SARS-CoV-2 Omicron has rapidly become the dominant variant worldwide. Omicron has 30 mutations in the spike protein compared to the ancestral Wuhan-Hu-1 strain, and recent studies have detailed how these mutations contribute to viral escape from antibody responses in convalescent or vaccinated individuals. However, whether mutations in Omicron spike protein affect virus entry into host cells and host tropism has yet to be explored.
Three recent preprints (not peer-reviewed) have sought to functionally characterize Omicron in comparison to previous variants of concern. Key findings from Meng et al., using a pseudotyped virus, are that Omicron replicates less efficiently in lung organoids and lung epithelial cells compared with the Delta variant and with Wuhan-Hu-1. Peacock et al. and Willett et al. also reported significantly lower viral copy numbers following Omicron infection of lung epithelial cells compared with Delta or Wuhan-Hu-1. However, Peacock et al. also noted an increase in viral copy number in Omicron-infected human nasal airway epithelial cells. These findings hint at a mechanism that could contribute to increased transmissibility of Omicron, as well as its apparent reduced disease severity.
All three studies conclude that Omicron has a reduced ability to induce syncytia in tissue culture, which potentially has clinical significance because syncytia formation has been associated with increased disease severity. Syncytia formation usually requires viral infection through membrane fusion involving TMPRSS2. The low rate of syncytia formation with Omicron infection suggests that it may have switched to using endosomal fusion through cathepsins instead. Confirming this, Willett et al. found that infection with pseudotyped Omicron virus was reduced in cells expressing high levels of TMPRSS2 but increased in cells that only support endosomal entry. Furthermore, by blocking TMPRSS2-mediated cell-surface fusion and/or cathepsin-mediated endosomal fusion, Willett et al. and Peacock et al. determined that Omicron can use both entry routes but prefers endosomal fusion to cell-surface fusion. The ability to infect cells by both routes considerably increases the number of cell types that Omicron can infect.
Finally, Peacock et al. observed that Omicron can use ACE2 receptors from a larger range of host species than other variants, including mice and domestic poultry. This raises the possibility that SARS-CoV-2 could form a long-term reservoir in a new animal host for future human outbreaks.
References
Original articles
Meng, B. et al. SARS-CoV-2 Omicron spike mediated immune escape, infectivity and cell-cell fusion. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2021.12.17.473248v2 (2021)
Peacock, T. et al. The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2021.12.31.474653v1 (2022)
Willett, B. et al. The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2022.01.03.21268111v1 (2022)
Related article
Pia, L. et al. Preprint Journal Club PreprintClub https://www.preprintclub.com/2022-jan-willett (2022)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pia, L., Rowland-Jones, S. Omicron entry route. Nat Rev Immunol 22, 144 (2022). https://doi.org/10.1038/s41577-022-00681-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41577-022-00681-9
This article is cited by
-
Role of previous infection with SARS-CoV-2 in protecting against omicron reinfections and severe complications of COVID-19 compared to pre-omicron variants: a systematic review
BMC Infectious Diseases (2023)
-
Anosmia predicts memory impairment in post-COVID-19 syndrome: results of a neuropsychological cohort study
European Archives of Psychiatry and Clinical Neuroscience (2023)
-
Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection
Nature Communications (2023)
-
Jigsaw puzzle of SARS-CoV-2 RBD evolution and immune escape
Cellular & Molecular Immunology (2022)
-
SARS-CoV-2 cell entry beyond the ACE2 receptor
Molecular Biology Reports (2022)