Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myeloid cell-targeted therapies for solid tumours

Abstract

Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myeloid cell-specific pathways as potential therapeutic targets in solid tumours.
Fig. 2: Targeting receptor–ligand interactions.
Fig. 3: Metabolic regulation of macrophages and monocytes.
Fig. 4: Genetically engineered macrophages and monocytes for anticancer therapy.

Similar content being viewed by others

References

  1. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  Google Scholar 

  2. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    Article  CAS  Google Scholar 

  3. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  Google Scholar 

  4. Pitt, J. M. et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44, 1255–1269 (2016).

    Article  CAS  Google Scholar 

  5. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  Google Scholar 

  6. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  Google Scholar 

  7. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article  CAS  Google Scholar 

  8. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  Google Scholar 

  9. Wang, T. et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin. Cancer Res. 21, 1652–1664 (2015).

    Article  CAS  Google Scholar 

  10. Kumagai, S., Koyama, S. & Nishikawa, H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat. Rev. Cancer 21, 181–197 (2021).

    Article  CAS  Google Scholar 

  11. Bassler, K., Schulte-Schrepping, J., Warnat-Herresthal, S., Aschenbrenner, A. C. & Schultze, J. L. The myeloid cell compartment-cell by cell. Annu. Rev. Immunol. 37, 269–293 (2019).

    Article  CAS  Google Scholar 

  12. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  Google Scholar 

  13. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  Google Scholar 

  14. Lichterman, J. N. & Reddy, S. M. Mast cells: a new frontier for cancer immunotherapy. Cells 10, 2170 (2021).

    Article  Google Scholar 

  15. Marone, G. et al. Is there a role for basophils in cancer? Front. Immunol. 11, 2103 (2020).

    Article  CAS  Google Scholar 

  16. Varricchi, G. et al. Eosinophils: the unsung heroes in cancer? Oncoimmunology 7, e1393134 (2018).

    Article  Google Scholar 

  17. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  18. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  Google Scholar 

  19. Drissen, R. et al. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).

    Article  CAS  Google Scholar 

  20. Kwok, I. et al. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53, 303–318 (2020).

    Article  CAS  Google Scholar 

  21. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    Article  CAS  Google Scholar 

  22. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  Google Scholar 

  23. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  Google Scholar 

  24. Wang, P. F. et al. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: a meta-analysis of 40 studies. Oncoimmunology 7, e1494113 (2018).

    Article  Google Scholar 

  25. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  Google Scholar 

  26. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  Google Scholar 

  27. Bergenfelz, C. & Leandersson, K. The generation and identity of human myeloid-derived suppressor cells. Front. Oncol. 10, 109 (2020).

    Article  Google Scholar 

  28. Pathria, P., Louis, T. L. & Varner, J. A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 40, 310–327 (2019).

    Article  CAS  Google Scholar 

  29. Lopez-Yrigoyen, M., Cassetta, L. & Pollard, J. W. Macrophage targeting in cancer. Ann. N. Y. Acad. Sci. 1499, 18–41 (2021).

    Article  Google Scholar 

  30. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809 (2021). This study characterizes the diversity of intratumoural myeloid cell subsets in 210 patients across 15 human cancers.

    Article  CAS  Google Scholar 

  31. Ochocka, N. et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat. Commun. 12, 1151 (2021).

    Article  CAS  Google Scholar 

  32. Li, B. H., Garstka, M. A. & Li, Z. F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol. 117, 201–215 (2020).

    Article  CAS  Google Scholar 

  33. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    Article  Google Scholar 

  34. Eckert, F. et al. Potential role of CXCR4 targeting in the context of radiotherapy and immunotherapy of cancer. Front. Immunol. 9, 3018 (2018).

    Article  CAS  Google Scholar 

  35. Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47-SIRPalpha immune checkpoint. Immunity 52, 742–752 (2020).

    Article  CAS  Google Scholar 

  36. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019). This study identifies CD24 as a novel ‘don’t eat me’ signal expressed by tumour cells, which interacts with SIGLEC10 on macrophages to inhibit phagocytosis. Inhibition of this interaction improves the response to immunotherapy.

