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The unique properties of IgG4  
and its roles in health and disease
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Abstract

IgG4 is the least abundant subclass of IgG in human serum and has 
unique functional features. IgG4 is largely unable to activate antibody-
dependent immune effector responses and, furthermore, undergoes 
Fab (fragment antigen binding)-arm exchange, rendering it bispecific 
for antigen binding and functionally monovalent. These properties 
of IgG4 have a blocking effect, either on the immune response or 
on the target protein of IgG4. In this Review, we discuss the unique 
structural characteristics of IgG4 and how these contribute to its 
roles in health and disease. We highlight how, depending on the 
setting, IgG4 responses can be beneficial (for example, in responses 
to allergens or parasites) or detrimental (for example, in autoimmune 
diseases, in antitumour responses and in anti-biologic responses). 
The development of novel models for studying IgG4 (patho)physiology 
and understanding how IgG4 responses are regulated could offer 
insights into novel treatment strategies for these IgG4-associated 
disease settings.
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but indirect switching through, for example, IgG1 is also — at least 
theoretically — possible. Although direct evidence is lacking, in BCR 
repertoire analyses only limited clonal overlap between IgG1 and IgG4 
responses has been observed, which suggests that indirect switching 
to IgG4 via IgG1 is a minor route in vivo3. In keeping with this, in vitro, 
naive IgM+ B cells readily switch towards IgG4 production4, whereas 
IgG1+ memory B cells do not5. Interestingly, substantial clonal overlap 
between IgG4 and IgA2 was observed, which may reflect that common 
food antigens often induce both IgG4 and IgA2 responses. This could 
indicate either that there are similar requirements for the develop-
ment of IgA2 and IgG4 responses or that substantial sequential class-
switching from IgG4 to IgA2 occurs. Class-switching from IgE to IgG4 is 
not possible owing to the order of class-switch elements in the genome 
(the heavy-chain constant region segments for IgE being downstream 
(3′) of those for IgG4). Therefore, the allergen-specific IgG4 that is 
induced by specific immunotherapy in patients with IgE-mediated 
allergic disease must be derived from either precursor B cells capable 
of switching to both IgE and IgG4 (for example, non-switched or IgG1+ 
memory B cells) or newly recruited (naive) B cells6.

Class-switching towards IgG4 is mostly associated with T helper 2 
(TH2) cell responses. The type 2 cytokines IL-4 and/or IL-13 are important 
for the induction of IgG in general, but class-switching to IgG4 may 
more strictly depend on these cytokines than does class-switching to 
IgG1 (ref. 7). IL-10 and regulatory T (Treg) cells may also skew the anti-
body response towards IgG4 (relative to IgE and, possibly, also IgG1)6 
(Fig. 1). However, the role of IL-10 is not fully clarified, and studies 
in vitro have yielded conflicting results depending on, amongst other 
factors, which cell types are present in addition to naive B cells4 (Box 1).

IgG4-switched B cells have similar potential for terminal differen-
tiation towards antibody-secreting cells to that of IgG1-switched B cells; 
hence, limitations in the development of an IgG4 antibody response 
are not owing to intrinsic limitations of IgG4+ B cells5. However, IgG4-
switched B cells differ phenotypically from IgG1-switched B cells in 
several aspects5,7. In particular, they have an altered chemokine recep-
tor profile with lower levels of expression of CXCR3, CXCR4, CXCR5, 
CCR6 and CCR7 — chemokine receptors involved in germinal centre 
reactions and the generation of long-lived plasma cells. In the circula-
tion, numbers of IgG4+ B cells reflect serum IgG4 concentrations5, and 
their levels follow similar patterns throughout life8. IgG4+ cell num-
bers in blood are low compared with IgG1+ cells and have a relatively 
low abundance in secondary lymphoid organs7. Furthermore, IgG4 
production by antibody-secreting cells can be markedly shorter lived 
than for other IgG subclasses, requiring continuous input from newly 
differentiating B cells. Indeed, rituximab (anti-CD20) therapy for B cell 
depletion has been shown to be particularly beneficial in autoimmune 
diseases characterized by pathogenic IgG4 (auto)antibodies9–11.

During infancy, the proportion of IgG4 in circulation rises slowly 
with age12, and IgG4 titres generally continue to increase throughout life 
until the fifth decade, after which a small gradual decline is observed8. 
Serum levels of IgG4 show great variation in the healthy population, 
although intra-individual levels are generally stable13. One of the 
hallmarks of most IgG4 responses is that they develop slowly over time 
for reasons that are not well understood6. Prolonged or repeated expo-
sure to antigen seems to be a necessary — but not sufficient — factor for 
the development of an IgG4-dominated response. For example, indi-
viduals hyperimmunized with tetanus toxoid have an IgG1-dominated 
response with little IgG4 despite repeated antigen exposure14, whereas 
individuals repeatedly vaccinated with SARS-CoV-2 mRNA were shown, 
in some cases, to have increased proportions of IgG4 after a third 

Introduction
Humoral (antibody-mediated) immune responses are important for 
protection against pathogen invasion but can also cause disease. Anti-
bodies recognize and bind specific structures of pathogens through 
their Fab (fragment antigen binding) arms. In addition to mediating 
direct neutralization of the pathogen, this opsonization of pathogen 
structures can result in the activation of various immune effector path-
ways through the Fc (fragment crystallizable) region of antibodies. 
The antibody Fc region interacts with Fc receptors on immune cells 
such as macrophages, neutrophils and natural killer cells, resulting in 
antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-
dependent cellular phagocytosis (ADCP). The antibody Fc region 
can also interact with the complement system, resulting in antibody-
dependent complement deposition, which further primes pathogens 
for cellular uptake and destruction. The ability of an antibody to elicit 
these immune responses depends on the type of Fc tail and modifica-
tions thereof (for example, glycosylation)1. In humans, five classes of 
antibody are recognized based on their Fc tail: IgM, IgD, IgE, IgA and IgG. 
IgM antibodies are produced in the early stages of a primary, adaptive 
immune response. IgM and IgD form the B cell receptors (BCRs) on naive 
B cells. The primary IgM response can be followed by a second, long-
lasting wave of IgG or IgA antibodies, the latter being involved particu-
larly in mucosal immune responses. IgE probably evolved as a defence 
against parasitic worms and is also involved in various allergic diseases. 
Such mature antibody responses are produced by antigen-stimulated 
B cells that have undergone a process known as class-switch recombi-
nation, in which a B cell rearranges its DNA to produce another class of 
antibody with the same specificity. B cells can undergo repeated rounds 
of class-switch recombination until the DNA has been recombined 
using the most 3′ Fc tail gene segment (Fig. 1).

Four subclasses of IgG exist, numbered according to the order 
of abundance. IgG1 has the largest relative contribution to total IgG, 
followed by IgG2 then IgG3 and IgG4. Although IgG4 is the least abun-
dant IgG subclass overall, specific responses can be dominated by IgG4, 
often associated with chronic or repeated antigen exposure. IgG4 has a 
unique set of properties compared with the other IgG subclasses that 
has led to IgG4 being widely regarded as an anti-inflammatory, ‘benign’ 
antibody that may have beneficial functions in allergic disease (Table 1). 
However, evidence is accumulating that IgG4 also has a pathogenic role 
in a range of diseases. Research in the past decade has shown that IgG4 
can have detrimental roles in IgG4 autoimmune diseases (IgG4-AIDs), 
in tumour immunology and in IgG4-related diseases (IgG4-RDs). The 
IgG4-AIDs and IgG4-RDs are chronic conditions and for most patients 
no cure currently exists. Moreover, the increasing use of biological 
therapies warrants a better understanding of why certain drugs elicit 
IgG4 anti-drug responses that limit their efficacy.

In this Review, we highlight how the unique structural and functional 
characteristics of IgG4 contribute to disease onset and progression in 
these settings. Furthermore, we provide an overview of our current 
understanding of how IgG4 responses are regulated. By understand-
ing these processes, future therapeutic strategies could be shaped to 
prevent pathogenic IgG4 responses or induce beneficial IgG4 responses. 
Although we appreciate that most antibody responses involve a range 
of different (sub)classes2, in this Review we focus on IgG4-associated 
diseases that have a predominant IgG4 (antigen-specific) response.

Development of an IgG4 response
The production of IgG4 requires that B cells undergo class-switch 
recombination (Fig. 1). A direct switch from IgM to IgG4 can occur, 
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vaccination, requiring at least 6 months to develop15. IgG4 is not com-
monly part of the antibody response to bacterial or viral infection. 
The range of situations in which specific IgG4 is or can be a dominant 
factor is wide and includes responses to allergens, therapeutically 
administered proteins, autoantigens and helminth infections. With the 
exception of helminths, the absence of an infectious agent seems to 
be a common feature of IgG4 responses and it is tempting to speculate 
that the absence of certain danger signals such as pathogen-associated 
molecular patterns (PAMPs) is a prerequisite for B cells to differentiate 
towards IgG4-secreting cells in vivo. Indeed, the proportion of IgG4 
antibodies was smaller in individuals receiving whole-cell pertus-
sis vaccine than in individuals receiving acellular pertussis vaccine 
(although IgG4 was only a small fraction of the total IgG response even 
in the latter)16.

Structure and function of IgG4
Despite the high levels of homology between human IgG subclasses, 
each subclass has a specific set of functional characteristics owing to 
particular structural features1 (Table 1). IgG4 is unique in that it has a 
lesser affinity than other IgG subclasses for many effector molecules, 
such as Fc receptors and complement, and also because of structural 
features that affect interactions through the Fab region, such as Fab-arm 
exchange and a greater propensity for acquiring glycosylation in the 
variable domains4,17 (Fig. 2).

Fc-dependent effector functions
IgG4 differs in several key amino acid positions from the other IgG 
subclasses, resulting in a modified binding pattern to Fcγ receptors 
(Table 1 and Fig. 2). In particular, relative to IgG1, the amino acid changes 
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Fig. 1 | The onset and evolution of IgG4 responses. IgG4 responses are most 
often observed upon repeated or prolonged exposure to certain classes of 
antigen, including food antigens, parasites, therapeutic proteins and certain 
autoantigens. IgG4 responses are T cell dependent, with a role for IL-4 and/or 
IL-13, IL-10, IL-21 and regulatory T (Treg) cells in their induction. The absence of 
certain pathogen-associated molecular patterns (PAMPs) associated with viral 
or bacterial infection may favour IgG4 development for unknown reasons. 
Class-switching to IgG4 may occur directly from IgM+ B cells, or indirectly via IgG1+ 
intermediates, but the relative contribution of these routes is not clear. Although 
IgG4 can be induced by specific immunotherapy to alleviate IgE-mediated  
allergic symptoms, the shift towards an IgG4-dominated antibody response is  

not the result of IgE+ B cells class-switching towards IgG4, as this is not possible in 
light of the class-switch order of immunoglobulin heavy-chain constant region 
segments in the genome (see inset; once a segment has been removed by prior 
class-switching, a B cell cannot express it anymore). IgG4+ B cells have phenotypic 
traits that are distinct from those of IgG1+ B cells, including an altered chemokine 
receptor profile, with lower levels of expression of CXCR3, CXCR4, CXCR5, 
CCR6 and CCR7 — chemokine receptors involved in germinal centre reactions 
and the generation of long-lived plasma cells — which therefore likely results in 
the increased efflux of IgG4+ B cells from germinal centres and influx into other 
tissues, and might also have a role in the overall reduced longevity of IgG4-switched 
B cells. Inset box adapted from Fig. 1 of ref. 157, Springer Nature Limited.
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at L234F, A327G and P331S in IgG4 are implicated in effects on Fcγ 
receptor binding18–20. Binding to most Fcγ receptors is reduced for 
IgG4 (although not completely abrogated), resulting in IgG4 having 
poor ADCC activity21,22 and, probably, also ADCP activity (although 
this has not been studied in detail). Interestingly, binding of IgG4 to the 
inhibitory receptor FcγRIIb is not affected, which skews Fcγ receptor 
signalling induced by IgG4 away from cellular activation and towards 
inhibition. In the case of IgG1, interaction with the activating recep-
tor FcγRIIIa is markedly increased if the conserved Fc glycan does not 
contain the core fucose moiety. This is also true for IgG4, and an afu-
cosylated variant of IgG4 was found to induce ADCC, albeit still less 
efficiently than did IgG1 (ref. 23). However, naturally occurring afuco-
sylated antibody responses seem to be restricted to antiviral responses 
or alloimmunity to blood cells and platelets, which normally do not have 
high levels of IgG4 (refs. 1,24). The limited signalling of IgG4 through  
activating Fc receptors might attenuate the impact of certain auto
antibody responses; for example, it has recently been shown in a mouse 
model of thrombotic thrombocytopenic purpura that recombinant 
IgG1 antibodies to ADAMTS13 (a disintegrin and metalloproteinase 
with thrombospondin motifs 13) are more pathogenic than their IgG4 
counterparts in an Fcγ-dependent manner25.

In addition to the ‘classical’ Fcγ receptors (FcγRI–FcγRIII), two 
‘non-classical’ Fcγ receptors — Fc receptor-like protein 4 (FCRL4) and 
FCRL5 — have been reported to bind IgG4, albeit weakly26,27. These 
receptors are mostly expressed on B cells and have been described 
to either inhibit or enhance BCR signalling, the latter only if CD21 is 
simultaneously engaged21,28, thereby augmenting or counteracting 
the role of FcγRIIb. A specific role of IgG4 in this signalling route is as 
yet unknown.

Furthermore, IgG4 is a poor activator of complement, resulting 
in a poor capacity for inducing antibody-dependent complement 
deposition and ADCP. Complement has an important role in clear-
ing pathogens and promoting inflammation, which consequently is 
limited when IgG4 dominates the antibody response29. This results 
mainly from reduced binding to C1q, caused mainly by residue S331 of 
IgG4 (refs. 30,31), which is the counterpart of P331 in IgG1 (the homolo-
gous P436S mutation in IgM also markedly affects C1q binding)32. 

Nevertheless, some studies suggest that IgG4 can activate complement 
in specific contexts. For example, artificially enforcing the hexameriza-
tion of IgG4 — a process that normally would take place ‘spontaneously’ 
as part of complex formation of antibody with C1 — results in comple-
ment activation by the classical route33,34. This shows that IgG4 has a 
reduced ability to activate complement but is not completely ‘silent’ in 
this respect. In patients with membranous nephropathy, all of whom 
have complement deposition in the kidneys35, IgG4 autoantibodies 
to phospholipase A2 receptor 1 (PLA2R1) are associated with disease. 
Recent work indicates a possible role for these IgG4 autoantibodies 
in complement activation via the lectin pathway, whereby decreased 
galactosylation levels on the autoantibodies allow for mannose-binding 
lectin (MBL) binding and complement deposition36. This is in contrast 
to increased levels of galactosylation promoting IgG1 hexamerization 
and complement activation by the classical route37, and other studies 
suggest a pathogenic role of IgG4 autoantibodies to PLA2R1 independ-
ent of complement38. Complement activation could be shown in vitro 
for glyco-engineered recombinant IgG4 antibodies, but only at high 
antigen density and high antibody concentration, and no contribution 
of the lectin pathway was observed39.

Fab-arm exchange
Uniquely, serum IgG4 typically does not cross-link antigen40. In fact, 
IgG4 often behaves effectively as a monovalent antibody in the circula-
tion. IgG4 molecules are produced as bivalent, monospecific antibodies 
but can, subsequently, engage in a process in which half-molecules  
of IgG4 (heavy chain and light chain) are randomly exchanged with 
other IgG4 half-molecules, through a process known as Fab-arm 
exchange17 (Box 2). This makes most IgG4 molecules in the blood bispe-
cific. Early evidence of this process included the ability of serum IgG4 
to cross-link two different allergens41. However, in many cases, the sec-
ond antigen specificity of an IgG4 molecule will be irrelevant because 
the exchange is random, and the resulting antibody will behave as if 
monovalent. Thus, effective binding and downstream signalling of 
functionally monovalent IgG4 will require high affinity for antigen, as 
IgG4 cannot benefit from the accumulated binding strength (avidity) 
of multiple Fabs with the same specificity42. Interestingly, in patients 
with eosinophilic oesophagitis, very high titres of specific IgG4 to cow 
milk protein have been observed (together with deposits of IgG4 in the 
oesophageal wall)43, to such a degree that a substantial portion of IgG4 
may still be bivalent in this context44,45; this suggests that the effective 
monovalency of IgG4 is not absolute but depends on the relative levels 
of specific IgG4 and total IgG4.

The process of Fab-arm exchange is controlled by redox condi-
tions and can be promoted in vitro by choosing an appropriate redox 
buffer46,47. Comparing IgG4 with IgG1, two mutations in the latter 
are required to enable Fab-arm exchange: a P228S mutation in the 
hinge region allowing for the disulfide bonds that normally connect 
the heavy chains to be easily broken, and a K409R mutation in the 
carboxy-terminal domains that results in weaker non-covalent inter-
actions between the heavy chains48. Conversely, therapeutic IgG4 
monoclonal antibodies often contain a S228P mutation to prevent 
Fab-arm exchange in vivo49.

A major functional consequence of the effective monovalency 
of the majority of IgG4 in vivo is that it further reduces the ability for 
signalling, antigen cross-linking and immune activation (Fig. 2). Fur-
thermore, Fab-arm exchange seems to further decrease the limited 
potential of IgG4 for complement activation39. Therefore, Fab-arm 
exchange together with the overall reduced ability of IgG4 to activate 

Table 1 | IgG subclasses and their functional characteristics

Feature IgG1 IgG2 IgG3 IgG4

Relative abundance 
(% of total IgG in serum)

60 32 4 4

Fcγ receptor binding +++ +/– +++ +/–a

C1q binding ++ + +++ +/−

Hinge length (number of 
amino acids)

15 12 Up to 62 12

Inter-heavy-chain 
disulfide bonds

2 4 11 (depending 
on allotype)

2

Fab-arm exchange No No No Yes

Fc glycosylation Yes Yes Yes Yes

Fab glycosylation Yes Yes Yes Greater than other 
subclasses

Fab, fragment antigen binding; Fc, fragment crystallizable. aIgG4, similarly to IgG1, can 
interact with the inhibitory receptor FcγRIIB, which, owing to the limited interaction of IgG4 
with activating Fcγ receptors such as FcγRIII (the most highly expressed FcγR in humans), 
steers overall cellular responses towards inhibition.
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Fcγ receptors and complement means that IgG4 is often regarded 
as a natural type of ‘blocking’ antibody — a high-affinity monovalent 
binder with limited potential to induce inflammatory responses4. 
Because of these weak effector functions and blocking ability, IgG4 is 
the second most widely used antibody format for therapeutic mono-
clonal antibodies, with examples including natalizumab, nivolumab 
and reslizumab.

Glycosylation
The glycan structure on IgG molecules can vary. Specific glycan profiles 
have been associated with (patho)physiological conditions, and the 
exact glycan structure can affect antibody functions such as Fcγ recep-
tor activation and complement activation. This has been investigated 
in most detail for the conserved N-linked glycans in the Fc region. In 
general, Fc galactosylation of IgG4 seems to be decreased in pathologi-
cal conditions36,50,51. Furthermore, N-linked glycans are also present in 
the variable regions of immunoglobulins to different degrees52. Variable 
domain glycosylation is largely dependent on acquiring mutations that 
introduce glycosylation motifs during somatic hypermutation, such 
that specific antibody responses may be highly enriched or depleted for 
variable domain glycans53. In particular, certain autoantibodies, includ-
ing those against muscle-specific tyrosine kinase, desmoglein 3 (DSG3) 
and proteinase 3, are found to be highly glycosylated in the variable 
domain54–56. Interestingly, IgG4 antibodies in general have increased 
levels of Fab glycans compared with other IgG subclasses51,57. This fea-
ture seems to be associated with the type 2 response-like characteristics 
of the IgG4 response, as BCR repertoire analysis of both IgG4 and IgE 
responses showed increased levels of N-glycosylation motifs57. The 
functional consequences of these glycans are not well understood but 

may include attenuation of antibody-mediated signalling by engaging 
lectins such as CD22 (ref. 52), elimination of autoreactivity58 or enhance-
ment of BCR signalling59. The link between antibody glycosylation and 
pathogenicity of IgG4 autoantibodies warrants further investigation.

Physiological roles of IgG4
In general, the ‘blocking’ nature of an IgG4 response may be beneficial 
when it prevents excessive immune activation. In particular, in both 
allergic responses and parasitic infections, IgG4 responses are beneficial 
for the host by inducing tolerance and limiting inflammation (Fig. 3).

Allergic responses
Allergy is characterized by hypersensitivity reactions that lead to symp-
toms including rash, swelling, itching, upper respiratory tract sensitiv-
ity and, in severe cases, shock. These reactions result from allergens that 
trigger IL-13 and IL-4 release by TH2 cells and subsequent class-switching 
of B cells to IgE production. In response to FcεRI stimulation by IgE 
bound to allergen, mast cells and basophils release histamine, cytokines 
and chemokines, which have effects on the vasculature and tissues to 
cause the hypersensitivity symptoms. Peripheral tolerance to allergens 
can be achieved by specific immunotherapy or by regular exposure to  
them, which may induce allergen-specific IgG4 that can contribute  
to reducing hypersensitivity reactions by competing with IgE for bind-
ing to allergen and by other mechanisms60–65 (Fig. 3a). Allergen-specific 
IgG4 responses have been described for a range of allergies, including 
to grass and birch pollen, cats, bee venom, peanuts and milk4.

In individuals who are allergic, IgG4 can constitute more than 75% 
of allergen-specific IgG after continuous exposure to antigen66. After 
specific immunotherapy, IgG1 and, in particular, IgG4 allergen-specific 

Box 1

In vitro and in vivo models to study IgG4 responses
In vitro models
Model systems to study IgG4 in vitro generally involve either cell 
cultures or, more recently, organoids. IgG4+ memory B cells and 
IgG4-producing plasma cells can survive for several days to weeks 
in vitro when supplied with sufficient trophic factors and cytokines 
including IL-21 and in the presence of other cell types such as 
stimulated T cells or CD40L-expressing cell lines. These models allow 
for, for example, isolation of antibody sequences, manipulation of 
antibody glycosylation or study of B cell receptor (BCR) signalling 
and recall responses. IgG4+ B cells readily differentiate into antibody-
secreting cells in vitro, similarly to IgG1+ B cells5. Furthermore, in vitro 
class-switching of naive human B cells towards IgG4+ B cells has 
been shown by many groups to proceed readily, in an IL-4-dependent 
manner (reviewed in ref. 4). Human tonsil organoids are another 
model system in which to study (de novo) IgG(4) responses158. These 
organoids can live for several weeks and produce varying amounts 
of antibodies, including IgG4.

In vivo models
Studies of IgG4 in commonly used experimental animal models 
are challenging owing to the lack of a proper homologue of human 

IgG4. Mice and rats each have an IgG subclass that, similar to 
human IgG4, has limited ability to activate complement, but the 
properties of these antibodies differ significantly from the anti-
inflammatory properties of human IgG4 (ref. 4). In addition, the 
IgG4-equivalent IgG subclasses do not undergo Fab-arm exchange 
under physiological conditions48. Non-human primates (such as 
cynomolgus monkeys and rhesus macaques) have an IgG4 subclass 
that has many similarities to human IgG4, and these primates 
are therefore the favoured model for IgG4-related research17. 
Humanized animal models provide another method for studying 
IgG4 responses. Recently, human IgG4 responses were successfully 
induced upon IL-10 exposure of immunodeficient NOD-scid IL2rγnull 
mice engrafted with human lymphocytes159. A human IgG4 knock-in 
mouse model has been developed, but awaits formal peer-reviewed 
publication160. Introducing human IgG4 into animal models is an 
interesting strategy but the extrapolation of results may be limited 
as Fcγ receptors have not been adjusted in these models, and the 
responses may therefore differ from the human situation. Although 
IgG(4) anti-drug responses are highly unwanted in patients, they 
form an important model to study de novo IgG4 responses in a 
human context.
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responses can increase in the range 10- to 100-fold, with levels start-
ing to increase after 1 month of therapy66,67. An increase in the titre of 
allergen-specific IgG4 generally correlates with increased tolerance 
and reduced hypersensitivity symptoms. The protection against symp-
toms of allergy mediated by IgG4 is thought to be the result of at least 
three modes of action: blocking the activity of IgE by competing for 
allergen binding and preventing mast cell and basophil degranula-
tion68–71; inhibiting antigen presentation to T cells by IgE on B cells 
and dendritic cells66; and preventing immune complex formation 
through the functional monovalency of IgG4. The induction of allergen-
specific IgG4 responses is thought to result from prolonged exposure 
to the allergen and increased production of IL-10 (refs. 62,68). IL-10 not 
only induces T cell tolerance but also regulates antibody production, 
resulting in increased IgG production relative to IgE production72,73. 
IgE-induced CD4+ T cell activation is a very potent route to maintain 

chronic inflammation. Antigen presentation to T cells via B cells and 
dendritic cells may be facilitated by IgE. By blocking these effects, IgG4 
halts this positive-feedback loop, which limits IgE production and puts 
a brake on the inflammatory response.

Parasitic infections
IgG4 responses can also occur during parasitic infection (Fig. 3b). The 
host usually develops a broad B cell-mediated and T cell-mediated 
immune response against the parasite. In an attempt to evade 
the host immune response, the parasite stimulates production of 
cytokines such as IL-10 and induction of Treg cells. As a consequence, 
in a subset of patients, the anti-parasite B cell response may undergo 
class-switching towards IgG4. IgG responses can consist of up to 90% 
IgG4 in these asymptomatic patients74. A dual role for IgG4 in these 
infections can be envisaged. On the one hand, the ratio of IgG4 to IgE 
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Fig. 2 | Structural and functional characteristics of IgG4. IgG4 has several 
unique structural features compared with other IgG subclasses, including 
specific biases in the IgG4 response repertoire (high affinity and increased levels 
of Fab (fragment antigen binding) glycosylation), functional monovalency 
(owing to Fab-arm exchange (FAE)) and a reduced ability to induce effector 
functions mediated by interactions in the Fc (fragment crystallizable) region. 
Important residues mediating Fab-arm exchange of IgG4 are serine at position 
228 (S228) and arginine at position 409 (R409); C1q and Fc receptor binding 
are particularly reduced by phenylalanine at position 234 (F234), glycine at 

position 327 (G327) and serine at position 331 (S331) of IgG4, although residues 
at other positions may also contribute to the altered binding patterns of IgG4. 
The functional consequences of these structural features include reduced ability 
to mediate the Fc-dependent effector functions of antibody-dependent cellular 
cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP),  
a poor ability to activate complement through the Fc domain and interference 
with immune complex formation through the inability to cross-link antigen. 
SHM, somatic hypermutation.
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may positively correlate with asymptomatic infection, potentially  
by preventing ongoing inflammation and damage to host tissues, 
for example in the case of Brugia malayi infection74. On the other 
hand, the ratio of specific IgG4 to IgE may correlate with the intensity 

of infection75 and might represent escape of the parasite from host 
immunity. Indeed, histamine release by IgE-opsonized basophils from 
patients with filariasis challenged with filarial antigen was blocked by 
patient-derived IgG4, and histamine release inversely correlated with 

Box 2

Fab-arm exchange
IgG antibodies are typically symmetrical molecules, with the 
exception of IgG4. IgG antibodies are covalent dimers of two half-
molecules, each half consisting of a light chain and a heavy chain 
(see the figure). The antibodies produced by plasma cells are 
bivalent and monospecific (having two antigen-binding sites of the 
same specificity). However, human IgG4 is an unusually dynamic 
antibody, and these half-molecules can dissociate and recombine 
with other IgG4 half-molecules in a process termed Fab (fragment 
antigen binding)-arm exchange. The resulting IgG4 antibodies 
are asymmetrical, bispecific structures with two different antigen-
binding sites. Owing to the heterogeneity of the IgG4 pool, up 
to 99% of circulating IgG4 is considered to be bispecific.

Two features of IgG4 enable Fab-arm exchange to occur: the 
serine at position 228 (S228) in the core hinge and the arginine 
at position 409 (R409) in the CH3 domain. The former results in 
unusually labile covalent interactions between the two heavy 
chains through disulfide bonds. The latter weakens the non-
covalent association between the two heavy chains through their 
CH3 domains. Both features are required for Fab-arm exchange, 
as introducing only one of these residues in IgG1 does not result 

in Fab-arm exchange in vivo. However, in vitro, where redox 
conditions can be varied more widely, a K409R mutant of IgG1 can be 
forced to participate in Fab-arm exchange in the presence of stronger 
reducing conditions than are typically required for IgG4 Fab-arm 
exchange. This forms the basis of the Duobody platform, which 
enables the production of bispecific therapeutic antibodies through 
in vitro Fab-arm exchange that are stable in vivo. For the other human 
IgG subclasses, particularly IgG3, the interactions between CH3 
domains are also a lot weaker than for IgG1, but this is compensated 
by multiple disulfide bonds between heavy chains that are not 
present in IgG4.

A functional consequence of Fab-arm exchange is the effective 
monovalency of IgG4. The random nature of the exchange process 
results in the antigen specificity of one Fab arm recombining with any 
number of other, usually unrelated, antigen specificities in the other 
Fab arm. This eliminates the potential of the antibody to cross-link 
antigen, further minimizing the immune-activating potential of IgG4. 
Complement activation also seems to be further impaired by Fab-arm 
exchange39. Fc, fragment crystallizable. Figure adapted from ref. 4, 
© Georg Thieme Verlag KG.
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IgG4 levels76. Interestingly, it has been suggested that a consequence 
of the IgG4-mediated attenuation of host immunity by the parasite 
may be protection of the host from autoimmune disease and aller-
gies (see next section), although the role of parasitic infections in 
dampening allergy has not been unambiguously determined77. Such 
a role would be consistent with the ‘hygiene hypothesis’, which sug-
gests that lack of parasite exposure and the improved standards of 
hygiene in higher-income countries may cause increased prevalence 
of autoimmune and allergic diseases.

IgG4-dependent pathology
Specific deficiency of IgG4 can occur either as an isolated phenomenon 
(in ~30% of cases) or in combination with a deficiency of other antibody 
(sub)classes, such as IgG2, IgA or IgG1 (ref. 78). A selective lack of IgG4 
or severely reduced levels of IgG4 are extremely rare. In some individu-
als (mostly children), IgG4 deficiency is associated with recurrent res-
piratory tract infections, allergies, candidiasis, chronic diarrhoea and 
chronic fungal infections78,79. These observations suggest that IgG4 may 
have an unexplored physiological role in mucosal immunity. In line with 
this, a recent retrospective study observed IgG4 deficiency in ~20% of 
patients with inflammatory bowel disease, which was associated with 

worse disease outcome80. Future studies should elucidate whether 
there is a causal relationship between these observations.

IgG4 hypergammaglobulinaemia occurs in ~5% of the healthy 
population and seems without consequence. Several diseases are 
associated with pathogenic IgG4 responses (Fig. 4). Here, we discuss 
examples of pathology that are directly dependent on IgG4, includ-
ing autoimmune diseases, antitumour responses and anti-biologic 
responses.

IgG4 autoimmune diseases
IgG4-AIDs were first defined as a separate subgroup of antibody-
mediated autoimmune disorders in 2015 (ref. 10), and a first attempt at 
their classification based on the level of evidence for a pathogenic role 
of IgG4 was proposed soon thereafter11,81. IgG4-AIDs are characterized 
by autoantibody responses predominantly of the IgG4 subclass against 
a known antigen. These disorders can affect many organ systems, 
depending on the major site of action of the targeted antigen, including 
the kidneys, central and peripheral nervous systems, haematopoietic 
system and skin. So far, a direct pathogenic role of IgG4 autoantibodies 
has been established for six IgG4-AIDs through passive transfer of IgG4  
in experimental animals (Table 2), but this group is likely to expand 
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Fig. 3 | Physiological and potentially beneficial effects of IgG4. The effects 
of IgG4 can be beneficial to the host. a, In the case of allergy, repeated exposure 
to an allergen such as bee venom may at first elicit an antibody response 
dominated by IgE and IgG1, which stimulate inflammation and mast cell 
degranulation, causing a hypersensitivity response. Continued exposure to the 
same allergen may result in an increase in type 2 cytokines such as IL-4 and IL-13 
and in regulatory cytokines such as IL-10, which stimulate class-switching to 
IgG4. The increased amounts of IgG4 compete with IgE for binding to allergen, 
thus preventing mast cell degranulation and inhibiting antigen presentation 

to T cells by IgE on B cells, which blocks the inflammatory loop and results 
in tolerance. b, In parasitic infections, the IgE-mediated and IgG1-mediated 
inflammatory process can be detrimental to host tissue. Worms can secrete 
immune modulators that skew host cytokine production towards a type 2 profile 
(also including the regulatory cytokine IL-10), resulting in class-switching to IgG4 
and, hence, obstruction of the inflammatory processes directed at the worm as 
well as reduced inflammatory damage to the host. Such events generally result in 
asymptomatic symbiosis. APC, antigen-presenting cell.
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in the coming years with more evidence becoming available for 23 
other candidate IgG4-AIDs. Diagnosis of an IgG4-AID is based on clini-
cal symptoms and the detection of serum IgG4 autoantibodies to the 
disease-specific antigen. Antigen-specific IgG4 levels correlate closely 
with disease severity82,83. As IgG4 is predominantly anti-inflammatory in 
nature and is not thought to induce pathology through Fc-dependent 
effector mechanisms, a key mode of action in all IgG4-AIDs is thought 
to be blocking essential protein–protein interactions of the target 
antigen10. For example, in muscle-specific kinase (MuSK) myasthenia 
gravis, which is a prototypical IgG4-AID, IgG4 autoantibodies to MuSK 
block its interaction with low-density lipoprotein receptor-related 

protein 4 (LRP4), thereby obstructing a key trophic signalling cascade 
at the neuromuscular junction and resulting in fatigable skeletal muscle 
weakness84. Much overlap between the IgG4-AIDs can be found in terms 
of their inflammatory status and treatment response. For example, 
B cell depletion therapy with rituximab often results in long-term remis-
sion in all of these diseases. These observations suggest that although 
IgG4-AIDs can present with various symptoms depending on the target 
antigen, they share an underlying immunophenotype.

Serum levels of IgG4 are, if at all, only slightly increased in patients 
with IgG4-AIDs (refs. 85–87) and the numbers of IgG4+ plasma cells 
and IgG4+ B cells are normal in circulation (M.G.H., unpublished 
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Fig. 4 | Pathological effects of IgG4 in three IgG4-associated disease 
settings. a, Pemphigus is one of the first-described IgG4 autoimmune diseases 
(IgG4-AIDs). There are indications that for some forms of pemphigus, exposure 
to a fly antigen causes an initial, non-pathogenic antibody response that is found 
also in asymptomatic individuals. In some individuals, epitope spreading occurs 
and a secondary, pathogenic antibody response develops in which the antibodies 
cross-react with desmogleins, proteins that are crucial for skin cell adhesion. 
Further affinity maturation of the autoimmune response results in high-affinity, 
predominantly IgG4 antibodies that physically obstruct the interaction of 
desmogleins with other cell adhesion molecules, leading to skin blistering. 
In some cases, the high-affinity IgG4 antibodies to desmogleins still cross-react 
with the fly antigen. b, In melanoma, tumour growth can be obstructed by IgG 

antibodies that cause inflammation and destruction or growth inhibition of 
tumour cells. Some tumours, in turn, produce IL-4 and IL-10, which stimulate 
class-switching of local B cells and increased IgG4 production. High levels of 
high-affinity IgG4 compete with other antibody (sub)classes for binding to 
the tumour and prevent further inflammation and tumour destruction owing 
to their anti-inflammatory nature, leading to increased disease progression. 
c, In patients with chronic inflammatory diseases such as rheumatoid arthritis, 
the tumour necrosis factor (TNF) inhibitor adalimumab is often used to reduce 
inflammation. In some individuals, continuous exposure to adalimumab induces 
an IgG4 response against the variable domain of the therapeutic antibody, which 
thereby blocks the activity of the biologic and limits its therapeutic efficacy.
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observations). These observations do not support a hypothesis that 
these patients have an overall tendency to develop dominant IgG4 
responses but, rather, support an antigen-driven aetiology. A recent 
systematic review reports strong associations of IgG4-AIDs with HLA-
DQB1*05 and HLA-DRB1*14, suggesting that these haplotypes pre-
dispose to the development of IgG4-AIDs (ref. 88). This may occur 
through directing B cell development and cytokine production, or by 
facilitating antigen presentation. In the case of three archetypal IgG4-
AIDs — MuSK myasthenia gravis, pemphigus vulgaris and thrombotic 

thrombocytopenic purpura — increased serum levels of the IgG4-
promoting cytokine IL-10 have been reported89–92. Although some 
autoimmune diseases mediated by IgG1, IgG2 or IgG3 are associated 
with tumour development, this has thus far not been reported for 
IgG4-AIDs, and the aetiology of IgG4-AIDs is expected to be different 
from that of such paraneoplastic syndromes.

Interestingly, evidence for molecular mimicry resulting in an IgG4-
dominated response to desmogleins in the skin epidermis is found 
in patients with endemic pemphigus foliaceus from Brazilian and 

Table 2 | IgG4 autoimmune diseases with evidence by passive transfer of a pathogenic role for IgG4 autoantibodies

Disease 
(ORPHAcode)

Symptoms Antigen (main 
epitope)

Target organ HLA 
association

IgG4 
abundance 
relative to 
total IgG

Response 
to anti-
CD20 
treatment

Pathological 
mechanism

Refs.

Chronic 
inflammatory 
demyelinating 
polyneuropathy 
(2932)

Proximal muscle 
weakness, 
distal sensory 
disturbances and 
areflexia; nephrotic 
syndrome in some 
patients

CNTN1 
(N-terminal 
immunoglobulin-
like 1 domain)

Axoglial 
junction 
(in complex 
with CASPR1 
and NF155)

ND >90% Good Blockade of NF155–
CNTN1 interaction, 
resulting in loss 
of connectivity 
between axon 
and glial cells 
and impaired 
neuroconduction

140–143

Chronic 
inflammatory 
polyneuropathy 
(2932)

Proximal muscle 
weakness, 
distal sensory 
disturbances, and 
low-frequency and 
high-amplitude 
tremor with 
cerebellar features

NF155 (third 
fibronectin type III 
domain)

Axoglial 
junction 
(in complex 
with CASPR1 
and CNTN1)

DRB1*15, 
DQB1*06

>90% Good In vivo, IgG4 
depletes cell 
surface NF155; 
in vitro, IgG4 
induces NF155 
clustering but not 
internalization

139,140,142, 
144–147

Myasthenia gravis 
(589)

Fluctuating fatigable 
skeletal muscle 
weakness

MuSK (N-terminal 
immunoglobulin-
like 1 domain)

Neuromuscular 
junction 
(skeletal 
muscle)

DQB1*05, 
DRB1*14, 
DRB1*16

>90% Good, 
often 
results in 
long-term 
remission

Obstruction 
of MuSK–LRP4 
interaction, 
leading to AChR 
declustering, 
synaptic 
disintegration and 
neuromuscular 
transmission failure

84,148,149

Pemphigus 
foliaceus (79481) 
and pemphigus 
vulgaris (704)

Skin blistering Pemphigus 
foliaceus: DSG1 
(cadherin-like 
domain 1 and 2);  
pemphigus 
vulgaris: DSG3, 
sometimes 
together with 
DSG1 (cadherin-
like domain 1 
and 2)

Keratinocytes in 
the skin

DQB1*03, 
DQB1*05, 
DRB1*04, 
DRB1*14

Vast majority is 
IgG4 followed 
by IgG1, then 
IgG2 and IgG3

Initial 
response 
good

Blockade of 
desmoglein 
interactions and 
loss of cell–cell 
interactions 
resulting in 
skin blistering; 
autoantibody 
binding also 
affects cytoskeletal 
rearrangements and 
cell adhesion

82,88, 
150–153

Thrombotic 
thrombocytopenic 
purpura (9358)

Microangiopathic 
haemolytic 
anaemia; risk of 
neurocognitive 
deficits and 
cardiovascular 
events

ADAMTS13 
(cysteine-rich 
spacer domain 3)

Vasculature DRB1*11, 
DRB1*12, 
DRB1*15

Initial response 
dominated 
by IgG1, 
chronic and 
relapse phases 
dominated  
by IgG4; level 
of inhibition of  
ADAMTS13 
correlates with 
IgG4 titres

Good Blockade of binding 
and cleavage of 
vWF, resulting 
in multimers of 
vWF that bind 
platelets and cause 
microthrombi

88,101, 
154–156

Other diseases that are suspected to be IgG4 autoimmune diseases, but with lower levels of evidence, are described in ref. 81. AChR, acetylcholine receptor; ADAMTS13, a disintegrin and 
metalloproteinase with thrombospondin motifs 13; CASPR1, contactin-associated protein 1; CNTN1, contactin 1; DSG1, desmoglein 1; LRP4, low-density lipoprotein receptor-related protein 4; 
MuSK, muscle-specific kinase; ND, not determined; NF155, neurofascin 155; vWF, von Willebrand factor.
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Tunisian populations (Fig. 4a). In these patients, antibodies develop 
against a salivary antigen from flies that are cross-reactive with des-
mogleins93,94. Moreover, monoclonal antibodies derived from patients 
with pemphigus vulgaris were shown to be cross-reactive with walnut 
antigen95. Both walnuts and flies carry allergens that are known to 
induce IgG4 responses. These observations suggest that exposure 
to certain IgG4-inducing antigens in combination with a permissive 
HLA haplotype and an IgG4-promoting immune environment (such as 
increased IL-10 levels) might have a role in the development of certain 
IgG4-AIDs. However, it is unclear which factors ultimately cause the 
IgG4 skewing of these responses.

Autoantibodies of other (sub)classes can also be found in patients 
with IgG4-AIDs, although usually of much lower titres. For several IgG4-
AIDs, the pathogenicity of IgG1, IgG3 and IgM autoantibodies has also 
been confirmed96–101. The mechanisms by which these autoantibodies 
induce pathology may differ between antibody (sub)classes and target 
antigens, and could include complement-mediated tissue damage and 
antigenic cross-linking and internalization causing surface depletion. 
The functional consequences of IgG4 autoantibodies may also differ 
between diseases25. The relative contribution of IgG4 to pathology 
compared with the contribution of other antibody (sub)classes has not 
been carefully delineated, but the effects of different antibody (sub)
classes may function in parallel to increase disease severity. Low titres 
of IgG1 autoantibodies are also found in non-symptomatic relatives 

of patients with pemphigus vulgaris, which suggests that having (low 
levels of) such antibodies alone is not sufficient to precipitate disease 
symptoms102. It furthermore suggests that there is a subclinical stage 
in these autoimmune diseases that, upon early detection, could allow 
for IgG4-AID onset to be prevented. The role of autoantibodies of other 
(sub)classes in the pathophysiology of IgG4-AIDs requires further 
investigation.

Interestingly, in autoimmune diseases mediated by IgG1, IgG2 or 
IgG3 autoantibodies, a switch to an IgG4-dominant response may be 
therapeutic. Passive transfer of an IgG4 monoclonal antibody targeting 
acetylcholine receptor (AChR) inhibited subsequent complement-
mediated damage and cytotoxicity induced by IgG1 binding to AChR, 
thus preventing the onset of AChR myasthenia gravis in rhesus 
macaques17.

Antitumour responses
Antitumour antibody responses can contain or even eliminate malig-
nancies by binding to tumour cells and stimulating ADCC, antibody-
dependent complement deposition and/or ADCP. However, in 1977 a 
prospective study in patients with melanoma identified high levels of 
IgG4 as having negative effects on survival103. It has since become evi-
dent that some malignancies evade host immune defences by inducing 
class-switching of the antitumour antibody response to IgG4. IgG4 com-
petes with other antibody (sub)classes for binding to tumour antigens 

Glossary

Antibody-dependent cell-
mediated cytotoxicity
(ADCC). An immune response induced 
by antibodies binding through their 
Fc (fragment crystallizable) domains 
to pro-inflammatory, activating 
Fc receptors on immune cells, 
causing the immune cells to lyse the 
antibody-bound antigen or cell.

Antibody-dependent cellular 
phagocytosis
(ADCP). An immune response induced 
by antibodies binding through their 
Fc (fragment crystallizable) domains 
to pro-inflammatory, activating 
Fc receptors on immune cells, causing 
the immune cells to phagocytose the 
antibody-bound pathogen or cell.

Antibody-dependent 
complement deposition
An immune response induced 
by high levels of antigen-bound 
pro-inflammatory antibodies, causing 
precipitation of complement factor 
C1q and subsequent induction of the 
complement cascade, resulting in lysis 
of the antibody-bound pathogen or cell.

Class-switch recombination
Process by which B cells edit their 
immunoglobulin heavy-chain constant 
region DNA to produce antibodies 
of a different (sub)class. This results 
in antibodies that have the same 
specificity but different effector 
functions.

Complementarity-
determining regions
Loops within the variable domains of 
an antibody (or B cell receptor) that are 
highly variable (between antibodies), 
unique and interact with the antigen.

Fab-arm exchange
A stochastic process in which IgG4 
half-molecules recombine with other 
IgG4 half-molecules, forming an 
antibody that is bispecific and thus 
functionally monovalent.

Fc receptors
Immune receptors specific for antibody 
(sub)classes that can activate or inhibit 
immune cells upon binding to the 
Fc (fragment crystallizable) portion of 
antigen-bound antibodies.

Fragment antigen binding
(Fab). A highly variable antibody 
segment that confers its specificity 
for antigen binding.

Fragment crystallizable
(Fc). A constant domain of an 
antibody molecule that mediates the 
immunological effector functions 
of the antibody, including antibody-
dependent cell-mediated cytotoxicity, 
antibody-dependent cellular 
phagocytosis and antibody-dependent 
complement deposition. Antibody 
classes are grouped based on 
structural and functional (amino acid) 
determinants in this part of the antibody.

Molecular mimicry
Pathogens and endogenous proteins 
may have highly similar structures or 
molecular features. The molecular 
mimicry hypothesis suggests that 
(auto)immune responses may derive 
from an initial (antibody) response to 
a pathogen that cross-reacts with an 
endogenous protein having a highly 
similar structure.

Paraneoplastic syndromes
Autoimmune diseases that develop 
as a result of an antitumour anti
body response. Tumour cells 
often overexpress proteins normally 
present elsewhere in the body. 
Antibody responses directed at 
such tumour proteins may not only 
contain the tumour but also cause 
disease at the natural site of activity 
of the protein.

Specific immunotherapy
A treatment regimen to induce 
tolerance, based on regular 
exposure to ultra-low doses of 
antigen that induce a class-switch 
to anti-inflammatory IgG4.
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and owing to its anti-inflammatory properties blocks the induction of  
antitumour immune responses104 (Fig. 4b). In the absence of an immune 
response, tumour cells have increased ability to proliferate and meta
stasize, resulting in disease progression and decreased survival. 
Immune evasion through class-switching to IgG4 has been observed in 
patients with melanoma, cholangiocarcinoma, colon cancer, pancreatic 
cancer and glioblastoma (reviewed in ref. 105).

Both the total IgG4 level and the number of IgG4+ B cells can be 
increased in the serum of patients with malignancies and are a nega-
tive prognostic indicator103,106,107. These factors are also increased in 
the tumour microenvironment. The development of antitumour IgG4 
responses results from IL-4 and IL-10 production by tumour cells, which 
directs a modified type 2 response that stimulates class-switching to 
IgG4 (ref. 104) (Fig. 4b). Furthermore, some tumour microenviron-
ments contain tertiary lymphoid structures with functional germinal 
centres and Treg cells105. Crosstalk between these chronic inflammatory 
structures and the tumour may induce increased expression of IL-10 by 
Treg cells104. Importantly, it is not yet understood why certain tumours 
are capable of inducing IgG4 responses whereas others are not. In addi-
tion, although the reactivity of serum IgG4 antibodies from patients 
with cancer to tumour cells, for example to melanoma cells, has been 
confirmed, the precise antigen specificity of these antibodies has not 
yet been delineated108. Broader study is needed to evaluate whether 
IgG4 has a pathogenic role in other cancer types. Interestingly, in addi-
tion to the proposed role of IgG4 in blocking inflammatory responses, 
a pro-angiogenic IgG4+ B cell subset (CD49b+CD73+IL-10–) was recently 
identified109. These B cells were increased in the serum of patients with 
melanoma and might facilitate tumour angiogenesis.

Anti-biologic responses
IgG4-skewed responses can also occur as a result of chronic expo-
sure to biological therapies. Such responses have been described 
for clotting factors FVIII and FIX used for the treatment of congenital 
haemophilia A or haemophilia B110–113, for interferon-β used for the 
treatment of multiple sclerosis114 and for the tumour necrosis factor 
(TNF) inhibitors adalimumab and infliximab used for the treatment 
of inflammatory disorders such as rheumatoid arthritis and Crohn’s 
disease115,116. For each of these anti-biologic responses, the primary 
result is that the therapeutic effect of the biologic is impaired (Fig. 4c). 
Not all biologics trigger an IgG4-skewed anti-drug response. For exam-
ple, interferon-β induces prominent IgG4 skewing only in some of the 
patients who develop an antibody response, which argues against 
chronic exposure to the biologic being the sole determinant of IgG4 
skewing114. It is unclear why certain biologics cause these responses 
and others do not.

Haemophilia A and haemophilia B are severe clotting disorders 
caused by an inherited deficiency of FVIII or FIX, respectively. First-
line treatment in these patients is chronic replacement of these clot-
ting factors using either plasma-derived or recombinant proteins. 
Approximately 30% of patients treated with FVIII replacement therapy 
develop inhibitory antibodies predominantly of the IgG4 subclass117. 
Low-affinity IgG antibodies to FVIII of all subclasses can be found in 
both healthy individuals and patients with haemophilia, but high-
affinity, high-titre IgG4 blocking antibodies to FVIII are unique to 
patients65,111. Furthermore, high levels of anti-FVIII IgG4 correlate with 
decreased efficacy of FVIII replacement therapy118. Although these 
patients may also have antibodies to FVIII of other subclasses, IgG4 
antibodies seem to be particularly detrimental. Interestingly, acquired 
autoimmune haemophilia A is also associated with a dominant IgG4 

response to endogenous FVIII, which would thus classify this form of 
haemophilia as an IgG4-AID (ref. 119). For unknown reasons, FVIII — 
both endogenous and exogenous — has the propensity to induce an 
IgG4 response.

Many inflammatory disorders, including rheumatoid arthritis 
and Crohn’s disease, can be successfully managed with TNF inhibitor 
therapy. Monoclonal antibodies are immunogenic to varying degrees, 
depending, amongst other factors, on their extent of humanization. 
However, even so-called fully human antibodies, of which the TNF 
inhibitor adalimumab is an early example, contain parts that are unique 
and foreign to recipients, namely the complementarity-determining 
regions responsible for target binding. B cell and T cell epitopes will 
be present in the biologic that can drive the development of high-
affinity, class-switched (IgG4) antibodies120. Similarly, although FVIII 
is a human protein, it will be seen by the immune system as a par-
tially foreign protein in patients with congenital haemophilia owing 
to genetic defects in endogenous FVIII. This explains the potential 
for developing high-affinity, class-switched antibodies, although it  
is unclear why there is a tendency for these responses to favour 
class-switching to IgG4.

IgG4-related diseases
IgG4-RDs are a heterogeneous group of inflammatory disorders 
characterized by massive influx of IgG4+ B cells in affected organs and 
increased serum levels of IgG4 (refs. 9,121,122). Similar to IgG4-AIDs, 
a wide variety of organs can be affected in IgG4-RDs, including the 
thyroid, pituitary gland, pancreas, lungs, kidneys, gastrointestinal 
system and vasculature, with symptoms varying according to the 
organ affected. Diagnosis of an IgG4-RD is based on the histopatho-
logical finding of an IgG4+ B cell infiltrate, resulting in swelling of the 
organ, storiform fibrosis and obliterative phlebitis in a tissue biopsy. 
In addition, increased serum levels of IgG4 and of IgG4+ plasmablasts 
are often a good biomarker for both diagnosis and monitoring dis-
ease progression123; 70–80% of patients have increased serum levels of 
IgG4. IgG4-AIDs and IgG4-RDs are currently considered to be separate 
disease entities as there is no evidence for large-scale influx of IgG4+ 
B cells in the affected organs in IgG4-AIDs or for significantly increased 
serum levels of IgG4 (refs. 85,87). The typical histology observed in 
IgG4-RDs involving fibrosis and tissue damage does not seem to have a 
major role in IgG4-AIDs, although biopsy data in the latter are limited. 
Furthermore, the pathogenic role of specific IgG4 and IgG4+ B cells in 
IgG4-RDs remains enigmatic. BCR repertoire sequencing confirmed 
the clonal expansion of IgG4+ B cells in patients with IgG4-RDs, suggest-
ing that some clones may contribute specifically to disease onset and 
progression124, although their antigen specificity was not determined. 
Further research is needed to determine the similarities and differences 
between IgG4-RDs and IgG4-AIDs in terms of their pathology, aetiology, 
histology and clinical features.

There are three hypotheses to explain the role of IgG4 in the patho-
physiology of IgG4-RDs. First, IgG4-RDs, similar to IgG4-AIDs, are 
caused by IgG4 antibodies targeting autoantigens in the specific organ 
that is affected. Second, patients with IgG4-RDs have a type 2-skewed 
inflammatory environment, for as yet unknown reasons, which triggers 
pleiotropic IgG4 responses and impaired homing of IgG4+ B cells. Third, 
IgG4 is present in IgG4-RDs simply to dampen an ongoing immune 
response and, as such, does not contribute to the pathology.

Clinical clues to support an autoimmune hypothesis in these 
patients are the responsiveness to immunosuppressants, chronic dis-
ease course, presence of autoantibodies and HLA type II associations. 
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Passive transfer of IgG1 and IgG4 from patients with IgG4-RDs can 
induce similar pathology in experimental animals125. Although IgG 
antibodies to autoantigens (for example, nuclear antigens, lactoferrin, 
carbonic anhydrases II and IV, pancreatic secretory inhibitor, trypsino-
gens and annexin A11) have been found, none of these consistently 
correlates with an IgG4-RD (refs. 126–128). Furthermore, these auto
antibodies are mainly of the IgG1 subclass and target intracellular 
proteins that are unlikely to be the initial autoimmune trigger owing 
to lack of accessibility. By contrast, and in keeping with the second 
hypothesis, patients with IgG4-RDs generally have increased IgG4 
reactivity against environmental antigens, suggesting that increased 
levels of IgG4 may be the result of a pleiotropic activation of IgG4+ 
B cells independent of their antigen specificity129. Type 2 cytokines are 
increased in the serum of patients with IgG4-RDs, which could fit with 
both the first and second hypotheses130.

Given the diverse nature of immune cells infiltrating affected 
organs in patients with IgG4-RDs, some argue that the IgG4 is induced 
in response to chronic immune stimulation and does not contribute to 
the pathology. Indeed, passive transfer of IgG1 purified from a patient 
with pancreatitis reproduced disease in mice, whereas symptoms were 
markedly reduced upon co-transfer of IgG1 and IgG4 isolated from the 
same patient125. Furthermore, in addition to IgG4, levels of IgE are often 
increased in IgG4-RDs (refs. 131,132). Upon treatment with rituximab, 
both IgG4 and IgE levels have a tendency to decrease131,133. Interest-
ingly, this was also observed upon treatment with abatacept, which 
interferes with T cell activation, albeit in a limited number of patients134. 
Furthermore, dupilumab, which blocks the receptors for IL-4 and IL-13, 
has recently been considered for the treatment of IgG4-RDs (ref. 134). 
These studies point to a role of T cells (possibly TH2 cells) and IL-4 and/or 
IL-13 in the pathogenesis of IgG4-RDs, as well as indicating an apparent 
lack of persistence of IgG4 (and IgE) responses in this disease setting, 
which, at least for IgG4, seems to be a more general phenomenon7. 
Future research should focus on determining the sequence of events 
that lead to the production of IgG4 and confirming or acquitting a 
pathogenic role for IgG4 in IgG4-RDs.

Some reports suggest an increased incidence of malignancies 
in patients with IgG4-RDs, through the effects of IgG4 on suppress-
ing antitumour immune responses, although this is still a matter of 
debate135,136. Having a tumour may also predispose to developing 
an IgG4-RD through cytokines secreted by the tumour that induce 
class-switching to IgG4 (ref. 137). Whether having one type of IgG4-
associated disease (IgG4-AID or IgG4-RD) can lead to a second type 
of IgG4-associated disease should be further investigated. Case 
reports of co-occurrence of IgG4-AIDs with IgG4-RDs do exist but are 
generally rare138,139.

Future directions
The role of IgG4 antibody responses in physiological and pathological 
settings is gaining increasing attention. Although, historically, the anti-
inflammatory nature of IgG4 was associated with dampening ongoing 
immune responses, it is increasingly recognized that these antibod-
ies can also cause pathology. The first steps towards understanding 
the pathological mechanisms underlying these IgG4-associated dis-
eases have been taken, but little is still known regarding what triggers 
and maintains these IgG4 responses. There is a clear need to better 
understand how IgG4 responses are regulated. This knowledge could 
then form the basis for novel therapeutic strategies targeting these 
responses. Specifically, the aim would be to stimulate beneficial 
IgG4 responses, for example in allergy, or to inhibit IgG4 responses in 

autoimmune diseases and antitumour and anti-biologic responses. 
Supporting these (pre)clinical ambitions will require better models 
to study the development of ‘natural’ human IgG4 responses (Box 1).
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