Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of natural killer cells in immunity to cancer, and applications to immunotherapy

Abstract

Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NK cell function is regulated by cell surface receptors and cytokines.
Fig. 2: Influences of the tumour microenvironment on NK cell activation, inhibition and inactivation.
Fig. 3: Immunotherapeutic approaches to mobilize antitumour responses by NK cells.

Similar content being viewed by others

References

  1. Herberman, R. B., Nunn, M. E., Holden, H. T. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    Article  CAS  Google Scholar 

  2. Vivier, E. et al. Innate lymphoid cells: 10 years On. Cell 174, 1054–1066 (2018).

    Article  CAS  Google Scholar 

  3. Zook, E. C. et al. Transcription factor ID2 prevents E proteins from enforcing a naive T lymphocyte gene program during NK cell development. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aao2139 (2018).

    Article  Google Scholar 

  4. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    Article  CAS  Google Scholar 

  5. Seillet, C. et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740 (2014).

    Article  CAS  Google Scholar 

  6. Harly, C., Cam, M., Kaye, J. & Bhandoola, A. Development and differentiation of early innate lymphoid progenitors. J. Exp. Med. 215, 249–262 (2018).

    Article  CAS  Google Scholar 

  7. Miller, S. B. Production and renewal of murine natural killer cells in the spleen and bone marrow. J. Immunol. 129, 2282–2286 (1982).

    Article  CAS  Google Scholar 

  8. Jamieson, A. M., Isnard, P., Dorfman, J. R., Coles, M. C. & Raulet, D. H. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol. 172, 864–870 (2004).

    Article  CAS  Google Scholar 

  9. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  Google Scholar 

  10. Lowry, L. E. & Zehring, W. A. Potentiation of natural killer cells for cancer immunotherapy: a review of literature. Front. Immunol. 8, 1061 (2017).

    Article  Google Scholar 

  11. Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8, 357ra123 (2016). This study examines the impact of memory-like NK cells infused into patients with acute myeloid leukaemia, with encouraging early-stage results.

    Article  Google Scholar 

  12. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009).

    Article  CAS  Google Scholar 

  13. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  Google Scholar 

  14. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  Google Scholar 

  15. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  Google Scholar 

  16. Bhatnagar, N. et al. FcgammaRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcgammaRII (CD32). Eur. J. Immunol. 44, 3368–3379 (2014).

    Article  CAS  Google Scholar 

  17. Barrow, A. D., Martin, C. J. & Colonna, M. The natural cytotoxicity receptors in health and disease. Front. Immunol. 10, 909 (2019).

    Article  CAS  Google Scholar 

  18. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013).

    Article  CAS  Google Scholar 

  19. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  Google Scholar 

  20. Nice, T. J., Coscoy, L. & Raulet, D. H. Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. J. Exp. Med. 206, 287–298 (2009).

    Article  CAS  Google Scholar 

  21. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  Google Scholar 

  22. Gowen, B. G. et al. A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells. eLife 4, e08474 (2015).

    Article  Google Scholar 

  23. Hosomi, S. et al. Intestinal epithelial cell endoplasmic reticulum stress promotes MULT1 up-regulation and NKG2D-mediated inflammation. J. Exp. Med. https://doi.org/10.1084/jem.20162041 (2017).

    Article  Google Scholar 

  24. Jung, H., Hsiung, B., Pestal, K., Procyk, E. & Raulet, D. H. RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J. Exp. Med. 209, 2409–2422 (2012).

    Article  CAS  Google Scholar 

  25. Textor, S. et al. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 71, 5998–6009 (2011).

    Article  CAS  Google Scholar 

  26. Obiedat, A. et al. The integrated stress response promotes B7H6 expression. J. Mol. Med. 98, 135–148 (2020).

    Article  CAS  Google Scholar 

  27. Narni-Mancinelli, E. et al. Complement factor P is a ligand for the natural killer cell-activating receptor NKp46. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aam9628 (2017).

    Article  Google Scholar 

  28. Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell https://doi.org/10.1016/j.cell.2017.11.037 (2017).

    Article  Google Scholar 

  29. Niehrs, A. et al. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat. Immunol. 20, 1129–1137 (2019).

    Article  CAS  Google Scholar 

  30. Ljunggren, H. G. & Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  Google Scholar 

  31. Liao, N., Bix, M., Zijlstra, M., Jaenisch, R. & Raulet, D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253, 199–202 (1991).

    Article  CAS  Google Scholar 

  32. Pende, D. et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front. Immunol. 10, 1179 (2019).

    Article  CAS  Google Scholar 

  33. Yokoyama, W. M. & Seaman, W. E. The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu. Rev. Immunol. 11, 613–635 (1993).

    Article  CAS  Google Scholar 

  34. Carlyle, J. R. et al. Evolution of the Ly49 and Nkrp1 recognition systems. Semin. Immunol. 20, 321–330 (2008).

    Article  CAS  Google Scholar 

  35. Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  Google Scholar 

  36. Ohlen, C. et al. Prevention of allogeneic bone marrow graft rejection by H-2 transgene in donor mice. Science 246, 666–668 (1989).

    Article  CAS  Google Scholar 

  37. Johansson, S. et al. Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules. J. Exp. Med. 201, 1145–1155 (2005).

    Article  CAS  Google Scholar 

  38. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  Google Scholar 

  39. Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA 98, 11521–11526 (2001).

    Article  CAS  Google Scholar 

  40. Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

    Article  CAS  Google Scholar 

  41. Zamai, L. et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med. 188, 2375–2380 (1998).

    Article  CAS  Google Scholar 

  42. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  CAS  Google Scholar 

  43. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science https://doi.org/10.1126/science.aaz7548 (2020). Zhang et al. (2020) and Zhou et al. (2020) show that NK cells can kill target cells by activating gasdermins in target cells, resulting in target cell pyroptosis, as opposed to apoptosis.

    Article  Google Scholar 

  44. Nicolai, C. J. & Raulet, D. H. Killer cells add fire to fuel immunotherapy. Science 368, 943–944 (2020).

    Article  CAS  Google Scholar 

  45. Wang, R., Jaw, J. J., Stutzman, N. C., Zou, Z. & Sun, P. D. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J. Leukoc. Biol. 91, 299–309 (2012).

    Article  CAS  Google Scholar 

  46. Scharton, T. M. & Scott, P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577 (1993).

    Article  CAS  Google Scholar 

  47. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 e1014 (2018).

    Article  CAS  Google Scholar 

  48. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018). Bottcher et al. (2018) and Barry et al. (2018) describe roles for intratumoural NK cells in recruiting and activating DCs in the tumour, demonstrating a mechanism by which NK cells initiate antitumour T cell responses.

    Article  CAS  Google Scholar 

  49. Raulet, D. H. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat. Immunol. 5, 996–1002 (2004).

    Article  CAS  Google Scholar 

  50. Wagner, J. A. et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J. Clin. Invest. 127, 4042–4058 (2017).

    Article  Google Scholar 

  51. Wiedemann, G. M. et al. Deconvoluting global cytokine signaling networks in natural killer cells. Nat. Immunol. 22, 627–638 (2021).

    Article  CAS  Google Scholar 

  52. Zhang, M. et al. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc. Natl Acad. Sci. USA 115, E10915–E10924 (2018).

    Article  CAS  Google Scholar 

  53. Paust, S., Blish, C. A. & Reeves, R. K. Redefining memory: building the case for adaptive NK Cells. J. Virol. https://doi.org/10.1128/JVI.00169-17 (2017).

    Article  Google Scholar 

  54. Tomura, M. et al. A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3- cells. J. Immunol. 160, 4738–4746 (1998).

    Article  CAS  Google Scholar 

  55. Robinson, D. et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 7, 571–581 (1997).

    Article  CAS  Google Scholar 

  56. Martinez, J., Huang, X. & Yang, Y. Direct action of type I IFN on NK cells is required for their activation in response to vaccinia viral infection in vivo. J. Immunol. 180, 1592–1597 (2008).

    Article  CAS  Google Scholar 

  57. Nicolai, C. J. et al. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci. Immunol. 5, eaaz2738 (2020). This study demonstrates that intratumoural treatment with STING agonists induces potent NK cell-mediated antitumour rejection in numerous MHC I-deficient mouse tumour models.

    Article  CAS  Google Scholar 

  58. Madera, S. et al. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J. Exp. Med. 213, 225–233 (2016).

    Article  CAS  Google Scholar 

  59. Mattei, F., Schiavoni, G., Belardelli, F. & Tough, D. F. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167, 1179–1187 (2001).

    Article  CAS  Google Scholar 

  60. Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5, 208ra145 (2013).

    Article  Google Scholar 

  61. Freud, A. G., Mundy-Bosse, B. L., Yu, J. & Caligiuri, M. A. The broad spectrum of human natural killer cell diversity. Immunity 47, 820–833 (2017).

    Article  CAS  Google Scholar 

  62. Crinier, A. et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49, 971–986 e975 (2018).

    Article  CAS  Google Scholar 

  63. Dogra, P. et al. Tissue determinants of human NK cell development, function, and residence. Cell 180, 749–763 e713 (2020).

    Article  CAS  Google Scholar 

  64. Hanke, T. et al. Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11, 67–77 (1999).

    Article  CAS  Google Scholar 

  65. Fernandez, N. C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    Article  CAS  Google Scholar 

  66. Yawata, M. et al. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 112, 2369–2380 (2008).

    Article  CAS  Google Scholar 

  67. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  Google Scholar 

  68. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  Google Scholar 

  69. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  Google Scholar 

  70. Joncker, N. T., Fernandez, N. C., Treiner, E., Vivier, E. & Raulet, D. H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J. Immunol. 182, 4572–4580 (2009).

    Article  CAS  Google Scholar 

  71. Brodin, P., Lakshmikanth, T., Johansson, S., Karre, K. & Hoglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

    Article  CAS  Google Scholar 

  72. Oppenheim, D. E. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat. Immunol. 6, 928–937 (2005).

    Article  CAS  Google Scholar 

  73. Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD Mice. Immunity 18, 41–51 (2003).

    Article  CAS  Google Scholar 

  74. Champsaur, M. et al. Intact NKG2D-independent function of NK cells chronically stimulated with the NKG2D ligand Rae-1. J. Immunol. https://doi.org/10.4049/jimmunol.1000397 (2010).

    Article  Google Scholar 

  75. Thompson, T. W. et al. Endothelial cells express NKG2D ligands and desensitize anti-tumor NK responses. eLife 6, e30881 (2017).

    Article  Google Scholar 

  76. Joncker, N. T., Shifrin, N., Delebecque, F. & Raulet, D. H. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J. Exp. Med. 207, 2065–2072 (2010).

    Article  CAS  Google Scholar 

  77. Bern, M. D. et al. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J. Exp. Med. 216, 99–116 (2019).

    Article  CAS  Google Scholar 

  78. O’Sullivan, T. E., Sun, J. C. & Lanier, L. L. Natural killer cell memory. Immunity 43, 634–645 (2015).

    Article  Google Scholar 

  79. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  CAS  Google Scholar 

  80. Seaman, W. E., Sleisenger, M., Eriksson, E. & Koo, G. C. Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J. Immunol. 138, 4539–4544 (1987).

    Article  CAS  Google Scholar 

  81. Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    Article  CAS  Google Scholar 

  82. Street, S. E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J. Exp. Med. 199, 879–884 (2004).

    Article  CAS  Google Scholar 

  83. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    Article  CAS  Google Scholar 

  84. Bonavita, E. et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 53, 1215–1229 e1218 (2020).

    Article  CAS  Google Scholar 

  85. Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763 e754 (2018). This article shows that tumour-derived cGAS plays an important role in the initiation of the spontaneous NK cell responses against cancer, in some cases by being transmitted to other cells in the TME.

    Article  CAS  Google Scholar 

  86. Varn, F. S., Wang, Y., Mullins, D. W., Fiering, S. & Cheng, C. Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment. Cancer Res. 77, 1271–1282 (2017).

    Article  CAS  Google Scholar 

  87. Cozar, B. et al. Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021).

    Article  CAS  Google Scholar 

  88. Cursons, J. et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 7, 1162–1174 (2019).

    Article  CAS  Google Scholar 

  89. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  Google Scholar 

  90. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  Google Scholar 

  91. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science https://doi.org/10.1126/science.aat8657 (2019).

    Article  Google Scholar 

  92. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  Google Scholar 

  93. Melaiu, O., Lucarini, V., Cifaldi, L. & Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol. 10, 3038 (2019).

    Article  CAS  Google Scholar 

  94. Young, A. et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003–1016 (2018).

    Article  CAS  Google Scholar 

  95. Castriconi, R. et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl Acad. Sci. USA 100, 4120–4125 (2003).

    Article  CAS  Google Scholar 

  96. Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    Article  CAS  Google Scholar 

  97. Ghiringhelli, F., Menard, C., Martin, F. & Zitvogel, L. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol. Rev. 214, 229–238 (2006).

    Article  CAS  Google Scholar 

  98. Kerdiles, Y., Ugolini, S. & Vivier, E. T cell regulation of natural killer cells. J. Exp. Med. 210, 1065–1068 (2013).

    Article  CAS  Google Scholar 

  99. Bruno, A., Mortara, L., Baci, D., Noonan, D. M. & Albini, A. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression. Front. Immunol. 10, 771 (2019).

    Article  CAS  Google Scholar 

  100. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    Article  CAS  Google Scholar 

  101. Poznanski, S. M. et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab. 33, 1205–1220 e1205 (2021).

    Article  CAS  Google Scholar 

  102. O’Shea, D. & Hogan, A. E. Dysregulation of natural killer cells in obesity. Cancers (Basel) https://doi.org/10.3390/cancers11040573 (2019).

    Article  Google Scholar 

  103. Terren, I., Orrantia, A., Vitalle, J., Zenarruzabeitia, O. & Borrego, F. NK cell metabolism and tumor microenvironment. Front. Immunol. 10, 2278 (2019).

    Article  CAS  Google Scholar 

  104. Terren, I. et al. Modulating NK cell metabolism for cancer immunotherapy. Semin. Hematol. 57, 213–224 (2020).

    Article  Google Scholar 

  105. Stanietsky, N. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 106, 17858–17863 (2009).

    Article  CAS  Google Scholar 

  106. Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15, 431–438 (2014).

    Article  CAS  Google Scholar 

  107. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    Article  Google Scholar 

  108. Concha-Benavente, F. et al. PD-L1 mediates dysfunction in activated PD-1+ NK cells in head and neck cancer patients. Cancer Immunol. Res. 6, 1548–1560 (2018).

    Article  CAS  Google Scholar 

  109. Deuse, T. et al. The SIRPalpha-CD47 immune checkpoint in NK cells. J. Exp. Med. https://doi.org/10.1084/jem.20200839 (2021).

    Article  Google Scholar 

  110. Bi, J. & Tian, Z. NK cell exhaustion. Front. Immunol. 8, 760 (2017).

    Article  Google Scholar 

  111. Ardolino, M. et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J. Clin. Invest. 124, 4781–4794 (2014).

    Article  Google Scholar 

  112. Coudert, J. D., Scarpellino, L., Gros, F., Vivier, E. & Held, W. Sustained NKG2D engagement induces cross-tolerance of multiple distinct NK cell activation pathways. Blood 111, 3571–3578 (2008).

    Article  CAS  Google Scholar 

  113. Thompson, T. W. et al. Tumor-derived CSF-1 induces the NKG2D ligand RAE-1delta on tumor-infiltrating macrophages. eLife 7, e32919 (2018).

    Article  Google Scholar 

  114. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  Google Scholar 

  115. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  116. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T- cell activation. Nature 419, 734–738 (2002).

    Article  CAS  Google Scholar 

  117. Salih, H. R., Rammensee, H. G. & Steinle, A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol. 169, 4098–4102 (2002).

    Article  CAS  Google Scholar 

  118. Fernandez-Messina, L. et al. Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J. Biol. Chem. 285, 8543–8551 (2010).

    Article  CAS  Google Scholar 

  119. Deng, W. et al. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 348, 136–139 (2015). This article provides evidence that MULT1, a shed ligand for the receptor NKG2D, in mice, enhances NK cell activation by blocking interactions of NK cells with cell membrane-bound NKG2D ligands that induce NK cell desensitization.

    Article  CAS  Google Scholar 

  120. Zingoni, A., Vulpis, E., Loconte, L. & Santoni, A. NKG2D ligand shedding in response to stress: role of ADAM10. Front. Immunol. 11, 447 (2020).

    Article  CAS  Google Scholar 

  121. Lu, S. et al. Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. Clin. Cancer Res. 21, 4819–4830 (2015).

    Article  CAS  Google Scholar 

  122. Ferrari de Andrade, L. et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 359, 1537–1542 (2018).

    Article  CAS  Google Scholar 

  123. Rebmann, V. et al. Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin. Immunol. 123, 114–120 (2007).

    Article  CAS  Google Scholar 

  124. Salih, H. R., Goehlsdorf, D. & Steinle, A. Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum. Immunol. 67, 188–195 (2006).

    Article  CAS  Google Scholar 

  125. Chitadze, G. et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer 133, 1557–1566 (2013).

    Article  CAS  Google Scholar 

  126. Carayannopoulos, L. N., Naidenko, O. V., Fremont, D. H. & Yokoyama, W. M. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  Google Scholar 

  127. Zuo, J. et al. A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D ligand binding. Sci. Signal. https://doi.org/10.1126/scisignal.aai8904 (2017).

    Article  Google Scholar 

  128. Rosenberg, S. A., Mule, J. J., Spiess, P. J., Reichert, C. M. & Schwarz, S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J. Exp. Med. 161, 1169–1188 (1985).

    Article  CAS  Google Scholar 

  129. Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    Article  CAS  Google Scholar 

  130. Rosenberg, S. A. et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889–897 (1987).

    Article  CAS  Google Scholar 

  131. Zhu, E. F. et al. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell 27, 489–501 (2015).

    Article  CAS  Google Scholar 

  132. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    Article  CAS  Google Scholar 

  133. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    Article  CAS  Google Scholar 

  134. Silva, D. A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019).

    Article  CAS  Google Scholar 

  135. Mullard, A. Restoring IL-2 to its cancer immunotherapy glory. Nat. Rev. Drug Discov. 20, 163–165 (2021).

    Article  CAS  Google Scholar 

  136. Wolf, N. K. et al. Synergistic effects of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I-deficient and MHC I+ tumors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2200568119 (2022). This article shows that combining a STING agonist with an IL-2 superkine resulted in powerful NK cell-mediated antitumour responses.

    Article  Google Scholar 

  137. Bentebibel, S. E. et al. A first-in-human study and biomarker analysis of NKTR-214, a Novel IL2Rbetagamma-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 9, 711–721 (2019).

    Article  CAS  Google Scholar 

  138. Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 1969–1974 (2004).

    Article  CAS  Google Scholar 

  139. Kobayashi, H. et al. Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105, 721–727 (2005).

    Article  CAS  Google Scholar 

  140. Rhode, P. R. et al. Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol. Res. 4, 49–60 (2016).

    Article  CAS  Google Scholar 

  141. Miyazaki, T. et al. NKTR-255, a novel polymer-conjugated rhIL-15 with potent antitumor efficacy. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-002024 (2021).

    Article  Google Scholar 

  142. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    Article  CAS  Google Scholar 

  143. Smyth, M. J., Taniguchi, M. & Street, S. E. A. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165, 2665–2670 (2000).

    Article  CAS  Google Scholar 

  144. Nguyen, K. G. et al. Localized interleukin-12 for cancer immunotherapy. Front. Immunol. 11, 575597 (2020).

    Article  CAS  Google Scholar 

  145. Srivastava, S., Salim, N. & Robertson, M. J. Interleukin-18: biology and role in the immunotherapy of cancer. Curr. Med. Chem. 17, 3353–3357 (2010).

    Article  CAS  Google Scholar 

  146. Motzer, R. J. et al. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin. Cancer Res. 4, 1183–1191 (1998).

    CAS  Google Scholar 

  147. Weiss, G. R. et al. Phase 1 study of the intravesical administration of recombinant human interleukin-12 in patients with recurrent superficial transitional cell carcinoma of the bladder. J. Immunother. 26, 343–348 (2003).

    Article  CAS  Google Scholar 

  148. Coughlin, C. M. et al. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J. Clin. Invest. 101, 1441–1452 (1998).

    Article  CAS  Google Scholar 

  149. Osaki, T. et al. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J. Immunol. 160, 1742–1749 (1998).

    Article  CAS  Google Scholar 

  150. Carson, W. E. et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal transduction. Blood 96, 1465–1473 (2000).

    Article  CAS  Google Scholar 

  151. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    Article  CAS  Google Scholar 

  152. Jung, K. et al. Heterodimeric Fc-fused IL12 shows potent antitumor activity by generating memory CD8+ T cells. Oncoimmunology 7, e1438800 (2018).

    Article  Google Scholar 

  153. Mansurov, A. et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat. Biomed. Eng. 4, 531–543 (2020).

    Article  CAS  Google Scholar 

  154. Takaki, R. et al. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J. Immunol. 175, 2167–2173 (2005).

    Article  CAS  Google Scholar 

  155. He, H. et al. Combined IL-21 and low-dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model. J. Transl. Med. 4, 24 (2006).

    Article  CAS  Google Scholar 

  156. Miyake, T. et al. Poly I:C-induced activation of NK cells by CD8α+ dendritic cells via the IPS-1 and TRIF-dependent pathways. J. Immunol. 183, 2522–2528 (2009).

    Article  CAS  Google Scholar 

  157. Park, C. G. et al. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aar1916 (2018).

    Article  Google Scholar 

  158. Doorduijn, E. M. et al. CD4+ T cell and NK cell interplay key to regression of MHC class Ilow tumors upon TLR7/8 agonist therapy. Cancer Immunol. Res. 5, 642–653 (2017).

    Article  CAS  Google Scholar 

  159. McWhirter, S. M. et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206, 1899–911 (2009).

    Article  CAS  Google Scholar 

  160. Ni, J., Miller, M., Stojanovic, A., Garbi, N. & Cerwenka, A. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J. Exp. Med. 209, 2351–2365 (2012).

    Article  CAS  Google Scholar 

  161. Harrington, K. J. et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol. https://doi.org/10.1093/annonc/mdy424.015 (2018).

    Article  Google Scholar 

  162. Meric-Bernstam, F. et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J. Clin. Oncol. 37, 2507 (2019).

    Article  Google Scholar 

  163. Pan, B. S. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science https://doi.org/10.1126/science.aba6098 (2020).

    Article  Google Scholar 

  164. Chin, E. N. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 369, 993–999 (2020).

    Article  CAS  Google Scholar 

  165. Benson, D. M. Jr et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116, 2286–2294 (2010).

    Article  CAS  Google Scholar 

  166. Beldi-Ferchiou, A. et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7, 72961–72977 (2016).

    Article  Google Scholar 

  167. Liu, Y. et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene 36, 6143–6153 (2017).

    Article  CAS  Google Scholar 

  168. Vari, F. et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 131, 1809–1819 (2018).

    Article  CAS  Google Scholar 

  169. Chen, R. et al. Phase II Study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J. Clin. Oncol. 35, 2125–2132 (2017).

    Article  CAS  Google Scholar 

  170. Roemer, M. G. et al. Classical Hodgkin lymphoma with reduced beta2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 Status. Cancer Immunol. Res. 4, 910–916 (2016).

    Article  CAS  Google Scholar 

  171. Veldman, J., Visser, L., Berg, A. V. D. & Diepstra, A. Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma. Cancer Treat. Rev. 82, 101931 (2020).

    Article  CAS  Google Scholar 

  172. Bi, J. et al. TIGIT safeguards liver regeneration through regulating natural killer cell-hepatocyte crosstalk. Hepatology 60, 1389–1398 (2014).

    Article  CAS  Google Scholar 

  173. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018). This study demonstrates high levels of TIGIT on tumour-infiltrating NK cells and that blockade of TIGIT boosted NK cell-mediated antitumour responses.

    Article  CAS  Google Scholar 

  174. Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26, 923–937 (2014).

    Article  CAS  Google Scholar 

  175. Kamiya, T., Seow, S. V., Wong, D., Robinson, M. & Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Invest. 129, 2094–2106 (2019).

    Article  Google Scholar 

  176. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK Cells. Cell 175, 1731–1743 e1713 (2018). This study reports on the characterization of the anti-NKG2A antibody monalizumab, showing enhanced antitumour activity of both T cells and NK cells and encouraging efficacy results in clinical trials in combination with cetuximab for squamous cell carcinoma of the head and neck.

    Article  CAS  Google Scholar 

  177. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    Article  CAS  Google Scholar 

  178. Mancusi, A., Ruggeri, L. & Velardi, A. Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation. Blood 128, 2616–2623 (2016).

    Article  CAS  Google Scholar 

  179. Koh, C. Y. et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97, 3132–3137 (2001).

    Article  CAS  Google Scholar 

  180. Vey, N. et al. A phase 1 study of lirilumab (antibody against killer immunoglobulin-like receptor antibody KIR2D; IPH2102) in patients with solid tumors and hematologic malignancies. Oncotarget 9, 17675–17688 (2018).

    Article  Google Scholar 

  181. Romagne, F. et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114, 2667–2677 (2009).

    Article  CAS  Google Scholar 

  182. Benson, D. M. Jr. et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 118, 6387–6391 (2011).

    Article  CAS  Google Scholar 

  183. Korde, N. et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica 99, e81–e83 (2014).

    Article  CAS  Google Scholar 

  184. Armand, P. et al. A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia 35, 777–786 (2021).

    Article  CAS  Google Scholar 

  185. Carlsten, M. et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK Cells in patients with myeloma. Clin. Cancer Res. 22, 5211–5222 (2016).

    Article  CAS  Google Scholar 

  186. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713 e1716 (2019).

    Article  CAS  Google Scholar 

  187. Sarhan, D. et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2, 1459–1469 (2018). Gauthier et al. (2019) and Sarhan et al. (2018) report on the generation of new NK cell engagers designed to enhance NK cell effector function and antitumour activity.

    Article  CAS  Google Scholar 

  188. Romee, R. et al. Cytokine activation induces human memory-like NK cells. Blood 120, 4751–4760 (2012).

    Article  CAS  Google Scholar 

  189. Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104, 3664–3671 (2004).

    Article  CAS  Google Scholar 

  190. Lopez-Verges, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108, 14725–14732 (2011).

    Article  CAS  Google Scholar 

  191. Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    Article  CAS  Google Scholar 

  192. O’Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    Article  Google Scholar 

  193. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    Article  CAS  Google Scholar 

  194. Lam, A. R. et al. RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res. 74, 2193–2203 (2014).

    Article  CAS  Google Scholar 

  195. Ho, S. S. et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 44, 1177–1189 (2016).

    Article  CAS  Google Scholar 

  196. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  Google Scholar 

  197. Xia, T., Konno, H. & Barber, G. N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76, 6747–6759 (2016).

    Article  CAS  Google Scholar 

  198. Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    Article  CAS  Google Scholar 

  199. Yang, K. M. et al. Loss of TBK1 induces epithelial-mesenchymal transition in the breast cancer cells by ERalpha downregulation. Cancer Res. 73, 6679–6689 (2013).

    Article  CAS  Google Scholar 

  200. Schadt, L. et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248 e1237 (2019).

    Article  CAS  Google Scholar 

  201. Carozza, J. A. et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1, 184–196 (2020).

    Article  CAS  Google Scholar 

  202. Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    Article  CAS  Google Scholar 

  203. Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell 75, 372–381 e375 (2019).

    Article  CAS  Google Scholar 

  204. Lahey, L. J. et al. LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP. Mol. Cell 80, 578–591 e575 (2020).

    Article  CAS  Google Scholar 

  205. Zhou, C. et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. Immunity 52, 767–781 e766 (2020).

    Article  CAS  Google Scholar 

  206. Cordova, A. F., Ritchie, C., Bohnert, V. & Li, L. Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes. ACS Cent. Sci. 7, 1073–1088 (2021).

    Article  CAS  Google Scholar 

  207. Konno, H. et al. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37, 2037–2051 (2018).

    Article  CAS  Google Scholar 

  208. Li, J. et al. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov. 11, 1212–1227 (2021).

    Article  CAS  Google Scholar 

  209. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    Article  CAS  Google Scholar 

  210. Gang, M. et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 136, 2308–2318 (2020).

    Article  Google Scholar 

  211. Tam, Y. K., Martinson, J. A., Doligosa, K. & Klingemann, H. G. Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 5, 259–272 (2003).

    Article  CAS  Google Scholar 

  212. Arai, S. et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10, 625–632 (2008).

    Article  CAS  Google Scholar 

  213. Suck, G. et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol. Immunother. 65, 485–492 (2016).

    Article  CAS  Google Scholar 

  214. Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192 e185 (2018).

    Article  CAS  Google Scholar 

  215. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020). This study uses chimeric antigen receptor NK cells for early clinical studies in lymphoid cancer, with promising results.

    Article  CAS  Google Scholar 

  216. Daher, M. & Rezvani, K. Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov. 11, 45–58 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratory was supported by US National Institute of Health grant R01AI113041 (D.H.R.) and the University of California, Berkeley Immunotherapeutics and Vaccine Research Initiative supported by Aduro Biotech (045535 and 045538) (D.H.R.). N.K.W. was supported by a US National Science Foundation predoctoral fellowship (DGE 1752814) and a QB3 Frontiers in Medical Research predoctoral fellowship. D.U.K. was supported by a predoctoral fellowship from the Cancer Research Coordinating Committee of the University of California.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David H. Raulet.

Ethics declarations

Competing interests

D.H.R. cofounded Dragonfly Therapeutics and served or serves on the scientific advisory boards of Dragonfly Therapeutics, Aduro Biotech and Innate Pharma; he has a financial interest in all three companies and could benefit from commercialization of the results of his research in cancer immunology. The other authors declare that they have no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks T. Halim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, N.K., Kissiov, D.U. & Raulet, D.H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 23, 90–105 (2023). https://doi.org/10.1038/s41577-022-00732-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00732-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research