat. Immunol. 4, 815–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Hawksworth, O. A., Li, X. X., Coulthard, L. G., Wolvetang, E. J. & Woodruff, T. M. New concepts on the therapeutic control of complement anaphylatoxin receptors. Mol. Immunol. 89, 36–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Klos, A. et al. The role of the anaphylatoxins in health and disease. Mol. Immunol. 46, 2753–2766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reis, E. S. et al. C5a receptor-dependent cell activation by physiological concentrations of desarginated C5a: insights from a novel label-free cellular assay. J. Immunol. 189, 4797–4805 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, R., Lu, B., Gerard, C. & Gerard, N. P. C5L2, the second C5a anaphylatoxin receptor, suppresses LPS-induced acute lung injury. Am. J. Respir. Cell Mol. Biol. 55, 657–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pandey, S., Maharana, J., Li, X. X., Woodruff, T. M. & Shukla, A. K. Emerging insights into the structure and function of complement C5a receptors. Trends Biochem. Sci. 45, 693–705 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Li, X. X., Clark, R. J. & Woodruff, T. M. C5aR2 activation broadly modulates the signaling and function of primary human macrophages. J. Immunol. 205, 1102–1112 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Reca, R. et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 101, 3784–3793 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, M. C. L. et al. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc. Natl Acad. Sci. USA 110, 9439–9444 (2013). This study challenges the dogma that C3a has only pro-inflammatory functions by providing in vivo evidence for an anti-inflammatory function in the context of ischaemia–reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bujko, K. et al. Signaling of the complement cleavage product anaphylatoxin C5a through C5aR (CD88) contributes to pharmacological hematopoietic stem cell mobilization. Stem Cell Rev. Rep. 13, 793–800 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Morgan, B. P., Boyd, C. & Bubeck, D. Molecular cell biology of complement membrane attack. Semin. Cell Dev. Biol. 72, 124–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Xie, C. B., Jane-Wit, D. & Pober, J. S. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets. Am. J. Pathol. 190, 1138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liszewski, M. K. & Atkinson, J. P. Alternative pathway activation: ever ancient and ever new. Immunol. Rev. 313, 60–63 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Józsi, M., Tortajada, A., Uzonyi, B., Goicoechea de Jorge, E. & Rodríguez de Córdoba, S. Factor H-related proteins determine complement-activating surfaces. Trends Immunol. 36, 374–384 (2015).

    Article  PubMed  Google Scholar 

  61. Makou, E., Herbert, A. P. & Barlow, P. N. Creating functional sophistication from simple protein building blocks, exemplified by factor H and the regulators of complement activation. Biochem. Soc. Trans. 43, 812–818 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Zipfel, P. F., Jokiranta, T. S., Hellwage, J., Koistinen, V. & Meri, S. The factor H protein family. Immunopharmacology 42, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Forneris, F. et al. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode. EMBO J. 35, 1133–1149 (2016). This study provides a unifying structural framework for understanding complement regulation and microbial immune evasion at the level of the convertases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Couves, E. C. et al. Structural basis for membrane attack complex inhibition by CD59. Nat. Commun. 14, 890 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castellano, G. et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am. J. Pathol. 176, 1648–1659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weismann, D. et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478, 76–81 (2011). This study reveals a new homeostatic function of factor H with important implications for curbing inflammation in the retina and other tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jourde-Chiche, N. et al. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol. 15, 87–108 (2019).

    Article  PubMed  Google Scholar 

  68. Mastellos, D. C., Reis, E. S., Ricklin, D., Smith, R. J. & Lambris, J. D. Complement C3-targeted therapy: replacing long-held assertions with evidence-based discovery. Trends Immunol. 38, 383–394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, R. J. H. et al. C3 glomerulopathy — understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 15, 129–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nester, C. M. et al. Atypical aHUS: state of the art. Mol. Immunol. 67, 31–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Perkins, S. J. Genetic and protein structural evaluation of atypical hemolytic uremic syndrome and C3 glomerulopathy. Adv. Chronic Kidney Dis. 27, 120–127.e4 (2020).

    Article  PubMed  Google Scholar 

  72. Sinha, A., Singh, A. K., Kadni, T. S., Mullick, J. & Sahu, A. Virus-encoded complement regulators: current status. Viruses 13, 208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar, J. et al. Species specificity of vaccinia virus complement control protein for the bovine classical pathway is governed primarily by direct interaction of its acidic residues with factor I. J. Virol. 91, 668–685 (2017).

    Article  Google Scholar 

  74. Agrawal, P., Nawadkar, R., Ojha, H., Kumar, J. & Sahu, A. Complement evasion strategies of viruses: an overview. Front. Microbiol. 8, 1117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen, J. Y., Cortes, C. & Ferreira, V. P. Properdin: a multifaceted molecule involved in inflammation and diseases. Mol. Immunol. 102, 58 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, J. et al. Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement. eLlife 9, e60908 (2020).

    Article  CAS  Google Scholar 

  77. Narni-Mancinelli, E. et al. Complement factor P is a ligand for the natural killer cell-activating receptor NKp46. Sci. Immunol. 2, PMC5419422 (2017).

    Article  Google Scholar 

  78. Geisbrecht, B. V., Lambris, J. D. & Gros, P. Complement component C3: a structural perspective and potential therapeutic implications. Semin. Immunol. 59, 101627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sundsmo, J. S. The leukocyte complement system. Fed. Proc. 41, 3094–3098 (1982). First report on the presence of a cellular complement system in lymphocytes that may mediate homeostatic functions beyond pathogen immunosurveillance.

    CAS  PubMed  Google Scholar 

  80. Lambris, J. D., Dobson, N. J. & Ross, G. D. Release of endogenous C3b inactivator from lymphocytes in response to triggering membrane receptors for beta 1H globulin. J. Exp. Med. 152, 1625–1644 (1980).

    Article  CAS  PubMed  Google Scholar 

  81. King, B. C. & Blom, A. M. Intracellular complement: evidence, definitions, controversies, and solutions. Immunol. Rev. 313, 104–119 (2023). Comprehensive overview of the mechanisms and functions of intracellular complement, which also highlights experimental and conceptual challenges.

    Article  CAS  PubMed  Google Scholar 

  82. Elvington, M., Liszewski, M. K., Bertram, P., Kulkarni, H. S. & Atkinson, J. P. A C3(H20) recycling pathway is a component of the intracellular complement system. J. Clin. Invest. 127, 970–981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tam, J. C. H., Bidgood, S. R., McEwan, W. A. & James, L. C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 345, 1256070 (2014). This study reports how C3-tagging of viral and bacterial pathogens mediates intracellular antiviral immune responses.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bottermann, M. et al. Complement C4 prevents viral infection through capsid inactivation. Cell Host Microbe 25, 617–629.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Foss, S. et al. Potent TRIM21 and complement-dependent intracellular antiviral immunity requires the IgG3 hinge. Sci. Immunol. 7, eabj1640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. West, E. E., Afzali, B. & Kemper, C. Unexpected roles for intracellular complement in the regulation of Th1 responses. Adv. Immunol. 138, 35–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Kolev, M. et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity 42, 1033–1047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arbore, G. et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 352, aad1210 (2016). This study provides important biological insight into the crosstalk of complement with innate immune signalling pathways driving T cell trajectories and effector functions.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cardone, J. et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat. Immunol. 11, 862–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arbore, G. et al. Complement receptor CD46 co-stimulates optimal human CD8+ T cell effector function via fatty acid metabolism. Nat. Commun. 9, 4186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kolev, M. et al. Diapedesis-induced integrin signaling via LFA-1 facilitates tissue immunity by inducing intrinsic complement C3 expression in immune cells. Immunity 52, 513–527.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dutta, K., Friscic, J. & Hoffmann, M. H. Targeting the tissue-complosome for curbing inflammatory disease. Semin. Immunol. 60, 101644 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Niyonzima, N. et al. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci. Immunol. 6, eabf2489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Friščić, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021). This study reveals important mechanistic insights into how complement C3 signalling in fibroblasts drives inflammatory tissue priming.

    Article  PubMed  Google Scholar 

  95. King, B. C. et al. Complement component C3 is highly expressed in human pancreatic islets and prevents β cell death via ATG16L1 interaction and autophagy regulation. Cell Metab. 29, 202–210.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Kremlitzka, M. et al. Alternative translation and retrotranslocation of cytosolic C3 that detects cytoinvasive bacteria. Cell. Mol. Life Sci. 79, 291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Golec, E. et al. Alternative splicing encodes functional intracellular CD59 isoforms that mediate insulin secretion and are down-regulated in diabetic islets. Proc. Natl Acad. Sci. USA 119, e2120083119 (2022). This study describes a novel intracellular function of CD59 variants and links their dysregulation to insulin imbalance in type 2 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chehoud, C. et al. Complement modulates the cutaneous microbiome and inflammatory milieu. Proc. Natl Acad. Sci. USA 110, 15061–15066 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Howden, B. P. et al. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 21, 380–395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garcia, B. L., Ramyar, K. X., Ricklin, D., Lambris, J. D. & Geisbrecht, B. V. Advances in understanding the structure, function, and mechanism of the SCIN and Efb families of Staphylococcal immune evasion proteins. Adv. Exp. Med. Biol. 946, 113–133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rooijakkers, S. H. et al. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat. Immunol. 10, 721–727 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, H. et al. Allosteric inhibition of complement function by a staphylococcal immune evasion protein. Proc. Natl Acad. Sci. USA 107, 17621–17626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hammel, M. et al. A structural basis for complement inhibition by Staphylococcus aureus. Nat. Immunol. 8, 430–437 (2007). This study provides a structural basis for understanding how a microbial immune evasion protein induces conformational changes in C3 that prevent its proteolytic activation.

    Article  CAS  PubMed  Google Scholar 

  104. Hajishengallis, G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 35, 3–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16, 745–759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hajishengallis, G. & Lambris, J. D. Complement and dysbiosis in periodontal disease. Immunobiology 217, 1111–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lamont, R. J. & Hajishengallis, G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol. Med. 21, 172–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Kajikawa, T. et al. C3-targeted host-modulation approaches to oral inflammatory conditions. Semin. Immunol. 59, 101608 (2022).

    Article  PubMed  Google Scholar 

  109. Potempa, M. & Potempa, J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol. Chem. 393, 873–888 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011). This study provides biological insight into how complement fuels the dysbiotic transformation of a commensal microbiota driving periodontal inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maekawa, T. et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 15, 768–778 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Makkawi, H. et al. Porphyromonas gingivalis stimulates TLR2-PI3K signaling to escape immune clearance and induce bone resorption independently of MyD88. Front. Cell. Infect. Microbiol. 7, 359 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liang, S. et al. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J. Immunol. 186, 869–877 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Maekawa, T. et al. Genetic and intervention studies implicating complement C3 as a major target for the treatment of periodontitis. J. Immunol. 192, 6020–6027 (2014). This study provides the first preclinical proof of concept for therapeutic targeting of complement C3 in periodontal disease.

    Article  CAS  PubMed  Google Scholar 

  115. Maekawa, T. et al. Inhibition of pre-existing natural periodontitis in non-human primates by a locally administered peptide inhibitor of complement C3. J. Clin. Periodontol. 43, 238–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kajikawa, T. et al. Safety and efficacy of the complement inhibitor AMY-101 in a natural model of periodontitis in non-human primates. Mol. Ther. Methods Clin. Dev. 6, 207–215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dutzan, N. et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl. Med. 10, eaat0797 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang, H. et al. Complement is required for microbe-driven induction of Th17 and periodontitis. J. Immunol. 209, 1370–1378 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Hajishengallis, G. & Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21, 426–440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727.e18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mastellos, D. C., Deangelis, R. A. & Lambris, J. D. Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis. Semin. Immunol. 25, 29–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012). Comprehensive overview of the roles of complement in synaptic pruning and microglial activation in both health and disease.

    Article  CAS  PubMed  Google Scholar 

  123. Deangelis, R. A. et al. A complement-IL-4 regulatory circuit controls liver regeneration. J. Immunol. 188, 641–648 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Haynes, T. et al. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration. Nat. Commun. 4, 2312 (2013).

    Article  PubMed  Google Scholar 

  125. Kimura, Y. et al. Expression of complement 3 and complement 5 in newt limb and lens regeneration. J. Immunol. 170, 2331–2339 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Tsonis, P. A., Lambris, J. D. & Del Rio-Tsonis, K. To regeneration… with complement. Adv. Exp. Med. Biol. 586, 63–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Strey, C. W. et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J. Exp. Med. 198, 913–923 (2003). This study documents the crosstalk of complement signalling with cytokine-driven pathways in promoting mammalian liver regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Markiewski, M. M. et al. The regulation of liver cell survival by complement. J. Immunol. 182, 5412–5418 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. He, S. et al. A complement-dependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice. J. Clin. Invest. 119, 2304–2316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Carmona-Fontaine, C. et al. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev. Cell 21, 1026–1037 (2011). This study reveals a fundamental role of the complement C3a–C3aR axis in early embryonic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Broders-Bondon, F. et al. Control of the collective migration of enteric neural crest cells by the complement anaphylatoxin C3a and N-cadherin. Dev. Biol. 414, 85–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rahpeymai, Y. et al. Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J. 25, 1364–1374 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Coulthard, L. G., Hawksworth, O. A., Conroy, J., Lee, J. D. & Woodruff, T. M. Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance. Mol. Immunol. 101, 176–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Coulthard, L. G. et al. Complement C5aR1 signaling promotes polarization and proliferation of embryonic neural progenitor cells through PKCζ. J. Neurosci. 37, 5395–5407 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Taylor, R. P. & Lindorfer, M. A. Cytotoxic mechanisms of immunotherapy: harnessing complement in the action of anti-tumor monoclonal antibodies. Semin. Immunol. 28, 309–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Roumenina, L. T., Daugan, M. V., Petitprez, F., Sautès-Fridman, C. & Fridman, W. H. Context-dependent roles of complement in cancer. Nat. Rev. Cancer 19, 698–715 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Oostindie, S. C. et al. DuoHexaBody-CD37®, a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 10, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ostrand-Rosenberg, S. Cancer and complement. Nat. Biotechnol. 26, 1348–1349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008). This study provides the first evidence for a tumour-promoting role of complement via myeloid cell immunosuppression in a model of cervical cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ajona, D. et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 7, 694–703 (2017). This study provided the first therapeutic proof-of-concept for combined blockade of complement and immune-checkpoint signalling in cancer.

    Article  CAS  PubMed  Google Scholar 

  142. Pio, R., Ajona, D., Ortiz-Espinosa, S., Mantovani, A. & Lambris, J. D. Complementing the cancer-immunity cycle. Front. Immunol. 10, 774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ajona, D., Ortiz-Espinosa, S. & Pio, R. Complement anaphylatoxins C3a and C5a: emerging roles in cancer progression and treatment. Semin. Cell Dev. Biol. 85, 153–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Vadrevu, S. K. et al. Complement C5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res. 74, 3454–3465 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 7, 11037 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kwak, J. W. et al. Complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression. Cancer Res. 78, 143–156 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Su, S. et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172, 841–856.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Magrini, E., Minute, L., Dambra, M. & Garlanda, C. Complement activation in cancer: effects on tumor-associated myeloid cells and immunosuppression. Semin. Immunol. 60, 101642 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Surace, L. et al. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response. Immunity 42, 767–777 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Medler, T. R. et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell 34, 561–578.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Magrini, E. et al. Complement activation promoted by the lectin pathway mediates C3aR-dependent sarcoma progression and immunosuppression. Nat. Cancer 2, 218–232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sodji, Q. H. et al. The combination of radiotherapy and complement C3a inhibition potentiates natural killer cell functions against pancreatic cancer. Cancer Res. Commun. 2, 725–738 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Daugan, M. V. et al. Intracellular factor H drives tumor progression independently of the complement cascade. Cancer Immunol. Res 9, 909–925 (2021). This study describes non-canonical functions of intracellular factor H in cancer that are independent of its complement regulatory activity.

    Article  CAS  PubMed  Google Scholar 

  155. Roumenina, L. T. et al. Tumor cells hijack macrophage-produced complement C1q to promote tumor growth. Cancer Immunol. Res. 7, 1091–1105 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Kulasekararaj, A. G. et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor–experienced adult patients with PNH: the 302 study. Blood 133, 540–549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Petrisko, T. J., Gomez-Arboledas, A. & Tenner, A. J. Complement as a powerful ‘influencer’ in the brain during development, adulthood and neurological disorders. Adv. Immunol. 152, 157–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Lee, J. D., Coulthard, L. G. & Woodruff, T. M. Complement dysregulation in the central nervous system during development and disease. Semin. Immunol. 45, 101340 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Parker, S. E., Bellingham, M. C. & Woodruff, T. Complement drives circuit modulation in the adult brain.Prog. Neurobiol. 214, 102282 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Zelek, W. M. & Morgan, B. P. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol. Sci. 43, 615–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stokowska, A. et al. Complement C3a treatment accelerates recovery after stroke via modulation of astrocyte reactivity and cortical connectivity. J. Clin. Invest. 133, e162253 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Vasek, M. J. et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kalinowski, A. et al. Increased activation product of complement 4 protein in plasma of individuals with schizophrenia. Transl. Psychiatry 11, 486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yilmaz, M. et al. Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat. Neurosci. 24, 214–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Litvinchuk, A. et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang, H. et al. Mechanistic insight into female predominance in Alzheimer’s disease based on aberrant protein S-nitrosylation of C3. Sci. Adv. 8, eade0764 (2022). This study links complement-driven synaptic loss and cognitive decline in Alzheimer disease with female hormonal regulation of post-translational modifications on C3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lambris, J. D., Rosenthal, A., Pelegrín, P., Tremblay, M. È. & Chen, P. The future of neuroimmunology research for CNS disease therapeutics. Trends Pharmacol. Sci. 43, 611–614 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Ekdahl, K. N., Soveri, I., Hilborn, J., Fellstrom, B. & Nilsson, B. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat. Rev. Nephrol. 13, 285–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Mastellos, D. C., Ricklin, D. & Lambris, J. D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 18, 707–729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Risitano, A. M., Peffault de Latour, R., Marano, L. & Frieri, C. Discovering C3 targeting therapies for paroxysmal nocturnal hemoglobinuria: achievements and pitfalls. Semin. Immunol. 59, 101618 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Takeda, J. et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703–711 (1993).

    Article  CAS  PubMed  Google Scholar 

  176. Mastellos, D. C., Ricklin, D., Yancopoulou, D., Risitano, A. & Lambris, J. D. Complement in paroxysmal nocturnal hemoglobinuria: exploiting our current knowledge to improve the treatment landscape. Expert Rev. Hematol. 7, 583–598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Risitano, A. M. et al. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood 113, 4094–4100 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Lin, Z. et al. Complement C3dg-mediated erythrophagocytosis: implications for paroxysmal nocturnal hemoglobinuria. Blood 126, 891–894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Risitano, A. M. et al. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria. Blood 123, 2094–2101 (2014). This study provides the first therapeutic proof of concept for the broader efficacy of C3 modulation in PNH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Merle, N. S., Boudhabhay, I., Leon, J., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement activation during intravascular hemolysis: implication for sickle cell disease and hemolytic transfusion reactions. Transfus. Clin. Biol. 26, 116–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Frimat, M. et al. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood 122, 282–292 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Merle, N. S. et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight 3, e96910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Roumenina, L. T., Bartolucci, P. & Pirenne, F. The role of complement in post-transfusion hemolysis and hyperhemolysis reaction. Transfus. Med. Rev. 33, 225–230 (2019).

    Article  PubMed  Google Scholar 

  184. Gerogianni, A. et al. Heme interferes with complement factor I-dependent regulation by enhancing alternative pathway activation. Front. Immunol. 13, 901876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Merle, N. S. et al. P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc. Natl Acad. Sci. USA 116, 6280–6285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. van Lookeren, C. M., Strauss, E. C. & Yaspan, B. L. Age-related macular degeneration: complement in action. Immunobiology 221, 733–739 (2016).

    Article  Google Scholar 

  187. Kim, B. J., Mastellos, D. C., Li, Y., Dunaief, J. L. & Lambris, J. D. Targeting complement components C3 and C5 for the retina: key concepts and lingering questions. Prog. Retin. Eye Res. 83, 100936 (2021).

    Article  PubMed  Google Scholar 

  188. Nozaki, M. et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc. Natl Acad. Sci. USA 103, 2328–2333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Alic, L. et al. A genome-wide association study identifies key modulators of complement factor H binding to malondialdehyde-epitopes. Proc. Natl Acad. Sci. USA 117, 9942–9951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tzoumas, N. et al. Rare complement factor I variants associated with reduced macular thickness and age-related macular degeneration in the UK Biobank. Hum. Mol. Genet. 31, 2678–2692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hageman, G. S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl Acad. Sci. USA 102, 7227–7232 (2005). This is one of the first studies implicating complement alternative pathway dysregulation and a common genetic polymorphism in factor H that predisposes to AMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Clark, S. J. et al. Tissue-specific host recognition by complement factor H is mediated by differential activities of its glycosaminoglycan-binding regions. J. Immunol. 190, 2049–2057 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Calippe, B. et al. Complement factor H inhibits CD47-mediated resolution of inflammation. Immunity 46, 261–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Cerniauskas, E. et al. Complement modulation reverses pathology in Y402H-retinal pigment epithelium cell model of age-related macular degeneration by restoring lysosomal function. Stem Cell Transl. Med. 9, 1585–1603 (2020).

    Article  CAS  Google Scholar 

  196. Armento, A. et al. CFH loss in human RPE cells leads to inflammation and complement system dysregulation via the NF-κB pathway. Int. J. Mol. Sci. 22, 8727 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Armento, A. et al. Loss of complement factor H impairs antioxidant capacity and energy metabolism of human RPE cells. Sci. Rep. 10, 10320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cipriani, V. et al. Increased circulating levels of Factor H-related protein 4 are strongly associated with age-related macular degeneration. Nat. Commun. 11, 778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Katschke, K. J. et al. Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy. Sci. Rep. 8, 7348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Finkel, Y. et al. SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature 594, 240–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Diamond, M. S., Lambris, J. D., Ting, J. P. & Tsang, J. S. Considering innate immune responses in SARS-CoV-2 infection and COVID-19. Nat. Rev. Immunol. 22, 465–470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Risitano, A. M. et al. Complement as a target in COVID-19? Nat. Rev. Immunol. 20, 343–344 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ramlall, V. et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat. Med. 26, 1609–1615 (2020). This study used transcriptomics and genetic association analyses to link complement and coagulation-related loci to COVID-19 susceptibility and severity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Skendros, P. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 130, 6151–6157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Java, A. et al. The complement system in COVID-19: friend and foe? JCI Insight 5, e140711 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Afzali, B., Noris, M., Lambrecht, B. N. & Kemper, C. The state of complement in COVID-19. Nat. Rev. Immunol. 22, 77–84 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Holter, J. C. et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc. Natl Acad. Sci. USA 117, 25018–25025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Casciola-Rosen, L. et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI insight 7, e158362 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Stravalaci, M. et al. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat. Immunol. 23, 275–286 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Yu, J. et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 136, 2080–2089 (2020).

    Article  PubMed  Google Scholar 

  211. Yan, B. et al. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci. Immunol. 6, eabg0833 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Anders, H. J., Kitching, A. R., Leung, N. & Romagnani, P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat. Rev. Immunol. 23, 453–471 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Bomback, A. S. et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin. J. Am. Soc. Nephrol. 7, 748–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tatapudi, V. S. & Montgomery, R. A. Therapeutic modulation of the complement system in kidney transplantation: clinical indications and emerging drug leads. Front. Immunol. 10, 2306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Mannes, M. et al. Complement C3 activation in the ICU: disease and therapy as Bonnie and Clyde. Semin. Immunol. 60, 101640 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Boudhabhay, I. et al. Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis. Kidney Int. 99, 581–597 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Thurman, J. M., Frazer-Abel, A. & Holers, V. M. The evolving landscape for complement therapeutics in rheumatic and autoimmune diseases. Arthritis Rheumatol. 69, 2102–2113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Banda, N. K. et al. Analysis of complement gene expression, clinical associations, and biodistribution of complement proteins in the synovium of early rheumatoid arthritis patients reveals unique pathophysiologic features. J. Immunol. 208, 2482–2496 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Schmitz, R. et al. C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates. Nat. Commun. 12, 5456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ronco, P. et al. Membranous nephropathy.Nat. Rev. Dis. Primers 7, 69 (2021).

    Article  PubMed  Google Scholar 

  221. Seifert, L. et al. The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat. Commun. 14, 473 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Haddad, G. et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Invest. 131, e140453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mastellos, D. C. et al. Complement C3 vs C5 inhibition in severe COVID-19: early clinical findings reveal differential biological efficacy. Clin. Immunol. 220, 108598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Vlaar, A. P. J. et al. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 10, 375 (2022).

    Article  Google Scholar 

  225. Risitano, A. M. et al. Addition of iptacopan, an oral factor B inhibitor, to eculizumab in patients with paroxysmal nocturnal haemoglobinuria and active haemolysis: an open-label, single-arm, phase 2, proof-of-concept trial. Lancet Haematol. 8, e344–e354 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Kulasekararaj, A. G. et al. Phase 2 study of danicopan in patients with paroxysmal nocturnal hemoglobinuria with an inadequate response to eculizumab. Blood 138, 1928–1938 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Nishimura, J. et al. Genetic variants in C5 and poor response to eculizumab. N. Engl. J. Med. 370, 632–639 (2014).

    Article  CAS  PubMed  Google Scholar 

  228. Röth, A. et al. Sutimlimab in cold agglutinin disease. N. Engl. J. Med. 384, 1323–1334 (2021).

    Article  PubMed  Google Scholar 

  229. Holers, V. M., Rohrer, B. & Tomlinson, S. CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation. Adv. Exp. Med. Biol. 735, 137–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. FDA. Approves SYFOVRETM (pegcetacoplan injection) as the First and Only Treatment for Geographic Atrophy (GA), a Leading Cause of Blindness https://investors.apellis.com/news-releases/news-release-details/fda-approves-syfovretm-pegcetacoplan-injection-first-and-only (2023).

  231. BUSINESS WIRE. Iveric Bio Announces Positive Topline Data from Zimura® GATHER2 Phase 3 Clinical Trial in Geographic Atrophy https://www.businesswire.com/news/home/20220905005451/en/Iveric-Bio-Announces-Positive-Topline-Data-from-Zimura®-GATHER2-Phase-3-Clinical-Trial-in-Geographic-Atrophy (2022).

  232. Jevsevar, S., Kunstelj, M. & Porekar, V. G. PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  233. Schnabolk, G. et al. Delivery of CR2-fH using AAV vector therapy as treatment strategy in the mouse model of choroidal neovascularization. Mol. Ther. Methods Clin. Dev. 9, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Hasturk, H., Hajishengallis, G., Lambris, J. D., Mastellos, D. C. & Yancopoulou, D. Phase IIa clinical trial of complement C3 inhibitor AMY-101 in adults with periodontal inflammation. J. Clin. Invest 131, e152973 (2021). This study reports on the clinical efficacy of a C3-targeted complement inhibitor in a phase II trial in individuals with periodontal inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Fridkis-Hareli, M. et al. Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases. Blood 118, 4705–4713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Atkinson, C. et al. Targeting pathogenic postischemic self-recognition by natural IgM to protect against posttransplantation cardiac reperfusion injury. Circulation 131, 1171–1180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Alawieh, A., Langley, E. F. & Tomlinson, S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci. Transl. Med. 10, eaao6459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Wu, Y. Q. et al. Protection of nonself surfaces from complement attack by factor H-binding peptides: implications for therapeutic medicine. J. Immunol. 186, 4269–4277 (2011).

    Article  CAS  PubMed  Google Scholar 

  239. Bechtler, C. et al. Complement-regulatory biomaterial coatings: activity and selectivity profile of the factor H-binding peptide 5C6. Acta Biomater. 155, 123–138 (2023).

    Article  CAS  PubMed  Google Scholar 

  240. Schmidt, C. Q. et al. Rational engineering of a minimized immune inhibitor with unique triple-targeting properties. J. Immunol. 190, 5712–5721 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. Pittock, S. J. et al. Eculizumab in aquaporin-4–positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Batista, A. F. et al. Complement C3 lowering in adult inducible conditional knockout mice: long-lasting effects. Alzheimers Dement. 18, e068094 (2022).

    Article  Google Scholar 

  243. Desai, J. V. et al. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 186, 2802–2822.e22 (2023).

    Article  CAS  PubMed  Google Scholar 

  244. Lamers, C., Mastellos, D. C., Ricklin, D. & Lambris, J. D. Compstatins: the dawn of clinical C3-targeted complement inhibition. Trends Pharmacol. Sci. 43, 629–640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Mastellos, D. C. & Lambris, J. D. Recent developments in C3-targeted complement therapeutics. Semin. Immunol. 60, 101645 (2022).

    Article  CAS  PubMed  Google Scholar 

  246. Willrich, M. A. V., Braun, K. M. P., Moyer, A. M., Jeffrey, D. H. & Frazer-Abel, A. Complement testing in the clinical laboratory. Crit. Rev. Clin. Lab. Sci. 58, 447–478 (2021).

    Article  PubMed  Google Scholar 

  247. Harris, C. L., Heurich, M., Rodriguez de Cordoba, S. & Morgan, B. P. The complotype: dictating risk for inflammation and infection. Trends Immunol. 33, 513–521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Gaya da Costa, M. et al. Age and sex-associated changes of complement activity and complement levels in a healthy caucasian population. Front. Immunol. 9, 2664 (2018). The results of this study underscore the need for considering sex-based differences in basal complement activity when conducting human trials with complement inhibitors.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Kamitaki, N. et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582, 577–581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sahu, S. K. et al. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury.Sci. Immunol. 8, eabp9547 (2023).

    Article  CAS  PubMed  Google Scholar 

  251. Mastellos, D. C. et al. ‘Stealth’ corporate innovation: an emerging threat for therapeutic drug development. Nat. Immunol. 20, 1409–1413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Pinto, M. R., Melillo, D., Giacomelli, S., Sfyroera, G. & Lambris, J. D. Ancient origin of the complement system: emerging invertebrate models. Adv. Exp. Med. Biol. 598, 372–388 (2007).

    Article  PubMed  Google Scholar 

  253. Nonaka, M. Evolution of the complement system. Subcell. Biochem. 80, 31–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  254. Moore, S. R., Menon, S. S., Cortes, C. & Ferreira, V. P. Hijacking factor H for complement immune evasion. Front. Immunol. 12, 602277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Shokal, U. & Eleftherianos, I. Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Front. Immunol. 8, 759 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Elvington, M., Liszewski, M. K. & Atkinson, J. P. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol. Rev. 274, 9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Sunyer, J. O., Zarkadis, I. K., Sahu, A. & Lambris, J. D. Multiple forms of complement C3 in trout that differ in binding to complement activators. Proc. Natl Acad. Sci. USA 93, 8546–8551 (1996). This study was the first to show that teleost fish possess multiple C3 isoforms that endow these species with broad innate immune recognition capacity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Luzzatto, L., Risitano, A. M. & Notaro, R. Paroxysmal nocturnal hemoglobinuria and eculizumab. Haematologica 95, 523–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Frei, Y., Lambris, J. D. & Stockinger, B. Generation of a monoclonal antibody to mouse C5 application in an ELISA assay for detection of anti-C5 antibodies. Mol. Cell Probes 1, 141–149 (1987).

    Article  CAS  PubMed  Google Scholar 

  260. Garred, P., Tenner, A. J. & Mollnes, T. E. Therapeutic targeting of the complement system: from rare diseases to pandemics. Pharmacol. Rev. 73, 792–827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lee, J. W. et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood 133, 530–539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mastellos, D. C., Ricklin, D., Sfyroera, G. & Sahu, A. From discovery to approval: a brief history of the compstatin family of complement C3 inhibitors. Clin. Immunol. 235, 108785 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Katragadda, M., Magotti, P., Sfyroera, G. & Lambris, J. D. Hydrophobic effect and hydrogen bonds account for the improved activity of a complement inhibitor, compstatin. J. Med. Chem. 49, 4616–4622 (2006). This study reports the structure-guided design and activity of the compstatin-based C3 inhibitor that forms the basis of the currently approved drug Empaveli.

    Article  CAS  PubMed  Google Scholar 

  264. Mullard, A. First approval of a complement C3 inhibitor opens up autoimmune and inflammatory opportunities. Nat. Rev. Drug Discov. 20, 496 (2021).

    PubMed  Google Scholar 

  265. Röth, A. et al. Sutimlimab in patients with cold agglutinin disease: results of the randomized placebo-controlled phase 3 CADENZA trial. Blood 140, 980–991 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Jayne, D. R. W., Merkel, P. A., Schall, T. J. & Bekker, P. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  267. Schröder-Braunstein, J. & Kirschfink, M. Complement deficiencies and dysregulation: pathophysiological consequences, modern analysis, and clinical management. Mol. Immunol. 114, 299–311 (2019).

    Article  PubMed  Google Scholar 

  268. Pickering, M. C., Botto, M., Taylor, P. R., Lachmann, P. J. & Walport, M. J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 76, 227–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  269. Hajishengallis, G. et al. Complement inhibition in pre-clinical models of periodontitis and prospects for clinical application. Semin. Immunol. 28, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Berger, N. et al. New analogs of the complement C3 inhibitor compstatin with increased solubility and improved pharmacokinetic profile. J. Med. Chem. 61, 6153–6162 (2018).

    Article  CAS  PubMed  Google Scholar 

  271. Hughes, S. et al. Prolonged intraocular residence and retinal tissue distribution of a fourth-generation compstatin-based C3 inhibitor in non-human primates. Clin. Immunol. 214, 108391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Lamers, C. et al. Insight into mode-of-action and structural determinants of the 2 compstatin family of clinical complement inhibitors. Nat. Commun. 13, 5519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Pedersen, H. et al. A C3-specific nanobody that blocks all three activation pathways in the human and murine complement system. J. Biol. Chem. 295, 8746–8758 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dr Ralph and Sallie Weaver Professorship of Research Medicine to J.D.L. and by a grant from the US National Institutes of Health (DE026152 to G.H.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to John D. Lambris.

Ethics declarations

Competing interests

J.D.L. is the founder of Amyndas Pharmaceuticals, which is developing complement inhibitors (including third-generation compstatin analogues such as AMY-101). J.D.L. is an inventor of patents or patent applications that describe the use of complement inhibitors for therapeutic purposes, some of which are developed by Amyndas Pharmaceuticals. J.D.L. and G.H. have a joint patent that describes the use of complement inhibitors for therapeutic purposes in periodontitis. J.D.L. is also the inventor of the compstatin technology licensed to Apellis Pharmaceuticals (namely 4(1MeW)7W/POT-4/APL-1 and PEGylated derivatives such as APL-2/pegcetacoplan/Empaveli/Aspaveli/Syfovre). D.C.M. has provided paid consulting services to 4D Molecular Therapeutics and Merck KGaA.

Peer review

Peer review information

Nature Reviews Immunology thanks Idris Boudhabhay, Claudia Kemper, Natalia Kunz, Xaria Li, Lubka Roumenina and Trent Woodruff for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastellos, D.C., Hajishengallis, G. & Lambris, J.D. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 24, 118–141 (2024). https://doi.org/10.1038/s41577-023-00926-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00926-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research