    Article  CAS  Google Scholar 

  37. Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

    Article  CAS  Google Scholar 

  38. Fisher, G. A. et al. A phase Ib/II study of the anti-CD47 antibody magrolimab with cetuximab in solid tumor and colorectal cancer patients. J. Clin. Oncol. 38, 114–114 (2020).

    Article  Google Scholar 

  39. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

    Article  CAS  Google Scholar 

  40. Kamber, R. A. et al. Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 597, 549–554 (2021).

    Article  CAS  Google Scholar 

  41. Shekarian, T. et al. Pattern recognition receptors: immune targets to enhance cancer immunotherapy. Ann. Oncol. 28, 1756–1766 (2017).

    Article  CAS  Google Scholar 

  42. Liljenfeldt, L., Dieterich, L. C., Dimberg, A., Mangsbo, S. M. & Loskog, A. S. CD40L gene therapy tilts the myeloid cell profile and promotes infiltration of activated T lymphocytes. Cancer Gene Ther. 21, 95–102 (2014).

    Article  CAS  Google Scholar 

  43. Vonderheide, R. H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med. 71, 47–58 (2020).

    Article  CAS  Google Scholar 

  44. Sato-Kaneko, F. et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight 2, e93397 (2017).

    Article  Google Scholar 

  45. Wang, S. et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc. Natl Acad. Sci. USA 113, E7240–E7249 (2016).

    Article  CAS  Google Scholar 

  46. Jing, W. et al. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J. Immunother. Cancer 7, 115 (2019).

    Article  Google Scholar 

  47. Humeau, J., Le Naour, J., Galluzzi, L., Kroemer, G. & Pol, J. G. Trial watch: intratumoral immunotherapy. Oncoimmunology 10, 1984677 (2021).

    Article  Google Scholar 

  48. Sun, L. et al. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 39, 1361–1374 (2021).

    Article  CAS  Google Scholar 

  49. Li, D. K. & Wang, W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies. Oncol. Lett. 20, 176 (2020).

    CAS  Google Scholar 

  50. Le Naour, J., Zitvogel, L., Galluzzi, L., Vacchelli, E. & Kroemer, G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 9, 1777624 (2020).

    Article  Google Scholar 

  51. Reni, M. APX005M, a CD40 monoclonal antibody, for patients with pancreatic adenocarcinoma. Lancet Oncol. 22, 10–11 (2021).

    Article  CAS  Google Scholar 

  52. Gocher, A. M., Workman, C. J. & Vignali, D. A. A. Interferon-gamma: teammate or opponent in the tumour microenvironment? Nat. Rev. Immunol. 22, 158–172 (2022).

    Article  CAS  Google Scholar 

  53. Boukhaled, G. M., Harding, S. & Brooks, D. G. Opposing roles of type I interferons in cancer immunity. Annu. Rev. Pathol. 16, 167–198 (2021).

    Article  CAS  Google Scholar 

  54. Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).

    Article  CAS  Google Scholar 

  55. Bald, T. et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov. 4, 674–687 (2014).

    Article  CAS  Google Scholar 

  56. Chen, B. et al. Interferon-induced IDO1 mediates radiation resistance and is a therapeutic target in colorectal cancer. Cancer Immunol. Res. 8, 451–464 (2020).

    Article  CAS  Google Scholar 

  57. Jacquelot, N. et al. Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 29, 846–861 (2019). This study demonstrates that sustained type I interferon signalling induced acquired resistance to anti-PD1 therapy in patients with melanoma.

    Article  CAS  Google Scholar 

  58. Urban-Wojciuk, Z. et al. The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 10, 2388 (2019).

    Article  CAS  Google Scholar 

  59. Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  CAS  Google Scholar 

  60. Cheng, X. et al. Systematic pan-cancer analysis identifies TREM2 as an immunological and prognostic biomarker. Front. Immunol. 12, 646523 (2021).

    Article  CAS  Google Scholar 

  61. Georgoudaki, A. M. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15, 2000–2011 (2016).

    Article  CAS  Google Scholar 

  62. Kzhyshkowska, J., Gratchev, A. & Goerdt, S. Stabilin-1, a homeostatic scavenger receptor with multiple functions. J. Cell Mol. Med. 10, 635–649 (2006).

    Article  CAS  Google Scholar 

  63. La Fleur, L. et al. Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res. 81, 956–967 (2021).

    Article  CAS  Google Scholar 

  64. Eisinger, S. et al. Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc. Natl Acad. Sci. USA 117, 32005–32016 (2020).

    Article  CAS  Google Scholar 

  65. Palani, S., Elima, K., Ekholm, E., Jalkanen, S. & Salmi, M. Monocyte stabilin-1 suppresses the activation of Th1 lymphocytes. J. Immunol. 196, 115–123 (2016).

    Article  CAS  Google Scholar 

  66. Viitala, M. et al. Immunotherapeutic blockade of macrophage Clever-1 reactivates the CD8(+) T-cell response against immunosuppressive tumors. Clin. Cancer Res. 25, 3289–3303 (2019).

    Article  CAS  Google Scholar 

  67. Ammar, A. et al. Lymphatic expression of CLEVER-1 in breast cancer and its relationship with lymph node metastasis. Anal. Cell Pathol. 34, 67–78 (2011).

    Article  CAS  Google Scholar 

  68. Tadayon, S. et al. Lymphatic endothelial cell activation and dendritic cell transmigration is modified by genetic deletion of Clever-1. Front. Immunol. 12, 602122 (2021).

    Article  CAS  Google Scholar 

  69. Algars, A. et al. Type and location of tumor-infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients. Int. J. Cancer 131, 864–873 (2012).

    Article  Google Scholar 

  70. Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885 (2020).

    Article  CAS  Google Scholar 

  71. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900 (2020). This study highlights the role of TREM2 expressed by intratumoural macrophages in creating an immunosuppressive intratumoural milieu leading to resistance to anti-PD1 therapy.

    Article  CAS  Google Scholar 

  72. Chen, H. M. et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J. Clin. Invest. 128, 5647–5662 (2018).

    Article  Google Scholar 

  73. Sharma, N., Atolagbe, O. T., Ge, Z. & Allison, J. P. LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J. Exp. Med. 218, e20201811 (2021). This study demonstrates that LILRB4 expressed by TAMs is a novel checkpoint molecule and acts as a strong suppressor of antitumour immunity.

    Article  CAS  Google Scholar 

  74. Guo, N. et al. Role and mechanism of LAIR-1 in the development of autoimmune diseases, tumors, and malaria: a review. Curr. Res. Transl. Med. 68, 119–124 (2020).

    Article  Google Scholar 

  75. Wang, J. et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25, 656–666 (2019). This study describes the role of SIGLEC15 in suppressing antitumour immunity and establishes it as a potential immunotherapeutic target.

    Article  CAS  Google Scholar 

  76. Xu, W. et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol. Res. 7, 1497–1510 (2019).

    Article  CAS  Google Scholar 

  77. Bono, P., Ekström, J., Karvonen, M. K., Mandelin, J. & Koivunen, J. Modelling treatment benefit for bexmarilimab (an anti-Clever-1 antibody and a novel macrophage checkpoint inhibitor) using phase I first-in-man trial data. J. Clin. Oncol. 39, e14530–e14530 (2021).

    Article  Google Scholar 

  78. Jahchan, N. S. et al. Tuning the tumor myeloid microenvironment to fight cancer. Front. Immunol. 10, 1611 (2019).

    Article  CAS  Google Scholar 

  79. Chaib, M., Chauhan, S. C. & Makowski, L. Friend or foe? recent strategies to target myeloid cells in cancer. Front. Cell Dev. Biol. 8, 351 (2020).

    Article  Google Scholar 

  80. Papadopoulos, K. P. et al. First-in-human study of AMG 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clin. Cancer Res. 23, 5703–5710 (2017).

    Article  CAS  Google Scholar 

  81. Razak, A. R. et al. Safety and efficacy of AMG 820, an anti-colony-stimulating factor 1 receptor antibody, in combination with pembrolizumab in adults with advanced solid tumors. J. Immunother. Cancer 8, e001006 (2020).

    Article  Google Scholar 

  82. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459 (2020). This study provides a comprehensive snapshot of major myeloid cell subsets and delineates the mechanistic basis of resistance to CSF1R blockade in colorectal cancer.

    Article  CAS  Google Scholar 

  83. Kumar, V. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32, 654–668 (2017).

    Article  CAS  Google Scholar 

  84. Gyori, D. et al. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight 3, e120631 (2018).

    Article  Google Scholar 

  85. Sun, L. et al. Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight 4, e126853 (2019).

    Article  Google Scholar 

  86. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  Google Scholar 

  87. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  Google Scholar 

  88. Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  Google Scholar 

  89. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    Article  Google Scholar 

  90. Kaneda, M. M. et al. Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 6, 870–885 (2016).

    Article  CAS  Google Scholar 

  91. Mackert, J. R. et al. Dual negative roles of C/EBPalpha in the expansion and pro-tumor functions of MDSCs. Sci. Rep. 7, 14048 (2017).

    Article  Google Scholar 

  92. Reebye, V. et al. Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene 37, 3216–3228 (2018).

    Article  CAS  Google Scholar 

  93. Hashimoto, A. et al. Abstract 1730: up-regulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and cancer patients. Cancer Res. 81, 1730–1730 (2021).

    Article  Google Scholar 

  94. Li, T. et al. c-Rel is a myeloid checkpoint for cancer immunotherapy. Nat. Cancer 1, 507–517 (2020).

    Article  CAS  Google Scholar 

  95. Kortylewski, M. et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15, 114–123 (2009).

    Article  CAS  Google Scholar 

  96. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005).

    Article  CAS  Google Scholar 

  97. Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14, 736–746 (2014).

    Article  CAS  Google Scholar 

  98. Su, Y. L., Banerjee, S., White, S. V. & Kortylewski, M. STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity. Int. J. Mol. Sci. 19, 1803 (2018).

    Article  Google Scholar 

  99. Abad, C. et al. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J. Leukoc. Biol. 95, 357–367 (2014).

    Article  Google Scholar 

  100. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559, 363–369 (2018).

    Article  CAS  Google Scholar 

  101. Zou, S. et al. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 19, 145 (2020).

    Article  CAS  Google Scholar 

  102. Beebe, J. D., Liu, J. Y. & Zhang, J. T. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol. Ther. 191, 74–91 (2018).

    Article  CAS  Google Scholar 

  103. Marigo, I. et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32, 790–802 (2010).

    Article  CAS  Google Scholar 

  104. Larionova, I., Kazakova, E., Patysheva, M. & Kzhyshkowska, J. Transcriptional, epigenetic and metabolic programming of tumor-associated macrophages. Cancers 12, 1411 (2020).

    Article  CAS  Google Scholar 

  105. Amit, I., Winter, D. R. & Jung, S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat. Immunol. 17, 18–25 (2016).

    Article  CAS  Google Scholar 

  106. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  CAS  Google Scholar 

  107. Topper, M. J., Vaz, M., Marrone, K. A., Brahmer, J. R. & Baylin, S. B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 75–90 (2020).

    Article  Google Scholar 

  108. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017).

    Article  CAS  Google Scholar 

  109. Lodewijk, I. et al. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy. Clin. Epigenetics 13, 63 (2021).

    Article  Google Scholar 

  110. Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 579, 284–290 (2020). Adjuvant epigenetic therapy with low-dose DNA methyltransferase and histone deacetylase inhibitors 5-azacytidine and entinostat inhibits premetastatic niche formation by MDSCs.

    Article  CAS  Google Scholar 

  111. Mohapatra, S., Pioppini, C., Ozpolat, B. & Calin, G. A. Non-coding RNAs regulation of macrophage polarization in cancer. Mol. Cancer 20, 24 (2021).

    Article  CAS  Google Scholar 

  112. Obaid, M., Udden, S. M. N., Alluri, P. & Mandal, S. S. LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation. Sci. Rep. 11, 232 (2021).

    Article  CAS  Google Scholar 

  113. Basavarajappa, D. et al. Dicer up-regulation by inhibition of specific proteolysis in differentiating monocytic cells. Proc. Natl Acad. Sci. USA 117, 8573–8583 (2020).

    Article  CAS  Google Scholar 

  114. Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818 (2018).

    Article  Google Scholar 

  115. Labani-Motlagh, A., Ashja-Mahdavi, M. & Loskog, A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front. Immunol. 11, 940 (2020).

    Article  CAS  Google Scholar 

  116. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article  CAS  Google Scholar 

  117. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208–220 (2016).

    Article  CAS  Google Scholar 

  118. Morello, S., Pinto, A., Blandizzi, C. & Antonioli, L. Myeloid cells in the tumor microenvironment: role of adenosine. Oncoimmunology 5, e1108515 (2016).

    Article  Google Scholar 

  119. Nguyen, N. T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl Acad. Sci. USA 107, 19961–19966 (2010).

    Article  CAS  Google Scholar 

  120. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  Google Scholar 

  121. Liu, P. S. et al. alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    Article  CAS  Google Scholar 

  122. Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020).

    Article  CAS  Google Scholar 

  123. Cali, B. et al. GM-CSF nitration is a new driver of myeloid suppressor cell activity in tumors. Front. Immunol. 12, 718098 (2021).

    Article  CAS  Google Scholar 

  124. Mijatovic, S. et al. The double-faced role of nitric oxide and reactive oxygen species in solid tumors. Antioxidants 9, 374 (2020).

    Article  CAS  Google Scholar 

  125. Fionda, C., Abruzzese, M. P., Santoni, A. & Cippitelli, M. Immunoregulatory and effector activities of nitric oxide and reactive nitrogen species in cancer. Curr. Med. Chem. 23, 2618–2636 (2016).

    Article  CAS  Google Scholar 

  126. Goswami, S. et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat. Med. 26, 39–46 (2020). This study highlights the role of CD73-expressing TAMs in resistance to anti-PD1 therapy for glioblastoma.

    Article  CAS  Google Scholar 

  127. Holmgaard, R. B. et al. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 13, 412–424 (2015).

    Article  CAS  Google Scholar 

  128. Campesato, L. F. et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-kynurenine. Nat. Commun. 11, 4011 (2020).

    Article  CAS  Google Scholar 

  129. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  Google Scholar 

  130. Lu, G. et al. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat. Commun. 6, 6676 (2015).

    Article  CAS  Google Scholar 

  131. Vigano, S. et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front. Immunol. 10, 925 (2019).

    Article  CAS  Google Scholar 

  132. Tang, K., Wu, Y. H., Song, Y. & Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 14, 68 (2021).

    Article  CAS  Google Scholar 

  133. Pu, D. et al. Cyclooxygenase-2 inhibitor: a potential combination strategy with immunotherapy in cancer. Front. Oncol. 11, 637504 (2021).

    Article  Google Scholar 

  134. Xu, M. et al. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARgamma dependent manner. Front. Immunol. 12, 618501 (2021).

    Article  CAS  Google Scholar 

  135. Liang, W. & Ferrara, N. Iron metabolism in the tumor microenvironment: contributions of innate immune cells. Front. Immunol. 11, 626812 (2020).

    Article  CAS  Google Scholar 

  136. Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

    Article  CAS  Google Scholar 

  137. Larionova, I., Kazakova, E., Gerashchenko, T. & Kzhyshkowska, J. New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis. Cancers 13, 3253 (2021).

    Article  CAS  Google Scholar 

  138. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Article  Google Scholar 

  139. Steitz, A. M. et al. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis. 11, 249 (2020).

    Article  CAS  Google Scholar 

  140. Ferrara, N. & Adamis, A. P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15, 385–403 (2016).

    Article  CAS  Google Scholar 

  141. Dalton, H. J. et al. Macrophages facilitate resistance to Anti-VEGF therapy by altered VEGFR expression. Clin. Cancer Res. 23, 7034–7046 (2017).

    Article  CAS  Google Scholar 

  142. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709 (2013).

    Article  CAS  Google Scholar 

  143. Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

    Article  CAS  Google Scholar 

  144. Fu, L. Q. et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 353, 104119 (2020).

    Article  CAS  Google Scholar 

  145. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    Article  CAS  Google Scholar 

  146. Kozin, S. V. et al. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 70, 5679–5685 (2010).

    Article  CAS  Google Scholar 

  147. Kloepper, J. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl Acad. Sci. USA 113, 4476–4481 (2016).

    Article  CAS  Google Scholar 

  148. Chiu, D. K. et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 8, 517 (2017).

    Article  Google Scholar 

  149. Henze, A. T. & Mazzone, M. The impact of hypoxia on tumor-associated macrophages. J. Clin. Invest. 126, 3672–3679 (2016).

    Article  Google Scholar 

  150. Dumond, A. & Pages, G. Neuropilins, as relevant oncology target: their role in the tumoral microenvironment. Front. Cell Dev. Biol. 8, 662 (2020).

    Article  Google Scholar 

  151. Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

    Article  CAS  Google Scholar 

  152. Park, J. E. et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene 38, 5158–5173 (2019).

    Article  CAS  Google Scholar 

  153. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  Google Scholar 

  154. Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).

    Article  Google Scholar 

  155. Shi, L. Z. et al. Blockade of CTLA-4 and PD-1 enhances adoptive T-cell therapy efficacy in an ICOS-mediated manner. Cancer Immunol. Res. 7, 1803–1812 (2019).

    Article  CAS  Google Scholar 

  156. Perez, C. R. & De Palma, M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun. 10, 5408 (2019).

    Article  Google Scholar 

  157. Salah, A. et al. Insights into dendritic cells in cancer immunotherapy: from bench to clinical applications. Front. Cell Dev. Biol. 9, 686544 (2021).

    Article  Google Scholar 

  158. Andreesen, R. et al. Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy. Cancer Res. 50, 7450–7456 (1990).

    CAS  Google Scholar 

  159. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  Google Scholar 

  160. Anderson, N. R., Minutolo, N. G., Gill, S. & Klichinsky, M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 81, 1201–1208 (2021).

    Article  CAS  Google Scholar 

  161. Velazquez, E. et al. Abstract 2563: macrophage Toll-like receptor-chimeric antigen receptors (MOTO-CARs) as a novel adoptive cell therapy for the treatment of solid malignancies. Cancer Res. 78, 2563–2563 (2018).

    Article  Google Scholar 

  162. Lucas, K. G., Bao, L., Bruggeman, R., Dunham, K. & Specht, C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J. Neurooncol 103, 231–238 (2011).

    Article  CAS  Google Scholar 

  163. Zhou, D. et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22, 571–581 (2005).

    Article  CAS  Google Scholar 

  164. Brempelis, K. J. et al. Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses. J. Immunother. Cancer 8, e001356 (2020).

    Article  Google Scholar 

  165. Kaczanowska, S. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 184, 2033–2052 e2021 (2021). This study demonstrates the ability of IL-12-expressing genetically engineered myeloid cells to reverse immunosuppression in the premetastatic niche.

    Article  CAS  Google Scholar 

  166. Moi, D., Wilson, E., Weinert, D., Chiaretti, S. & Mazzieri, R. Adoptive transfer of genetically engineered monocytes for the tumour targeted delivery of IFN-alpha. Cytotherapy 20, S18–S19 (2018).

    Article  Google Scholar 

  167. Shields, C. W. T. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article  CAS  Google Scholar 

  168. Neophytou, C. M. et al. The role of tumor-associated myeloid cells in modulating cancer therapy. Front. Oncol. 10, 899 (2020).

    Article  Google Scholar 

  169. Sakai, Y. et al. Distinct chemotherapy-associated anti-cancer immunity by myeloid cells inhibition in murine pancreatic cancer models. Cancer Sci. 110, 903–912 (2019).

    Article  CAS  Google Scholar 

  170. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    Article  CAS  Google Scholar 

  171. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  Google Scholar 

  172. Wu, C. et al. Tumor microenvironment following gemcitabine treatment favors differentiation of immunosuppressive Ly6Chigh myeloid cells. J. Immunol. 204, 212–223 (2020).

    Article  CAS  Google Scholar 

  173. Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441 e416 (2018). This study highlights the role of LC3-associated autophagy in intratumoural macrophages in immunosuppression and tumour growth.

    Article  CAS  Google Scholar 

  174. Roy, S. et al. Macrophage-derived neuropilin-2 exhibits novel tumor-promoting functions. Cancer Res. 78, 5600–5617 (2018).

    Article  CAS  Google Scholar 

  175. Seifert, L. et al. Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology 150, 1659–1672 e1655 (2016).

    Article  Google Scholar 

  176. Frey, B., Hehlgans, S., Rodel, F. & Gaipl, U. S. Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett. 368, 230–237 (2015).

    Article  CAS  Google Scholar 

  177. Ren, H. et al. Augmentation of innate immunity by low-dose irradiation. Cell Immunol. 244, 50–56 (2006).

    Article  CAS  Google Scholar 

  178. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    Article  CAS  Google Scholar 

  179. Akkari, L. et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 12, eaaw7843 (2020).

    Article  CAS  Google Scholar 

  180. Bian, Z. et al. Intratumoral SIRPalpha-deficient macrophages activate tumor antigen-specific cytotoxic T cells under radiotherapy. Nat. Commun. 12, 3229 (2021).

    Article  CAS  Google Scholar 

  181. Liu, X., Hogg, G. D. & DeNardo, D. G. Rethinking immune checkpoint blockade: ‘beyond the T cell’. J. Immunother. Cancer 9, e001460 (2021).

    Article  Google Scholar 

  182. Weissleder, R. & Pittet, M. J. The expanding landscape of inflammatory cells affecting cancer therapy. Nat. Biomed. Eng. 4, 489–498 (2020).

    Article  CAS  Google Scholar 

  183. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Article  CAS  Google Scholar 

  184. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    Article  CAS  Google Scholar 

  185. Li, T. et al. Targeting MDSC for immune-checkpoint blockade in cancer immunotherapy: current progress and new prospects. Clin. Med. Insights Oncol. 15, 11795549211035540 (2021).

    Article  Google Scholar 

  186. Hou, A., Hou, K., Huang, Q., Lei, Y. & Chen, W. Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Front. Immunol. 11, 783 (2020).

    Article  CAS  Google Scholar 

  187. Cassetta, L. & Kitamura, T. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front. Cell Dev. Biol. 6, 38 (2018).

    Article  Google Scholar 

  188. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 (2017).

    Article  CAS  Google Scholar 

  189. Qu, Y. et al. Baseline frequency of inflammatory Cxcl9-expressing tumor-associated macrophages predicts response to avelumab treatment. Cell Rep. 32, 107873 (2020).

    Article  CAS  Google Scholar 

  190. Lee, J. B., Ha, S. J. & Kim, H. R. Clinical insights into novel immune checkpoint inhibitors. Front. Pharmacol. 12, 681320 (2021).

    Article  CAS  Google Scholar 

  191. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  Google Scholar 

  192. Yan, J. & Horng, T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 30, 979–989 (2020).

    Article  CAS  Google Scholar 

  193. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356 (2021). This study delineates the mechanistic basis of microbiota-induced type I interferon responses to enhance sensitivity to anti-PD1 therapy.

    Article  CAS  Google Scholar 

  194. Tian, X., Shen, H., Li, Z., Wang, T. & Wang, S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J. Hematol. Oncol. 12, 84 (2019).

    Article  Google Scholar 

  195. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030 (2018).

    Article  CAS  Google Scholar 

  196. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  CAS  Google Scholar 

  197. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021). This study highlights the role of tissue-resident macrophages in the development of early-stage lung cancer.

    Article  CAS  Google Scholar 

  198. Lee, H., Na, K. J. & Choi, H. Differences in tumor immune microenvironment in metastatic sites of breast cancer. Front. Oncol. 11, 649004 (2021).

    Article  Google Scholar 

  199. Hofbauer, L. C. et al. Novel approaches to target the microenvironment of bone metastasis. Nat. Rev. Clin. Oncol. 18, 488–505 (2021).

    Article  Google Scholar 

  200. Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article  CAS  Google Scholar 

  201. Klebanoff, C. A., Gattinoni, L. & Restifo, N. P. CD8+T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006).

    Article  CAS  Google Scholar 

  202. Okla, K., Farber, D. L. & Zou, W. Tissue-resident memory T cells in tumor immunity and immunotherapy. J. Exp. Med. 218, e20201605 (2021).

    Article  CAS  Google Scholar 

  203. Dai, H. et al. PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science 368, 1122–1127 (2020). This study shows the ability of innate immune cells to mount a specific memory response to MHC class I antigens through A-type paired immunoglobulin-like receptors.

    Article  CAS  Google Scholar 

  204. Anassi, E. & Ndefo, U. A. Sipuleucel-T (Provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. Pharm. Ther. 36, 197–202 (2011).

    Google Scholar 

  205. Sabado, R. L., Balan, S. & Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res. 27, 74–95 (2017).

    Article  CAS  Google Scholar 

  206. Charles, J. et al. An innovative plasmacytoid dendritic cell line-based cancer vaccine primes and expands antitumor T-cells in melanoma patients in a first-in-human trial. Oncoimmunology 9, 1738812 (2020).

    Article  Google Scholar 

  207. Saxena, M. & Bhardwaj, N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer 4, 119–137 (2018).

    Article  CAS  Google Scholar 

  208. Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug Discov. 19, 635–652 (2020).

    Article  CAS  Google Scholar 

  209. Garg, A. D., Coulie, P. G., Van den Eynde, B. J. & Agostinis, P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 38, 577–593 (2017).

    Article  CAS  Google Scholar 

  210. Belderbos, R. A., Aerts, J. & Vroman, H. Enhancing dendritic cell therapy in solid tumors with immunomodulating conventional treatment. Mol. Ther. Oncolytics 13, 67–81 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.G. is supported by the MD Anderson Physician Scientist Award, Khalifa Physician Scientist Award, Andrew Sabin Family Foundation Fellows Award and Clinic and Laboratory Integration Program Award. P.S. is a member of the Parker Institute for Cancer Immunotherapy.

Author information

Authors and Affiliations

Authors

Contributions

S.G., S.A. and D.R. researched data for the article. P.S. and S.G. discussed the content. S.G., S.A. and D.R. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Padmanee Sharma.

Ethics declarations

Competing interests

P.S. consults for and/or has equity in Jounce, Neon, BioAtla, Forty-Seven, Apricity, Polaris, Marker Therapeutics, Codiak, ImaginAb, Dragonfly, Lytix, Lava Therapeutics, Achelois, Hummingbird, Earli, Phenomics, Constellation, Glympse and Oncolytics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks N. Graham, I. Melero, J. Pollard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Immune checkpoint therapy

(ICT). A type of cancer immunotherapy targeting T cell checkpoint molecules and their ligands, such as CTLA4, PD1 and programmed cell death ligand 1 (PDL1), to improve T cell-mediated antitumour immunity.

Adoptive T cell therapy

A form of immunotherapy involving autologous or allogeneic transfer of engineered T cells into patients to efficiently recognize and eliminate cancer cells.

Cancer–immunity cycle

A term coined by Ira Mellman and Daniel Chen in 2013 to describe the stepwise process of events by which the immune system detects and eliminates cancer cells in the body.

Targeted therapy

A mode of therapy involving antagonism of pathways specifically associated with cancer cells to preferentially destroy tumour cells.

Monocyte/macrophage lineage

The lineage of immune cells derived from common myeloid progenitors of the haematopoietic stem cell system and that differentiate into monocytes that mature into macrophages and their subsets.

Leukocyte immunoglobulin-like receptor subfamily B member 1

(LILRB1). A member of one of the five major LILRB families (LILRB1–LILRB5). LILRB1 and LILRB2 interact with classical and non-classical HLA molecules, whereas LILRB3–LILRB5 are orphan receptors. Although not fully characterized, LILRB5 may bind β2-microglobulin-free heavy chains of HLA-B27.

Epigenetic machinery

A group of proteins that regulate gene expression without altering the DNA sequence. This process is dynamically regulated by DNA methylation, histone post-translational modifications, promoter–enhancer interactions, non-coding RNAs and chromatin remodelling complexes.

Efferocytosis

A form of phagocytosis by which apoptotic cells are removed.

Autophagy

A process that removes dysfunctional components of a cell through a lysosome-dependent mechanism. Certain subsets of myeloid cells rely on autophagy to promote immunosuppression.

Primary resistance

A term used to define complete therapy resistance in cancer due to inherent characteristics within the tumour cells.

Adaptive or secondary resistance

A term used to define tumours that initially respond to therapy but eventually develop resistance to it.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, S., Anandhan, S., Raychaudhuri, D. et al. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol 23, 106–120 (2023). https://doi.org/10.1038/s41577-022-00737-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00737-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer