Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering IL-2 for immunotherapy of autoimmunity and cancer

Abstract

Preclinical studies of the T cell growth factor activity of IL-2 resulted in this cytokine becoming the first immunotherapy to be approved nearly 30 years ago by the US Food and Drug Administration for the treatment of cancer. Since then, we have learnt the important role of IL-2 in regulating tolerance through regulatory T cells (Treg cells) besides promoting immunity through its action on effector T cells and memory T cells. Another pivotal event in the history of IL-2 research was solving the crystal structure of IL-2 bound to its tripartite receptor, which spurred the development of cell type-selective engineered IL-2 products. These new IL-2 analogues target Treg cells to counteract the dysregulated immune system in the context of autoimmunity and inflammatory disorders or target effector T cells, memory T cells and natural killer cells to enhance their antitumour responses. IL-2 biologics have proven to be effective in preclinical studies and clinical assessment of some is now underway. These studies will soon reveal whether engineered IL-2 biologics are truly capable of harnessing the IL-2–IL-2 receptor pathway as effective monotherapies or combination therapies for autoimmunity and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lymphoid cell expression of high-affinity and intermediate-affinity IL-2R.
Fig. 2: Interactions between IL-2 and IL-2R subunits and the residues crucial for their binding interface.
Fig. 3: Structural models of selected engineered IL-2 compounds.

Similar content being viewed by others

References

  1. Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Gillis, S. & Smith, K. A. Long term culture of tumour-specific cytotoxic T cells. Nature 268, 154–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Lotze, M. T., Frana, L. W., Sharrow, S. O., Robb, R. J. & Rosenberg, S. A. In vivo administration of purified human interleukin 2. I. Half-life and immunologic effects of the Jurkat cell line-derived interleukin 2. J. Immunol. 134, 157–166 (1985).

    CAS  PubMed  Google Scholar 

  5. Lotze, M. T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol. 135, 2865–2875 (1985).

    CAS  PubMed  Google Scholar 

  6. Lotze, M. T., Line, B. R., Mathisen, D. J. & Rosenberg, S. A. The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): implications for the adoptive immunotherapy of tumors. J. Immunol. 125, 1487–1493 (1980).

    CAS  PubMed  Google Scholar 

  7. Rosenberg, S. A. et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889–897 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Schorle, H., Holtschke, T., Hunig, T., Schimpl, A. & Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–624 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Willerford, D. M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. deLeeuw, R. J., Kost, S. E., Kakal, J. A. & Nelson, B. H. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin. Cancer Res. 18, 3022–3029 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, X., Cheng, G. & Malek, T. R. The importance of regulatory T-cell heterogeneity in maintaining self-tolerance. Immunol. Rev. 259, 103–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Koreth, J. et al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 128, 130–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011). This work is one of the initial clinical studies demonstrating that low-dose IL-2 could be safely administered to patients to drive preferential increases in Treg cells to ameliorate chronic GvHD without expanding conventional T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Belizaire, R. et al. Efficacy and immunologic effects of extracorporeal photopheresis plus interleukin-2 in chronic graft-versus-host disease. Blood Adv. 3, 969–979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whangbo, J. S. et al. Dose-escalated interleukin-2 therapy for refractory chronic graft-versus-host disease in adults and children. Blood Adv. 3, 2550–2561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011). Together with the study by Koreth et al. (2011), this study shows that low-dose IL-2 selectively induces Treg cell expansion in patients with autoimmune HCV-induced vasculitis without inducing effector T cell activation.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Humrich, J. Y. et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann. Rheum. Dis. 74, 791–792 (2015).

    Article  PubMed  Google Scholar 

  26. von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Article  Google Scholar 

  27. Castela, E. et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 150, 748–751 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Hartemann, A. et al. Low-dose interleukin-2 induces regulatory T cells and is well-tolerated in patients with type-1 diabetes: results of a phase I/II randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 1, 295–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spolski, R., Li, P. & Leonard, W. J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T. & Thompson, C. B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell. Biol. 7, 4472–4481 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol. 2, 882–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yui, M. A., Sharp, L. L., Havran, W. L. & Rothenberg, E. V. Preferential activation of an IL-2 regulatory sequence transgene in TCR γδ delta and NKT cells: subset-specific differences in IL-2 regulation. J. Immunol. 172, 4691–4699 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, S., Game, D. S., Davies, D., Lombardi, G. & Lechler, R. I. Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4+CD25+ regulatory T cells? Eur. J. Immunol. 35, 1193–1200 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Cheng, G., Yu, A. & Malek, T. R. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol. Rev. 241, 63–76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bessoles, S. et al. IL-2 triggers specific signaling pathways in human NKT cells leading to the production of pro- and anti-inflammatory cytokines. J. Leuk. Biol. 84, 224–233 (2008).

    Article  CAS  Google Scholar 

  41. Caldirola, M. S., Rodríguez Broggi, M. G., Gaillard, M. I., Bezrodnik, L. & Zwirner, N. W. Primary immunodeficiencies unravel the role of IL-2/CD25/STAT5b in human natural killer cell maturation. Front. Immunol. 9, 1429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Roediger, B. et al. IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. J. Allergy Clin. Immunol. 136, 1653–1663.e7 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Rickert, M., Wang, X., Boulanger, M. J., Goriatcheva, N. & Garcia, K. C. The structure of interleukin-2 complexed with its α receptor. Science 308, 1477–1480 (2005). This study solves the structure of IL-2 complexed to CD25 of the IL-2R.

    Article  CAS  PubMed  Google Scholar 

  44. Wu, Z. et al. Solution assembly of the pseudo-high affinity and intermediate affinity interleukin-2 receptor complexes. Protein Sci. 8, 482–489 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith, K. A. The structure of IL2 bound to the three chains of the IL2 receptor and how signaling occurs. Med. Immunol. 5, 3 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Waters, R. S., Perry, J. S. A., Han, S., Bielekova, B. & Gedeon, T. The effects of interleukin-2 on immune response regulation. Math. Med. Biol. 35, 79–119 (2017).

    Article  Google Scholar 

  47. Arenas-Ramirez, N., Woytschak, J. & Boyman, O. Interleukin-2: biology, design and application. Trends Immunol. 36, 763–777 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Ward, N. C. et al. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J. Immunol. 201, 2579–2592 (2018). This study is the first to show that IL-2–CD25 transdimers stimulate the trimeric high-affinity IL-2R to promote Treg cell expansion and, at a low dose, limit diabetes in NOD mice.

    Article  CAS  PubMed  Google Scholar 

  49. Taga, K., Kasahara, Y., Yachie, A., Miyawaki, T. & Taniguchi, N. Preferential expression of IL-2 receptor subunits on memory populations within CD4+ and CD8+ T cells. Immunology 72, 15–19 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pekalski, M. L. et al. Postthymic expansion in human CD4 naive T cells defined by expression of functional high-affinity IL-2 receptors. J. Immunol. 190, 2554–2566 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64, 2172–2183 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Ding, Y., Yu, A., Tsokos, G. C. & Malek, T. R. CD25 and protein phosphatase 2A cooperate to enhance IL-2R signaling in human regulatory T cells. J. Immunol. 203, 93–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka, A. & Sakaguchi, S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol. 49, 1140–1146 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Yao, Z., Dai, W., Perry, J., Brechbiel, M. W. & Sung, C. Effect of albumin fusion on the biodistribution of interleukin-2. Cancer Immunol. Immunother. 53, 404–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Craiu, A. et al. An IL-2/Ig fusion protein influences CD4+ T lymphocytes in naive and simian immunodeficiency virus-infected rhesus monkeys. AIDS Res. Hum. Retroviruses 17, 873–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Zheng, X. X. et al. IL-2 receptor-targeted cytolytic IL-2/Fc fusion protein treatment blocks diabetogenic autoimmunity in nonobese diabetic mice. J. Immunol. 163, 4041–4048 (1999).

    CAS  PubMed  Google Scholar 

  57. Gillies, S. D., Lan, Y., Lo, K.-M., Super, M. & Wesolowski, J. Improving the efficacy of antibody–interleukin 2 fusion proteins by reducing their interaction with Fc receptors. Cancer Res. 59, 2159–2166 (1999).

    CAS  PubMed  Google Scholar 

  58. Christ, O., Matzku, S., Burger, C. & Zöller, M. Interleukin 2-antibody and tumor necrosis factor–antibody fusion proteins induce different antitumor immune responses in vivo. Clin. Cancer Res. 7, 1385–1397 (2001).

    CAS  PubMed  Google Scholar 

  59. Hornick, J. L. et al. Pretreatment with a monoclonal antibody/interleukin-2 fusion protein directed against DNA enhances the delivery of therapeutic molecules to solid tumors. Clin. Cancer Res. 5, 51–60 (1999).

    CAS  PubMed  Google Scholar 

  60. Ju, G. et al. Structure–function analysis of human interleukin-2. Identification of amino acid residues required for biological activity. J. Biol. Chem. 262, 5723–5731 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Sauvé, K. et al. Localization in human interleukin 2 of the binding site to the α chain (p55) of the interleukin 2 receptor. Proc. Natl Acad. Sci. USA 88, 4636–4640 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Stauber, D. J., Debler, E. W., Horton, P. A., Smith, K. A. & Wilson, I. A. Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc. Natl Acad. Sci. USA 103, 2788–2793 (2006). This seminal study shows the crystal structure of IL-2 complexed to the trimeric IL-2R that uncovers amino acid residues critical for binding of IL-2 to each IL-2R subunit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carmenate, T. et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J. Immunol. 190, 6230–6238 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012). This study describes the generation of a novel engineered IL-2 mutein via in vitro evolution to generate a mutein selective towards CD122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peterson, L. B. et al. A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J. Autoimmun. 95, 1–14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khoryati, L. et al. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci. Immunol. 5, eaba5264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shanafelt, A. B. et al. A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat. Biotechnol. 18, 1197–1202 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Margolin, K. et al. Phase I trial of BAY 50-4798, an interleukin-2-specific agonist in advanced melanoma and renal cancer. Clin. Cancer Res. 13, 3312–3319 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Gillies, S. D. et al. A low-toxicity IL-2-based immunocytokine retains antitumor activity despite its high degree of IL-2 receptor selectivity. Clin. Cancer Res. 17, 3673–3685 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. van den Heuvel, M. M. et al. NHS-IL2 combined with radiotherapy: preclinical rationale and phase Ib trial results in metastatic non-small cell lung cancer following first-line chemotherapy. J. Transl. Med. 13, 32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu, D. V., Maier, L. M., Hafler, D. A. & Wittrup, K. D. Engineered interleukin-2 antagonists for the inhibition of regulatory T cells. J. Immunother. 32, 887–894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mo, F. et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature 597, 544–548 (2021). This study describes an engineered IL-2 protein that functions as a partial agonist to drive CD8+ T cell expansion that restricts terminal differentiation of CD8+ T cells while promoting their stemness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carmenate, T. et al. Blocking IL-2 signal in vivo with an IL-2 antagonist reduces tumor growth through the control of regulatory T cells. J. Immunol. 200, 3475–3484 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine–receptor complexes. Science 359, 1037–1042 (2018). This study is the first to describe the use of orthogonal IL-2 and IL-2R pairs to selectively stimulate engineered T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hirai, T. et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J. Clin. Invest. 131, e139991 (2021).

    Article  PubMed Central  Google Scholar 

  77. Silva, D. A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019). This work uses a computational approach to design an IL-2 mimic that does not contain a binding site for CD25 while retaining binding to the intermediate-affinity IL-2R with higher affinity than native IL-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016). This study describes using PEGylation to engineer IL-2 to bias its receptor selectivity and enhance its pharmacokinetics.

    Article  CAS  PubMed  Google Scholar 

  79. Charych, D. et al. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS ONE 12, e0179431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sharma, M. et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11, 661 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parisi, G. et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat. Commun. 11, 660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dixit, N. et al. NKTR-358: a novel regulatory T-cell stimulator that selectively stimulates expansion and suppressive function of regulatory T cells for the treatment of autoimmune and inflammatory diseases. J. Transl. Autoimmun. 4, 100103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Finkelman, F. D. et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine–anti-cytokine antibody complexes. J. Immunol. 151, 1235–1244 (1993).

    CAS  PubMed  Google Scholar 

  84. Boyman, O., Ramsey, C., Kim, D. M., Sprent, J. & Surh, C. D. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T cell expansion without lymphopenia. J. Immunol. 180, 7265–7275 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Jones, A. T. & Ziltener, H. J. Enhancement of the biologic effects of interleukin-3 in vivo by anti-interleukin-3 antibodies. Blood 82, 1133–1141 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody–cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Letourneau, S. et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor α subunit CD25. Proc. Natl Acad. Sci. USA 107, 2171–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tomala, J., Chmelova, H., Mrkvan, T., Rihova, B. & Kovar, M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J. Immunol. 183, 4904–4912 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Krieg, C., Letourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA 107, 11906–11911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reyes, R. M. et al. CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation. J. Immunother. Cancer 9, e002051 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rosalia, R. A., Arenas-Ramirez, N., Bouchaud, G., Raeber, M. E. & Boyman, O. Use of enhanced interleukin-2 formulations for improved immunotherapy against cancer. Curr. Opin. Chem. Biol. 23, 39–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Arenas-Ramirez, N. et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8, 367ra166 (2016).

    Article  PubMed  Google Scholar 

  95. Raeber, M. E., Rosalia, R. A., Schmid, D., Karakus, U. & Boyman, O. Interleukin-2 signals converge in a lymphoid–dendritic cell pathway that promotes anticancer immunity. Sci. Transl. Med. 12, eaba5464 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Sahin, D. et al. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat. Commun. 11, 6440 (2020). This study describes the development of improved IL-2 immune complexes by grafting IL-2 onto the antigen-binding site of an anti-human IL-2 antibody to form a stable complex with selectivity towards the intermediate-affinity IL-2R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hernandez, R. et al. Sustained IL-2R signaling of limited duration by high-dose mIL-2/mCD25 fusion protein amplifies tumor-reactive CD8+ T cells to enhance antitumor immunity. Cancer Immunol. Immunother. 70, 909–921 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wilson, M. S. et al. Suppression of murine allergic airway disease by IL-2:anti-IL-2 monoclonal antibody-induced regulatory T cells. J. Immunol. 181, 6942–6954 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Webster, K. E. et al. In vivo expansion of Treg cells with IL-2–mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park, Y. H. et al. Effect of in vitroexpanded CD4+CD25+Foxp3+ regulatory T cell therapy combined with lymphodepletion in murine skin allotransplantation. Clin. Immunol. 135, 43–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Liu, R. et al. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur. J. Immunol. 40, 1577–1589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Villalta, S. A. et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci. Transl. Med. 6, 258ra142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yan, J. J. et al. IL-2/anti-IL-2 complexes ameliorate lupus nephritis by expansion of CD4+CD25+Foxp3+ regulatory T cells. Kidney Int. 91, 603–615 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Smaldini, P. L., Trejo, F., Cohen, J. L., Piaggio, E. & Docena, G. H. Systemic IL-2/anti-IL-2Ab complex combined with sublingual immunotherapy suppresses experimental food allergy in mice through induction of mucosal regulatory T cells. Allergy 73, 885–895 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Klein, M. et al. Engineering a safe monoclonal anti-human IL-2 that is effective in a murine model of food allergy and asthma. Allergy https://doi.org/10.1111/all.15029 (2021).

    Article  PubMed  Google Scholar 

  107. Spangler, J. B. et al. Engineering a single-agent cytokine/antibody fusion that selectively expands regulatory T cells for autoimmune disease therapy. J. Immunol. 201, 2094–2106 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Karakus, U. et al. Receptor-gated IL-2 delivery by an anti-human IL-2 antibody activates regulatory T cells in three different species. Sci. Transl. Med. 12, eabb9283 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Stonier, S. W. & Schluns, K. S. Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol. Lett. 127, 85–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Lopes, J. E. et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J. Immunother. Cancer 8, e000673 (2020). This study describes the development of an IL-2–CD25 fusion protein that preferentially targets cells expressing the dimeric intermediate-affinity IL-2R.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ward, N. C. et al. Persistent IL-2 receptor signaling by IL-2/CD25 fusion protein controls diabetes in NOD mice by multiple mechanisms. Diabetes 69, 2400–2413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xie, J. H. et al. Mouse IL-2/CD25 fusion protein induces regulatory T cell expansion and immune suppression in preclinical models of systemic lupus erythematosus. J. Immunol. 207, 34–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. DeOca, K. B., Moorman, C. D., Garcia, B. L. & Mannie, M. D. Low-zone IL-2 signaling: fusion proteins containing linked CD25 and IL-2 domains sustain tolerogenic vaccination in vivo and promote dominance of FOXP3+ Tregs in vitro. Front. Immunol. 11, 541619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hernandez, R., LaPorte, K. M., Hsiung, S., Santos Savio, A. & Malek, T. R. High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4+ and CD8+ neoantigen-specific T cells to promote antitumor immunity. J. Immunother. Cancer 9, e002865 (2021). This study shows that limited application of high-dose IL-2–CD25 transdimers promotes antitumour immunity by enhancing tumour neoantigen-specific effector T cells through stimulation of the high-affinity IL-2R.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Read, K. A., Powell, M. D., McDonald, P. W. & Oestreich, K. J. IL-2, IL-7, and IL-15: multistage regulators of CD4+ T helper cell differentiation. Exp. Hematol. 44, 799–808 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Walker, J. A. & McKenzie, A. N. J. TH2 cell development and function. Nat. Rev. Immunol. 18, 121–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Dooms, H., Wolslegel, K., Lin, P. & Abbas, A. K. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7Rα-expressing cells. J. Exp. Med. 204, 547–557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McKinstry, K. K. et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat. Commun. 5, 5377 (2014).

    Article  PubMed  Google Scholar 

  120. Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Boulet, S., Daudelin, J. F. & Labrecque, N. IL-2 induction of Blimp-1 is a key in vivo signal for CD8+ short-lived effector T cell differentiation. J. Immunol. 193, 1847–1854 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fu, S. H., Yeh, L. T., Chu, C. C., Yen, B. L. & Sytwu, H. K. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function. J. Biomed. Sci. 24, 49 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Liu, Y. et al. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. Nat. Immunol. 22, 358–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. West, E. E. et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123, 2604–2615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Toomer, K. H. et al. Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. Nat. Commun. 10, 1037 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dikiy, S. et al. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 54, 931–946.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368–4375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lio, C. W. & Hsieh, C. S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Caramalho, Í., Nunes-Cabaço, H., Foxall, R. B. & Sousa, A. E. Regulatory T-cell development in the human thymus. Front. Immunol. 6, 395 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Fan, M. Y. et al. Differential roles of IL-2 signaling in developing versus mature Tregs. Cell. Rep. 25, 1204–1213.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cheng, G. et al. IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells. J. Immunol. 189, 1780–1791 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Smigiel, K. S. et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211, 121–136 (2013).

    Article  PubMed  Google Scholar 

  136. Zheng, S. G., Wang, J., Wang, P., Gray, J. D. & Horwitz, D. A. IL-2 is essential for TGF-β to convert naive CD4+CD25 cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 178, 2018–2027 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Yoon, S. R., Kim, T.-D. & Choi, I. Understanding of molecular mechanisms in natural killer cell therapy. Exp. Mol. Med. 47, e141–e141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lehmann, C., Zeis, M. & Uharek, L. Activation of natural killer cells with interleukin 2 (IL-2) and IL-12 increases perforin binding and subsequent lysis of tumour cells. Br. J. Haematol. 114, 660–665 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Wu, Y., Tian, Z. & Wei, H. Developmental and functional control of natural killer cells by cytokines. Front. Immunol. 8, 930 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Aste-Amezaga, M., D’Andrea, A., Kubin, M. & Trinchieri, G. Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell. Immunol. 156, 480–492 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Salcedo, T. W., Azzoni, L., Wolf, S. F. & Perussia, B. Modulation of perforin and granzyme messenger RNA expression in human natural killer cells. J. Immunol. 151, 2511–2520 (1993).

    CAS  PubMed  Google Scholar 

  142. Zhang, B., Zhang, J. & Tian, Z. Comparison in the effects of IL-2, IL-12, IL-15 and IFNα on gene regulation of granzymes of human NK cell line NK-92. Int. Immunopharmacol. 8, 989–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Angelo, L. S. et al. Practical NK cell phenotyping and variability in healthy adults. Immunol. Res. 62, 341–356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Poli, A. et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126, 458–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McQuaid, S. L. et al. Low-dose IL-2 induces CD56bright NK regulation of T cells via NKp44 and NKp46. Clin. Exp. Immunol. 200, 228–241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kubo, T. et al. Low-dose interleukin-2 therapy enhances cytotoxicity of CD56bright NK cells in patients with chronic GvHD. Blood 132, 606–606 (2018).

    Article  Google Scholar 

  148. de Rham, C. et al. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res. Ther. 9, R125 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Michel, T. et al. Human CD56bright NK cells: an update. J. Immunol. 196, 2923–2931 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Nielsen, N., Ødum, N., Ursø, B., Lanier, L. L. & Spee, P. Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. PLoS ONE 7, e31959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bielekova, B. et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA 103, 5941–5946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cortez, V. S., Robinette, M. L. & Colonna, M. Innate lymphoid cells: new insights into function and development. Curr. Opin. Immunol. 32, 71–77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Herbert, D. R., Douglas, B. & Zullo, K. Group 2 innate lymphoid cells (ILC2): type 2 immunity and helminth immunity. Int. J. Mol. Sci. 20, 2276 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  154. Van Gool, F. et al. Interleukin-5-producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood 124, 3572–3576 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Seehus, C. R. et al. Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat. Commun. 8, 1900 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Pugliese and A. Villarino at the University of Miami and M. Struthers at Bristol Myers Squibb for critically reading the manuscript and M. Doyle at Bristol Myers Squibb for providing the structural model of IL-2–CD25. Their research is supported by grants from the US National Institutes of Health (NIH R01AI131648 and R01AI148675) and the Florida Department of Health (21B03) and a sponsored research agreement with Bristol Myers Squibb.

Author information

Authors and Affiliations

Authors

Contributions

T.R.M. conceptualized the manuscript. R.H. wrote most of the first draft and developed the figures. J.P. and K.M.L. contributed information related to the biological effects of the engineered IL-2 proteins. All authors edited the manuscript.

Corresponding author

Correspondence to Thomas R. Malek.

Ethics declarations

Competing interests

The University of Miami, T.R.M. and R.H. have patents pending on IL-2–CD25 fusion proteins (Wo2016022671A1; T.R.M.) and their use (PCT/US20/13152; T.R.M. and R.H.) that have been licensed exclusively to Bristol Myers Squibb, and some research on IL-2–CD25 fusion proteins has been supported, in part, by a collaboration and sponsored research and licensing agreement with Bristol Myers Squibb. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks J. Bluestone, O. Boyman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

High-affinity IL-2R

The IL-2 receptor (IL-2R) comprising the three subunits IL-2Rα (CD25), IL-2Rβ (CD122) and the common cytokine receptor γ-chain (γc; CD132).

Intermediate-affinity IL-2R

The IL-2 receptor (IL-2R) comprising only the two subunits CD122 and CD132.

IL-2 muteins

IL-2 proteins engineered through the introduction of mutations that shift the selectivity of IL-2 towards cells expressing the high-affinity or intermediate-affinity receptor. These modifications are not aimed at increasing the half-life of IL-2.

PEGylated IL-2

Complexes of IL-2 and polyethylene glycol (PEG) in which PEG chains attach to lysine residues on IL-2 biasing its selectivity towards the high-affinity or intermediate-affinity receptor, depending on the location and number of PEG chains on IL-2. PEGylation increases the half-life of IL-2.

IL-2–anti-IL-2 immune complexes

Complexes of IL-2 and anti-IL-2 antibodies that exist as separate entities that are pre-complexed prior to administration or engineered as linked molecules. Depending on the anti-IL-2 antibody, IL-2 shows selectivity for the high-affinity or intermediate-affinity receptor. IL-2 immune complexes result in increased half-life of IL-2.

IL-2–CD25 fusion proteins

IL-2 covalently linked to CD25 via a short amino acid linker. The IL-2 component of the fusion protein is linked to CD25 in a linear or rearranged manner to generate fusion proteins that exhibit selectivity towards the high-affinity or intermediate-affinity receptor, respectively. These fusion proteins exhibit increased half-lives compared with IL-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, R., Põder, J., LaPorte, K.M. et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol 22, 614–628 (2022). https://doi.org/10.1038/s41577-022-00680-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00680-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer