Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of galectins in immunity and infection

Abstract

The galectin family consists of carbohydrate (glycan) binding proteins that are expressed by a wide variety of cells and bind to galactose-containing glycans. Galectins can be located in the nucleus or the cytoplasm, or can be secreted into the extracellular space. They can modulate innate and adaptive immune cells by binding to glycans on the surface of immune cells or intracellularly via carbohydrate-dependent or carbohydrate-independent interactions. Galectins expressed by immune cells can also participate in host responses to infection by directly binding to microorganisms or by modulating antimicrobial functions such as autophagy. Here we explore the diverse ways in which galectins have been shown to impact immunity and discuss the opportunities and challenges in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Galectins are unique regulators of host immunity.
Fig. 2: Regulation of adaptive immunity by galectins.
Fig. 3: Regulation of macrophages by extracellular and intracellular galectins.
Fig. 4: Galectins as sensors for endolysosomal damage.

Similar content being viewed by others

References

  1. Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 7, 454–465 (2007).

    CAS  PubMed  Google Scholar 

  2. Rabinovich, G. A., van Kooyk, Y. & Cobb, B. A. Glycobiology of immune responses. Ann. N. Y. Acad. Sci. 1253, 1–15 (2012).

    CAS  PubMed  Google Scholar 

  3. Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

    CAS  PubMed  Google Scholar 

  4. Levi, G., Tarrab-Hazdai, R. & Teichberg, V. I. Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur. J. Immunol. 13, 500–507 (1983).

    CAS  PubMed  Google Scholar 

  5. Cummings, R. D. et al. in Essentials of Glycobiology (ed. Varki, A.) 4th edn., 491–503 (Cold Spring Harbor Laboratory Press, 2022).

  6. Arthur, C. M., Baruffi, M. D., Cummings, R. D. & Stowell, S. R. Evolving mechanistic insights into galectin functions. Methods Mol. Biol. 1207, 1–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. de Waard, A., Hickman, S. & Kornfeld, S. Isolation and properties of β-galactoside binding lectins of calf heart and lung. J. Biol. Chem. 251, 7581–7587 (1976).

    PubMed  Google Scholar 

  8. Dias-Baruffi, M. et al. Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 20, 507–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, X. et al. Intestinal epithelial cells express galectin-9 in patients with food allergy that plays a critical role in sustaining allergic status in mouse intestine. Allergy 66, 1038–1046 (2011).

    CAS  PubMed  Google Scholar 

  10. Wada, J., Ota, K., Kumar, A., Wallner, E. I. & Kanwar, Y. S. Developmental regulation, expression, and apoptotic potential of galectin-9, a β-galactoside binding lectin. J. Clin. Invest. 99, 2452–2461 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Imaizumi, T. et al. Interferon-γ stimulates the expression of galectin-9 in cultured human endothelial cells. J. Leukoc. Biol. 72, 486–491 (2002).

    CAS  PubMed  Google Scholar 

  12. Yang, R. Y. et al. Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice. Proc. Natl Acad. Sci. USA 108, 18696–18701 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamili, N. A. et al. Key regulators of galectin–glycan interactions. Proteomics 16, 3111–3125 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Johannes, L., Jacob, R. & Leffler, H. Galectins at a glance. J. Cell. Sci. 131, jcs208884 (2018).

    PubMed  Google Scholar 

  15. Mendez-Huergo, S. P., Blidner, A. G. & Rabinovich, G. A. Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr. Opin. Immunol. 45, 8–15 (2017).

    CAS  PubMed  Google Scholar 

  16. Ruvolo, P. P. Galectin 3 as a guardian of the tumor microenvironment. Biochim. Biophys. Acta 1863, 427–437 (2016).

    CAS  PubMed  Google Scholar 

  17. Elola, M. T. et al. Galectins: multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cell Immunol. 333, 34–45 (2018).

    CAS  PubMed  Google Scholar 

  18. Cardoso, A. C., Andrade, L. N., Bustos, S. O. & Chammas, R. Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front. Oncol. 6, 127 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Girotti, M. R., Salatino, M., Dalotto-Moreno, T. & Rabinovich, G. A. Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J. Exp. Med. 217, e20182041 (2020).

    PubMed  Google Scholar 

  20. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    CAS  PubMed  Google Scholar 

  21. Stowell, S. R. et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carlsson, S. et al. Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17, 663–676 (2007).

    CAS  PubMed  Google Scholar 

  23. Cooper, D. N. & Barondes, S. H. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell Biol. 110, 1681–1691 (1990).

    CAS  PubMed  Google Scholar 

  24. Cho, M. & Cummings, R. D. Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J. Biol. Chem. 270, 5207–5212 (1995).

    CAS  PubMed  Google Scholar 

  25. Cerri, D. G. et al. Degeneration of dystrophic or injured skeletal muscles induces high expression of galectin-1. Glycobiology 18, 842–850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Banfer, S. et al. Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc. Natl Acad. Sci. USA 115, E4396–E4405 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Stowell, S. R. et al. Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J. Biol. Chem. 284, 4989–4999 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirabayashi, J. & Kasai, K. Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa β-galactoside-binding lectin. J. Biol. Chem. 266, 23648–23653 (1991).

    CAS  PubMed  Google Scholar 

  29. Teichberg, V. I., Silman, I., Beitsch, D. D. & Resheff, G. A β-d-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc. Natl Acad. Sci. USA 72, 1383–1387 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ochieng, J. et al. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry 33, 14109–14114 (1994).

    CAS  PubMed  Google Scholar 

  31. Robinson, B. S. et al. The sweet-side of leukocytes: galectins as master regulators of neutrophil function. Front. Immunol. 10, 1762 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Thiemann, S. & Baum, L. G. Galectins and immune responses — just how do they do those things they do? Annu. Rev. Immunol. 34, 243–264 (2016).

    CAS  PubMed  Google Scholar 

  33. Pereira, M. S. et al. Glycans as key checkpoints of T cell activity and function. Front. Immunol. 9, 2754 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Gilson, R. C., Gunasinghe, S. D., Johannes, L. & Gaus, K. Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Prog. Lipid Res. 76, 101010 (2019).

    CAS  PubMed  Google Scholar 

  35. Stowell, S. R. et al. Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14, 157–167 (2004).

    CAS  PubMed  Google Scholar 

  36. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    CAS  PubMed  Google Scholar 

  37. Smith, L. K. et al. Interleukin-10 directly inhibits CD8+ T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 48, 299–312 e295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, H. Y. et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc. Natl Acad. Sci. USA 106, 14496–14501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, S. F. et al. Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology 24, 1022–1035 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaur, M. et al. Galectin-3 regulates γ-herpesvirus specific CD8 T cell immunity. iScience 9, 101–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, H. Y. et al. Intracellular galectin-9 enhances proximal TCR signaling and potentiates autoimmune diseases. J. Immunol. 204, 1158–1172 (2020).

    CAS  PubMed  Google Scholar 

  42. Liang, C. C. et al. Galectin-9 is critical for mucosal adaptive immunity through the T helper 17–IgA axis. Am. J. Pathol. 188, 1225–1235 (2018).

    CAS  PubMed  Google Scholar 

  43. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    CAS  PubMed  Google Scholar 

  44. Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995).

    CAS  PubMed  Google Scholar 

  45. Toscano, M. A. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007).

    CAS  PubMed  Google Scholar 

  46. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    CAS  PubMed  Google Scholar 

  47. Pardo, E. et al. Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis. PLoS ONE 12, e0177472 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Sturm, A. et al. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J. Immunol. 173, 3825–3837 (2004).

    CAS  PubMed  Google Scholar 

  49. Amani, M. F., Rolig, A. S. & Redmond, W. L. Intracellular galectin-3 is essential for OX40-mediated memory CD8+ T cell development. J. Immunol. 205, 1857–1866 (2020).

    CAS  PubMed  Google Scholar 

  50. Yang, R. Y., Hsu, D. K. & Liu, F. T. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc. Natl Acad. Sci. USA 93, 6737–6742 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hernandez, J. D. & Baum, L. G. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology 12, 127R–136R (2002).

    CAS  PubMed  Google Scholar 

  52. Reddy, P. B. et al. Influence of galectin-9/Tim-3 interaction on herpes simplex virus-1 latency. J. Immunol. 187, 5745–5755 (2011).

    CAS  PubMed  Google Scholar 

  53. Oliveira, F. L. et al. Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation. Cell Tissue Res. 363, 411–426 (2016).

    CAS  PubMed  Google Scholar 

  54. Giovannone, N., Smith, L. K., Treanor, B. & Dimitroff, C. J. Galectin–glycan interactions as regulators of B cell immunity. Front. Immunol. 9, 2839 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Giovannone, N. et al. Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat. Commun. 9, 3287 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cao, A. et al. Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat. Commun. 9, 3288 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Smith, L. K., Fawaz, K. & Treanor, B. Galectin-9 regulates the threshold of B cell activation and autoimmunity. eLife 10, e64557 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsai, C. M. et al. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. J. Immunol. 187, 1643–1652 (2011).

    CAS  PubMed  Google Scholar 

  59. Beccaria, C. G. et al. Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nat. Commun. 9, 1628 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Liu, F. T., Yang, R. Y. & Hsu, D. K. Galectins in acute and chronic inflammation. Ann. N. Y. Acad. Sci. 1253, 80–91 (2012).

    CAS  PubMed  Google Scholar 

  61. Sato, S., St-Pierre, C., Bhaumik, P. & Nieminen, J. Galectins in innate immunity: dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol. Rev. 230, 172–187 (2009).

    CAS  PubMed  Google Scholar 

  62. Rabinovich, G. A. & Toscano, M. A. Turning ‘sweet’ on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009).

    CAS  PubMed  Google Scholar 

  63. Henderson, N. C. & Sethi, T. The regulation of inflammation by galectin-3. Immunol. Rev. 230, 160–171 (2009).

    CAS  PubMed  Google Scholar 

  64. Sato, S. in Comprehensive Glycoscience Vol. 5 (ScienceDirect, 2021).

  65. Sato, S. & Nieminen, J. Seeing strangers or announcing “danger”: galectin-3 in two models of innate immunity. Glycoconj. J. 19, 583–591 (2002).

    CAS  PubMed  Google Scholar 

  66. Blois, S. M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat. Med. 13, 1450–1457 (2007).

    CAS  PubMed  Google Scholar 

  67. Ilarregui, J. M. et al. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 10, 981–991 (2009).

    CAS  PubMed  Google Scholar 

  68. Martinez Allo, V. C. et al. Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits. Proc. Natl Acad. Sci. USA 117, 6630–6639 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fermin Lee, A. et al. Galectin-3 modulates TH17 responses by regulating dendritic cell cytokines. Am. J. Pathol. 183, 1209–1222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang, H. R. et al. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J. Immunol. 182, 1167–1173 (2009).

    CAS  PubMed  Google Scholar 

  71. Fermino, M. L. et al. Lack of galectin-3 increases Jagged1/Notch activation in bone marrow-derived dendritic cells and promotes dysregulation of T helper cell polarization. Mol. Immunol. 76, 22–34 (2016).

    CAS  PubMed  Google Scholar 

  72. Mobergslien, A. & Sioud, M. Galectin-1 and -3 gene silencing in immature and mature dendritic cells enhances T cell activation and interferon-gamma production. J. Leukoc. Biol. 91, 461–467 (2012).

    CAS  PubMed  Google Scholar 

  73. Volarevic, V. et al. Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice. Hepatology 55, 1954–1964 (2012).

    CAS  PubMed  Google Scholar 

  74. Simovic Markovic, B. et al. Galectin-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of NLRP3 inflammasome and production of IL-1β in macrophages. J. Crohns Colitis 10, 593–606 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Tian, J. et al. Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J. 30, 4202–4213 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Arsenijevic, A. et al. Gal-3 Deficiency suppresses Novosphyngobium aromaticivorans inflammasome activation and IL-17 driven autoimmune cholangitis in mice. Front. Immunol. 10, 1309 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, W. et al. Galectin-9 targets NLRP3 for autophagic degradation to limit inflammation. J. Immunol. 206, 2692–2699 (2021).

    CAS  PubMed  Google Scholar 

  78. MacKinnon, A. C. et al. Regulation of alternative macrophage activation by galectin-3. J. Immunol. 180, 2650–2658 (2008).

    CAS  PubMed  Google Scholar 

  79. Shirakawa, K. et al. IL (Interleukin)-10–STAT3–galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation 138, 2021–2035 (2018).

    CAS  PubMed  Google Scholar 

  80. Xue, H., Yang, R. Y., Tai, G. & Liu, F. T. Galectin-12 inhibits granulocytic differentiation of human NB4 promyelocytic leukemia cells while promoting lipogenesis. J. Leukoc. Biol. 100, 657–664 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wan, L. et al. Galectin-12 enhances inflammation by promoting M1 polarization of macrophages and reduces insulin sensitivity in adipocytes. Glycobiology 26, 732–744 (2016).

    CAS  PubMed  Google Scholar 

  82. Sano, H. et al. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Invest. 112, 389–397 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Reichert, F. & Rotshenker, S. Galectin-3 (MAC-2) controls microglia phenotype whether amoeboid and phagocytic or branched and non-phagocytic by regulating the cytoskeleton. Front. Cell Neurosci. 13, 90 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Querol Cano, L. et al. Intracellular Galectin-9 controls dendritic cell function by maintaining plasma membrane rigidity. iScience 22, 240–255 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi, Z. R. et al. Decrease of galectin-3 in keratinocytes: a potential diagnostic marker and a critical contributor to the pathogenesis of psoriasis. J. Autoimmun. 89, 30–40 (2018).

    CAS  PubMed  Google Scholar 

  86. Chen, H. L. et al. Galectin-7 downregulation in lesional keratinocytes contributes to enhanced IL-17A signaling and skin pathology in psoriasis. J. Clin. Invest. 131, e130740 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nieminen, J., St-Pierre, C., Bhaumik, P., Poirier, F. & Sato, S. Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. J. Immunol. 180, 2466–2473 (2008).

    CAS  PubMed  Google Scholar 

  88. Snarr, B. D. et al. Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLoS Pathog. 16, e1008741 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Farnworth, S. L. et al. Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am. J. Pathol. 172, 395–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Humphries, D. C. et al. Selective myeloid depletion of galectin-3 offers protection against acute and chronic lung injury. Front. Pharmacol. 12, 715986 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bhaumik, P., St-Pierre, G., Milot, V., St-Pierre, C. & Sato, S. Galectin-3 facilitates neutrophil recruitment as an innate immune response to a parasitic protozoa cutaneous infection. J. Immunol. 190, 630–640 (2013).

    CAS  PubMed  Google Scholar 

  92. Zuberi, R. I. et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am. J. Pathol. 165, 2045–2053 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ge, X. N. et al. Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J. Immunol. 185, 1205–1214 (2010).

    CAS  PubMed  Google Scholar 

  94. Ge, X. N. et al. Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1. Proc. Natl Acad. Sci. USA 113, E4837–E4846 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. James, R. E. et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia 64, 105–121 (2016).

    PubMed  Google Scholar 

  96. Montespan, C. et al. Multi-layered control of galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog. 13, e1006217 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Machado, F. C. et al. Recruitment of galectin-3 during cell invasion and intracellular trafficking of Trypanosoma cruzi extracellular amastigotes. Glycobiology 24, 179–184 (2014).

    CAS  PubMed  Google Scholar 

  98. Pascua-Maestro, R., Diez-Hermano, S., Lillo, C., Ganfornina, M. D. & Sanchez, D. Protecting cells by protecting their vulnerable lysosomes: identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genet. 13, e1006603 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Hung Y. H. et al. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).

    PubMed  Google Scholar 

  100. Munson, M. J. et al. A high-throughput galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Commun. Biol. 4, 211 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Weng, I. C. et al. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology 28, 392–405 (2018).

    CAS  PubMed  Google Scholar 

  102. Aits, S. et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11, 1408–1424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chauhan, S. et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell 39, 13–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kimura, T. et al. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J. 36, 42–60 (2017).

    CAS  PubMed  Google Scholar 

  105. Jia, J. et al. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev. Cell 52, 69–87.e8 (2020).

    CAS  PubMed  Google Scholar 

  106. Jia, J. et al. Galectins control mTOR in response to endomembrane damage. Mol. Cell 70, 120–135.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jia, J. et al. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol. Cell 77, 951–969.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stowell, S. R. et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16, 295–301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Park, A. M., Hagiwara, S., Hsu, D. K., Liu, F. T. & Yoshie, O. Galectin-3 plays an important role in innate immunity to gastric infection by Helicobacter pylori. Infect. Immun. 84, 1184–1193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ferrer, M. F. et al. Macrophages and galectin 3 control bacterial burden in acute and subacute murine leptospirosis that determines chronic kidney fibrosis. Front. Cell Infect. Microbiol. 8, 384 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Quattroni, P. et al. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell. Microbiol. 14, 1657–1675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fowler, M., Thomas, R. J., Atherton, J., Roberts, I. S. & High, N. J. Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol. 8, 44–54 (2006).

    CAS  PubMed  Google Scholar 

  113. Tana, F. L. et al. Galectin-3 regulates proinflammatory cytokine function and favours Brucella abortus chronic replication in macrophages and mice. Cell Microbiol. 23, e13375 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ferraz, L. C. et al. Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. Eur. J. Immunol. 38, 2762–2775 (2008).

    CAS  PubMed  Google Scholar 

  115. Paz, I. et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol. 12, 530–544 (2010).

    CAS  PubMed  Google Scholar 

  116. Feeley, E. M. et al. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc. Natl Acad. Sci. USA 114, E1698–E1706 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, S. et al. Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci. Signal. 6, ra9 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Stowell, S. R. et al. Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J. Biol. Chem. 283, 20547–20559 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hong, M. H. et al. Intracellular galectins control cellular responses commensurate with cell surface carbohydrate composition. Glycobiology 30, 49–57 (2019).

    PubMed  Google Scholar 

  121. Lin, C. Y. et al. Autophagy receptor Tollip facilitates bacterial autophagy by recruiting galectin-7 in response to group A streptococcus infection. Front. Cell Infect. Microbiol. 10, 583137 (2020).

    PubMed  PubMed Central  Google Scholar 

  122. Bell, S. L., Lopez, K. L., Cox, J. S., Patrick, K. L. & Watson, R. O. Galectin-8 senses phagosomal damage and recruits selective autophagy adapter TAX1BP1 to control Mycobacterium tuberculosis infection in macrophages. mBio 12, e0187120 (2021).

    PubMed  Google Scholar 

  123. Palframan, S. L., Kwok, T. & Gabriel, K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front. Cell Infect. Microbiol. 2, 92 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Li, F. Y. et al. Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 29, 151–162 (2019).

    CAS  PubMed  Google Scholar 

  125. Chen, Y. J. et al. Galectin-3 enhances avian H5N1 influenza A virus-induced pulmonary inflammation by promoting NLRP3 inflammasome activation. Am. J. Pathol. 188, 1031–1042 (2018).

    CAS  PubMed  Google Scholar 

  126. Stojanovic, B. et al. Galectin-3 deficiency facilitates TNF-α-dependent hepatocyte death and liver inflammation in MCMV infection. Front. Microbiol. 10, 185 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Markovic, S. S. et al. Galectin-1 as the new player in staging and prognosis of COVID-19. Sci. Rep. 12, 1272 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cervantes-Alvarez, E. et al. Galectin-3 as a potential prognostic biomarker of severe COVID-19 in SARS-CoV-2 infected patients. Sci. Rep. 12, 1856 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bozorgmehr, N. et al. Galectin-9, a player in cytokine release syndrome and a surrogate diagnostic biomarker in SARS-CoV-2 infection. mBio 12, e00384-21 (2021).

    PubMed  PubMed Central  Google Scholar 

  130. Caniglia, J. L., Asuthkar, S., Tsung, A. J., Guda, M. R. & Velpula, K. K. Immunopathology of galectin-3: an increasingly promising target in COVID-19. F1000Res 9, 1078 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, S. C. et al. The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A. Blood Adv. 5, 1305–1309 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nguyen, L. et al. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat. Chem. Biol. 18, 81–90 (2022).

    CAS  PubMed  Google Scholar 

  133. Wu, S. Y. et al. Cell intrinsic galectin-3 attenuates neutrophil ROS-dependent killing of Candida by modulating CR3 downstream Syk activation. Front. Immunol. 8, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Wu, S. Y., Yu, J. S., Liu, F. T., Miaw, S. C. & Wu-Hsieh, B. A. Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J. Immunol. 190, 3427–3437 (2013).

    CAS  PubMed  Google Scholar 

  135. Linden, J. R., De Paepe, M. E., Laforce-Nesbitt, S. S. & Bliss, J. M. Galectin-3 plays an important role in protection against disseminated candidiasis. Med. Mycol. 51, 641–651 (2013).

    CAS  PubMed  Google Scholar 

  136. Almeida, F. et al. Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat. Commun. 8, 1968 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Rodrigues, L. C. et al. Protective effect of galectin-1 during Histoplasma capsulatum infection is associated with prostaglandin E2 and nitric oxide modulation. Mediators Inflamm. 2016, 5813794 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. Oliveira, R. M. et al. Galectin-3 plays a protective role in Leishmania (Leishmania) amazonensis infection. Glycobiology 31, 1378–1389 (2021).

    CAS  PubMed  Google Scholar 

  139. Fermino, M. L. et al. Galectin-3 negatively regulates the frequency and function of CD4+CD25+Foxp3+ regulatory T cells and influences the course of Leishmania major infection. Eur. J. Immunol. 43, 1806–1817 (2013).

    CAS  PubMed  Google Scholar 

  140. Quenum Zangbede, F. O., Chauhan, A., Sharma, J. & Mishra, B. B. Galectin-3 in M2 macrophages plays a protective role in resolution of neuropathology in brain parasitic infection by regulating neutrophil turnover. J. Neurosci. 38, 6737–6750 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Bernardes, E. S. et al. Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am. J. Pathol. 168, 1910–1920 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Pineda, M. A., Cuervo, H., Fresno, M., Soto, M. & Bonay, P. Lack of galectin-3 prevents cardiac fibrosis and effective immune responses in a murine model of Trypanosoma cruzi infection. J. Infect. Dis. 212, 1160–1171 (2015).

    CAS  PubMed  Google Scholar 

  143. da Silva, A. A. et al. Galectin-3: a friend but not a foe during Trypanosoma cruzi experimental infection. Front. Cell Infect. Microbiol. 7, 463 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Poncini, C. V. et al. Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms. J. Immunol. 195, 3311–3324 (2015).

    CAS  PubMed  Google Scholar 

  145. Nabi, I. R., Shankar, J. & Dennis, J. W. The galectin lattice at a glance. J. Cell Sci. 128, 2213–2219 (2015).

    CAS  PubMed  Google Scholar 

  146. Hirani, N. et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 57, 2002559 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Stegmayr, J. et al. Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci. Rep. 9, 2186 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Slack, R. J., Mills, R. & Mackinnon, A. C. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int. J. Biochem. Cell Biol. 130, 105881 (2021).

    CAS  PubMed  Google Scholar 

  149. Sehrawat, S. et al. Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8 T cell response. PLoS Pathog. 6, e1000882 (2010).

    PubMed  PubMed Central  Google Scholar 

  150. Davicino, R. C. et al. Galectin-1-driven tolerogenic programs aggravate Yersinia enterocolitica infection by repressing antibacterial immunity. J. Immunol. 199, 1382–1392 (2017).

    CAS  PubMed  Google Scholar 

  151. Bunn, P. T. et al. Galectin-1 impairs the generation of anti-parasitic TH1 cell responses in the liver during experimental visceral leishmaniasis. Front. Immunol. 8, 1307 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Poncini, C. V. et al. Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms. J. Immunol. 195, 3311–3324 (2015).

    CAS  PubMed  Google Scholar 

  153. Bertelli, A. et al. Anti-inflammatory role of galectin-8 during Trypanosoma cruzi chronic infection. Front. Cell Infect. Microbiol. 10, 285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Straube, T. et al. pH-dependent recycling of galectin-3 at the apical membrane of epithelial cells. Traffic 14, 1014–1027 (2013).

    CAS  PubMed  Google Scholar 

  155. Lakshminarayan, R. et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16, 595–606 (2014).

    CAS  PubMed  Google Scholar 

  156. Honig, E., Schneider, K. & Jacob, R. Recycling of galectin-3 in epithelial cells. Eur. J. Cell Biol. 94, 309–315 (2015).

    PubMed  Google Scholar 

  157. Renard, H. F. et al. Endophilin-A3 and galectin-8 control the clathrin-independent endocytosis of CD166. Nat. Commun. 11, 1457 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ivashenka, A. et al. Glycolipid-dependent and lectin-driven transcytosis in mouse enterocytes. Commun. Biol. 4, 173 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Jiang, P., Gan, M., Yen, S. H., McLean, P. J. & Dickson, D. W. Impaired endo-lysosomal membrane integrity accelerates the seeding progression of α-synuclein aggregates. Sci. Rep. 7, 7690 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Burbidge, K. et al. LGALS3 (galectin 3) mediates an unconventional secretion of SNCA/α-synuclein in response to lysosomal membrane damage by the autophagic–lysosomal pathway in human midbrain dopamine neurons. Autophagy 18, 1020–1048 (2021).

    PubMed  PubMed Central  Google Scholar 

  161. Siew, J. J. et al. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nat. Commun. 10, 3473 (2019).

    PubMed  PubMed Central  Google Scholar 

  162. Vasta, G. R. Roles of galectins in infection. Nat. Rev. Microbiol. 7, 424–438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Robinson, B., Arthur, C. M., Kamili, N. A. & Stowell, S. R. Galectin regulation of host microbial interactions. Trends Glycosci. Glycotechnol. 30, SE185–SE198 (2018).

    Google Scholar 

  164. Mey, A., Leffler, H., Hmama, Z., Normier, G. & Revillard, J. P. The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites. J. Immunol. 156, 1572–1577 (1996).

    CAS  PubMed  Google Scholar 

  165. Nita-Lazar, M. et al. Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol. Immunol. 65, 1–16 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lujan, A. L. et al. Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc. Natl Acad. Sci. USA 115, E6000–E6009 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Stowell, S. R. et al. Microbial glycan microarrays define key features of host–microbial interactions. Nat. Chem. Biol. 10, 470–476 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Stechly, L. et al. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 10, 438–450 (2009).

    CAS  PubMed  Google Scholar 

  169. Lindstedt, R., Apodaca, G., Barondes, S. H., Mostov, K. E. & Leffler, H. Apical secretion of a cytosolic protein by Madin–Darby canine kidney cells. Evidence for polarized release of an endogenous lectin by a nonclassical secretory pathway. J. Biol. Chem. 268, 11750–11757 (1993).

    CAS  PubMed  Google Scholar 

  170. Sato, S., Burdett, I. & Hughes, R. C. Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: a pathway independent of the endoplasmic reticulum–Golgi complex. Exp. Cell Res. 207, 8–18 (1993).

    CAS  PubMed  Google Scholar 

  171. Vasta, G. R. Galectins as pattern recognition receptors: structure, function, and evolution. Adv. Exp. Med. Biol. 946, 21–36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kohatsu, L., Hsu, D. K., Jegalian, A. G., Liu, F. T. & Baum, L. G. Galectin-3 induces death of Candida species expressing specific β-1,2-linked mannans. J. Immunol. 177, 4718–4726 (2006).

    CAS  PubMed  Google Scholar 

  173. Lo, T. H. et al. Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. Proc. Natl Acad. Sci. USA 118, e2026246118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Ministry of Science and Technology Thematic Progam, the Academia Sinica Thematic Program and the Academia Sinica Summit Program to F.-T.L., as well as the Burroughs Wellcome Trust Career Award for Medical Scientists and the National Institutes of Health (NIH) U01 CA242109 and DP5 OD019892 to S.R.S. The authors thank C. Arthur, H. Verkerke, A. Paul, P. Wu and H.-L. Chen for helpful discussion, and C.-S. Li and W.-H. Lin for preparation of the illustrations. They are grateful to C. Bevins at UC Davis for reading the manuscript and making many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this Review.

Corresponding authors

Correspondence to Fu-Tong Liu or Sean R. Stowell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Sachiko Sato, Gerardo Vasta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FT., Stowell, S.R. The role of galectins in immunity and infection. Nat Rev Immunol 23, 479–494 (2023). https://doi.org/10.1038/s41577-022-00829-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00829-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing