Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune ageing at single-cell resolution

Abstract

Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular and molecular components of inflammageing.
Fig. 2: Alterations of immune cell populations in ageing.
Fig. 3: Interactions between immune and senescent cells.

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    Article  PubMed  CAS  Google Scholar 

  4. Gomes, T., Teichmann, S. A. & Talavera-López, C. Immunology driven by large-scale single-cell sequencing. Trends Immunol. 40, 1011–1021 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franceschi, C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2006).

    Article  Google Scholar 

  7. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endo. 14, 576–590 (2018).

    Article  CAS  Google Scholar 

  8. Morrisette-Thomas, V. et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech. Ageing Dev. 139, 49–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020). This study uses bulk RNA sequencing of multiple organs at ten ages across the mouse lifespan and reveals shifts in expression of genes clustered in consistent trajectory groups with coherent biological functions during ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baruch, K. et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato, Y. & Yanagita, M. Immunology of the ageing kidney. Nat. Rev. Neph. 15, 625–640 (2019).

    Article  Google Scholar 

  12. Karin, O., Agrawal, A., Porat, Z., Krizhanovsky, V. & Alon, U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat. Commun. 10, 5495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thompson, H. L., Smithey, M. J., Surh, C. D. & Nikolich-Žugich, J. Functional and homeostatic impact of age-related changes in lymph node stroma. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00706 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Elyahu, Y. & Monsonego, A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res. Rev. 65, 101231 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Dorshkind, K., Höfer, T., Montecino-Rodriguez, E., Pioli, P. D. & Rodewald, H.-R. Do haematopoietic stem cells age? Nat. Rev. Immunol. 20, 196–202 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Helbling, P. M. et al. Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep. 29, 3313–3330.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shchukina, I. et al. Enhanced epigenetic profiling of classical human monocytes reveals a specific signature of healthy aging in the DNA methylome. Nat. Aging 1, 124–141 (2021).

    Article  PubMed  Google Scholar 

  23. Reynolds, L. M. et al. Transcriptomic profiles of aging in purified human immune cells. BMC Genomics 16, 333 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bassler, K., Schulte-Schrepping, J., Warnat-Herresthal, S., Aschenbrenner, A. C. & Schultze, J. L. The myeloid cell compartment — cell by cell. Ann. Rev. Immunol. 37, 269–293 (2019).

    Article  CAS  Google Scholar 

  25. Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115.e12 (2021). This article provides single-cell transcriptomics and epigenomics of immune cells from young and old mouse tissues and human blood, and highlights key features of immune ageing in myeloid cells, B cells and T cells, including accumulation of PD1+GZMK+CD8+ T cells in mice and GZMK+CD8+ T cells in humans.

    Article  CAS  PubMed  Google Scholar 

  26. Almanzar, N. et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020). This article presents a scRNA-seq atlas across the mouse lifespan that includes data from 23 tissues and organs (Tabula Muris Senis).

    Article  CAS  Google Scholar 

  27. Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 1–17 (2019).

    Article  CAS  Google Scholar 

  28. Li, C. M. et al. Aging-associated alterations in mammary epithelia and stroma revealed by single-cell RNA sequencing. Cell Rep. 33, 108566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bodogai, M. et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10, eaat4271 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Linehan, E. et al. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell 13, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bian, Z. et al. Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106–118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, S. et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180, 984–1001.e22 (2020). This article shows that caloric restriction results in altered cell populations and reshaped transcriptional landscapes in tissues of old rats, including changes in immune cells resolved at single-cell levels.

    Article  CAS  PubMed  Google Scholar 

  34. Butcher, S., Chahel, H. & Lord, J. M. Ageing and the neutrophil: no appetite for killing? Immunology 100, 411–416 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barkaway, A. et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity 54, 1494–1510.e7 (2021). This article shows that reverse transendothelial migration of neutrophils is increased in old mice, which is regulated by inflammatory factors including CXCL1 and can result in tissue damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lagnado, A. et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 40, e106048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex- and age-related functional regulation. Nat. Aging 1, 715–733 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aprahamian, T., Takemura, Y., Goukassian, D. & Walsh, K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin. Exp. Immunol. 152, 448–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chougnet, C. A. et al. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J. Immunol. 195, 2624–2632 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Butcher, S. K. et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J. Leukoc. Biol. 70, 881–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Wong, C. & Goldstein, D. R. Impact of aging on antigen presentation cell function of dendritic cells. Curr. Opin. Immunol. 25, 535–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Hazeldine, J. & Lord, J. M. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res. Rev. 12, 1069–1078 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manser, A. R. & Uhrberg, M. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol. Immunother. 65, 417–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Hazeldine, J., Hampson, P. & Lord, J. M. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 11, 751–759 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Chiu, B.-C., Martin, B. E., Stolberg, V. R. & Chensue, S. W. The host environment Is responsible for aging-related functional NK cell deficiency. J. Immunol. 191, 4688–4698 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Jin, W.-N. et al. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24, 61–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. 20, 552–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Bai, L. et al. Liver type 1 innate lymphoid cells develop locally via an interferon-γ–dependent loop. Science 371, eaba4177 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Goldberg, E. L. et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab. https://doi.org/10.1016/j.cmet.2021.08.004 (2021). This study performs single-cell analyses of adipose tissue-resident immune cells in old mice and identifies the age-mediated decline in ILC2 functions as a cause of maladaptation to cold.

    Article  PubMed  Google Scholar 

  51. Fung, I. T. H. et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J. Exp. Med. 217, e20190915 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. D’Souza, S. S. et al. Compartmentalized effects of aging on group 2 innate lymphoid cell development and function. Aging Cell 18, e13019 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Lerner, A., Yamada, T. & Miller, R. A. Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. Eur. J. Immunol. 19, 977–982 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Ku, C. C., Kappler, J. & Marrack, P. The growth of the very large CD8+T cell clones in older mice is controlled by cytokines. J. Immunol. 166, 2186–2193 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Kimmel, J. C. et al. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res. 29, 2088–2103 (2019). This article presents single-cell transcriptomics of four mouse organs and characterizes tissue-specific alterations in transcriptional programmes of stromal and immune cells during ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Ann. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  Google Scholar 

  59. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng, Y. et al. A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11, 740–770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arthur, L. et al. Cellular and plasma proteomic determinants of COVID-19 and non-COVID-19 pulmonary diseases relative to healthy aging. Nat. Aging 1, 535–549 (2021). This cross-sectional study of peripheral blood mononuclear cell profiles from 148 healthy donors and 71 patients with COVID-19 uses a mass cytometry panel of 35 markers and defines features of healthy human immune ageing, including increases in the abundances of GZMK+CD8+ T cells and CD25lowCD4+ T cells and changes in naive and central memory subsets, and parallels them with the response to COVID-19 in elderly individuals.

    Article  Google Scholar 

  62. Wertheimer, A. M. et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192, 2143–2155 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Linton, P. J., Haynes, L., Klinman, N. R. & Swain, S. L. Antigen-independent changes in naive CD4 T cells with aging. J. Exp. Med. 184, 1891–1900 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Ernst, D. N. et al. Differences in the expression profiles of CD45RB, Pgp-1, and 3G11 membrane antigens and in the patterns of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J. Immunol. 145, 1295–1302 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Han, G.-M., Zhao, B., Jeyaseelan, S. & Feng, J.-M. Age-associated parallel increase of Foxp3+CD4+ regulatory and CD44+CD4+ memory T cells in SJL/J mice. Cell. Immunol. 258, 188–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lages, C. S. et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J. Immunol. 181, 1835–1848 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Nishioka, T., Shimizu, J., Iida, R., Yamazaki, S. & Sakaguchi, S. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J. Immunol. 176, 6586–6593 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Sharma, S., Dominguez, A. L. & Lustgarten, J. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J. Immunol. 177, 8348–8355 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019). This article profiles CD4+ T cells from young and old mice and defines cytotoxic, exhausted and activated Treg cells as hallmarks of ageing in the CD4+ T cell compartment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Takeuchi, A. & Saito, T. CD4 CTL, a cytotoxic subset of CD4+ T cells, their differentiation and function. Front. Immunol. 8, 194 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hashimoto, K. et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc. Natl Acad. Sci. USA 116, 24242–24251 (2019). This study generates an scRNA-seq dataset for circulating immune cells in supercentenarians and describes accumulation of cytotoxic CD4+ T cells in extremely old individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Channappanavar, R., Twardy, B. S., Krishna, P. & Suvas, S. Advancing age leads to predominance of inhibitory receptor expressing CD4 T cells. Mech. Ageing Dev. 130, 709–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Shimada, Y., Hayashi, M., Nagasaka, Y., Ohno-Iwashita, Y. & Inomata, M. Age-associated up-regulation of a negative co-stimulatory receptor PD-1 in mouse CD4+ T cells. Exp. Gerontol. 44, 517–522 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Haynes, L., Eaton, S. M., Burns, E. M., Rincon, M. & Swain, S. L. Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J. Immunol. 172, 5194–5199 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Haynes, L., Linton, P. J., Eaton, S. M., Tonkonogy, S. L. & Swain, S. L. Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J. Exp. Med. 190, 1013–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsukamoto, H. et al. Age-associated increase in lifespan of naïve CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc. Natl Acad. Sci. USA 106, 18333–18338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433–1436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maue, A. C. et al. Proinflammatory adjuvants enhance the cognate helper activity of aged CD4 T cells. J. Immunol. 182, 6129–6135 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Ouyang, X. et al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis. Cell Immunol. 266, 208–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Huang, M.-C., Liao, J.-J., Bonasera, S., Longo, D. L. & Goetzl, E. J. Nuclear factor-kappaB-dependent reversal of aging-induced alterations in T cell cytokines. FASEB J. 22, 2142–2150 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, H.-C. et al. IL-7-dependent compositional changes within the γδ T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep. 20, e47379 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ryu, S. et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. eLife 10, e66522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Foy, T. M., Aruffo, A., Bajorath, J., Buhlmann, J. E. & Noelle, R. J. Immune regulation by CD40 and its ligand GP39. Annu. Rev. Immunol. 14, 591–617 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Eaton, S. M., Burns, E. M., Kusser, K., Randall, T. D. & Haynes, L. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J. Exp. Med. 200, 1613–1622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Callahan, J. E., Kappler, J. W. & Marrack, P. Unexpected expansions of CD8-bearing cells in old mice. J. Immunol. 151, 6657–6669 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Britanova, O. V. et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Egorov, E. S. et al. The changing landscape of naive T cell receptor repertoire with human aging. Front. Immunol. 9, 1618 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. de Greef, P. C. et al. The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes. eLife 9, e49900 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Miller, R. A. The aging immune system: primer and prospectus. Science 273, 70–74 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Hao, Y., O’Neill, P., Naradikian, M. S., Scholz, J. L. & Cancro, M. P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)–driven accumulation of a novel CD11c+B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rubtsova, K. et al. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J. Clin. Invest. 127, 1392–1404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rubtsova, K., Rubtsov, A. V., Cancro, M. P. & Marrack, P. Age-associated B cells: a T-bet–dependent effector with roles in protective and pathogenic Immunity. J. Immunol. 195, 1933–1937 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Russell Knode, L. M. et al. Age-associated B cells express a diverse repertoire of VH and Vκ genes with somatic hypermutation. J. Immunol. 198, 1921–1927 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Pioli, P. D., Casero, D., Montecino-Rodriguez, E., Morrison, S. L. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Singh, S. P. et al. Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signaling. Oncotarget 8, 71981–71995 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang, Y. et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat. Commun. 12, 525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee-Chang, C. et al. Aging converts innate B1a cells into potent CD8+ T cell inducers. J. Immunol. 196, 3385–3397 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Lee-Chang, C. et al. Accumulation of 4-1BBL+B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood 124, 1450–1459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Buckley, C. D., Barone, F., Nayar, S., Bénézech, C. & Caamaño, J. Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu. Rev. Immunol. 33, 715–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tigges, J. et al. The hallmarks of fibroblast ageing. Mech. Ageing Dev. 138, 26–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Lynch, M. D. & Watt, F. M. Fibroblast heterogeneity: implications for human disease. J. Clin. Invest. 128, 26–35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175, 1575–1590.e22 (2018). This study uses single-cell transcriptomics and lineage tracing and reveals that dermal fibroblasts lose cell identity in ageing, which can be partially reversed by systemic metabolic changes such as caloric restriction.

    Article  CAS  PubMed  Google Scholar 

  109. Mahmoudi, S. et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 574, 553–558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Solé-Boldo, L. et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Comm. Biol. 3, 1–12 (2020).

    Article  CAS  Google Scholar 

  111. Zhao, L. et al. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat. Commun. 11, 4413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug. Disc 16, 718–735 (2017).

    Article  CAS  Google Scholar 

  113. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. Dis. 5, 99–118 (2010).

    Article  CAS  Google Scholar 

  114. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  CAS  Google Scholar 

  118. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wiley, C. D. et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043–1050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Omori, S. et al. Generation of a p16 reporter mouse and its use to characterize and target p16high cells in vivo. Cell Metab. 32, 814–828.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Kale, A., Sharma, A., Stolzing, A., Desprez, P.-Y. & Campisi, J. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 17, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Freund, A., Orjalo, A. V., Desprez, P.-Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Antonangeli, F., Zingoni, A., Soriani, A. & Santoni, A. Senescent cells: living or dying is a matter of NK cells. J. Leukoc. Biol. 105, 1275–1283 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  CAS  Google Scholar 

  126. Yun, M. H., Davaapil, H. & Brockes, J. P. Recurrent turnover of senescent cells during regeneration of a complex structure. eLife 4, e05505 (2015).

    Article  PubMed Central  Google Scholar 

  127. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kang, T.-W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Brighton, P. J. et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 6, e31274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018). This article shows that mice with impaired cell cytotoxicity because of perforin deficiency have increased accumulation of senescent cells in tissues, chronic inflammation and lower survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Puchta, A. et al. TNF drives monocyte dysfunction with age and results in impaired anti-pneumococcal immunity. PLoS Pathog. 12, e1005368 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Loukov, D., Naidoo, A., Puchta, A., Marin, J. L. A. & Bowdish, D. M. E. Tumor necrosis factor drives increased splenic monopoiesis in old mice. J. Leuk. Biol. 100, 121–129 (2016).

    Article  CAS  Google Scholar 

  137. Tong, Q.-Y. et al. Human thymic involution and aging in humanized mice. Front. Immunol. 11, 1399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, M. et al. Age related human T cell subset evolution and senescence. Immun. Ageing 16, 24 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Jergoviić, M., Contreras, N. A. & Nikolich-Žugich, J. Impact of CMV upon immune aging: facts and fiction. Med. Microbiol. Immunol. 208, 263–269 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Gordon, A. & Reingold, A. The burden of influenza: a complex problem. Curr. Epidemiol. Rep. 5, 1–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Johnson, R. W. et al. The impact of herpes zoster and post-herpetic neuralgia on quality-of-life. BMC Med. 8, 37 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wroe, P. C. et al. Aging population and future burden of pneumococcal pneumonia in the United States. J. Infect. Dis. 205, 1589–1592 (2012).

    Article  PubMed  Google Scholar 

  143. Salje, H. et al. Estimating the burden of SARS-CoV-2 in France. Science 369, 208–211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chowers, M. Y. et al. Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg. Infect. Dis. 7, 675–678 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Montgomery, R. R. & Steen, H. Using ‘big data’ to disentangle aging and COVID-19. Nat. Aging 1, 496–497 (2021).

    Article  Google Scholar 

  146. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 21, 88–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McQuattie-Pimentel, A. C. et al. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J. Clin. Invest. 131, e140299 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  151. Wong, C. K. et al. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J. Immunol. 199, 1060–1068 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Ide, S. et al. Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. eLife 9, e51756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wong, C. P., Magnusson, K. R. & Ho, E. Aging is associated with altered dendritic cells subset distribution and impaired proinflammatory cytokine production. Exp. Gerontol. 45, 163–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Pieren, D. K. J., Smits, N. A. M., van de Garde, M. D. B. & Guichelaar, T. Response kinetics reveal novel features of ageing in murine T cells. Sci. Rep. 9, 5587 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Quinn, K. M. et al. Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells. Cell Rep. 23, 3512–3524 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019). This study uses single-cell transcriptomics of neurogenic niches in mice and identifies an infiltration of T cells that express IFNγ in old neurogenic niches and can suppress the proliferation of neural stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chiu, B.-C., Martin, B. E., Stolberg, V. R. & Chensue, S. W. Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 191, 5793–5796 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Clambey, E. T., White, J., Kappler, J. W. & Marrack, P. Identification of two major types of age-associated CD8 clonal expansions with highly divergent properties. Proc. Natl Acad. Sci. USA 105, 12997–13002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee, K.-A. et al. Characterization of age-associated exhausted CD8+ T cells defined by increased expression of Tim-3 and PD-1. Aging Cell 15, 291–300 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Seidler, S., Zimmermann, H. W., Bartneck, M., Trautwein, C. & Tacke, F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 11, 30 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Stervbo, U. et al. Effects of aging on human leukocytes (part I): immunophenotyping of innate immune cells. Age 37, 92 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Rodriguez-Zhurbenko, N., Quach, T. D., Hopkins, T. J., Rothstein, T. L. & Hernandez, A. M. Human B-1 cells and B-1 cell antibodies change with advancing age. Front. Immunol. 10, 483 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. van der Geest, K. S. M. et al. Impact of aging on the frequency, phenotype, and function of CD161-expressing T cells. Front. Immunol. https://doi.org/10.3389/fimmu.2018.00752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Colonna-Romano, G. et al. Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp. Gerontol. 39, 1439–1446 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Tan, C. T. Y. et al. Vδ2+ and α/β T cells show divergent trajectories during human aging. Oncotarget 7, 44906–44918 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Michishita, Y. et al. Age-associated alteration of γδ T-cell repertoire and different profiles of activation-induced death of Vδ1 and Vδ2 T cells. Int. J. Hematol. 94, 230–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Oishi, Y. & Manabe, I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech. Dis. 2, 1–8 (2016).

    Article  Google Scholar 

  169. Minhas, P. S. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122–128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardio. 15, 505–522 (2018).

    Article  CAS  Google Scholar 

  171. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020). This article shows that TFAM-deficient T cells with dysfunctional mitochondria increase inflammageing, accelerate senescence and regulate organismal fitness and lifespan in mice.

    Article  PubMed  CAS  Google Scholar 

  172. Shenoy, A. T. & Mizgerd, J. P. Seedy CD8+ T RM cells in aging lungs drive susceptibility to pneumonia and sequelae. Cell. Mol. Immunol. 18, 787–789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Covarrubias, A. J. et al. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nat. Metab. 2, 1265–1283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat. Metab. 2, 1284–1304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Freund, A., Patil, C. K. & Campisi, J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536–1548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sagiv, A. et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging 8, 328–344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 1–13 (2019).

    Article  CAS  Google Scholar 

  182. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotech. 37, 916–924 (2019).

    Article  CAS  Google Scholar 

  186. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  PubMed  CAS  Google Scholar 

  189. Gong, H., Do, D. & Ramakrishnan, R. Single-cell mRNA-seq using the Fluidigm C1 system and integrated fluidics circuits. Methods Mol. Biol. 1783, 193–207 (2018).

    Article  PubMed  Google Scholar 

  190. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Grosse, L. et al. Defined p16high senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Neurohr, G. E. et al. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176, 1083–1097.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee, B. Y. et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank L. Arthur for editing the manuscript. The work was supported by a grant from the Aging Biology Foundation (to M.N.A.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Maxim N. Artyomov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks G. Pawelec, S. Shen-Orr and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Calico Life Sciences: https://www.calicolabs.com/

Immune ageing datasets: https://artyomovlab.wustl.edu/immune-aging/explore.html

Tabula Muris: https://tabula-muris.ds.czbiohub.org/

Tabula Muris Senis: https://tabula-muris-senis.ds.czbiohub.org/

Glossary

Multi-omics

An integrative analysis approach using datasets that broadly cover data generated from the genome, epigenome, transcriptome, proteome and metabolome.

Inflammageing

Chronic low-grade systemic inflammation occurring in the absence of a pathogen or exogenous inflammatory agent that develops with advanced age owing to endogenous pro-inflammatory processes.

Senescent cell

A terminally differentiated cell characterized by irreversible cell cycle arrest and a specific secretory profile that develops in response to various stress triggers and accumulates in aged organisms.

Caloric restriction

A dietary intervention that reduces average daily caloric intake below typical or habitual levels, while containing essential nutrients and not leading to malnutrition.

M1 macrophages

An historical, overly simplistic, classification of pro-inflammatory macrophages activated in vitro with interferon-γ (IFNγ) and lipopolysaccharide that only partially reflects the heterogeneity of highly specialized, dynamic and heterogeneous macrophage subsets in vivo, the activation of which is continuously shaped by multiple matrix and cellular signals in the tissue microenvironment.

T cell exhaustion

A specific state of T cell dysfunction driven by a persistent antigen stimulation and chiefly defined by reduced cytotoxicity and inability to produce pro-inflammatory cytokines (such as interferon-γ (IFNγ) and tumour necrosis factor (TNF)) and proliferate on T cell receptor stimulation.

Cellular indexing of transcriptomes and epitopes by sequencing

(CITE-seq). A method that uses oligonucleotide-labelled antibodies to integrate cellular protein and transcriptome measurements into an integrated single-cell readout.

Damage-associated molecular patterns

Endogenous molecules released from damaged or dying cells, such as mitochondria and chromatin components, which activate the innate immune system by interacting with pattern recognition receptors such as Toll-like receptors.

Spatial transcriptomics

Methods designed to map mRNA expression profiles in individual cells or groups of cells to their locations in histological tissue sections.

Imaging cytometry

Methods designed to combine flow cytometry or mass cytometry features with morphological analysis of thousands of cellular events in histological tissue sections.

Single-cell assay for transposase-accessible chromatin using sequencing

(scATAC-seq). A method for mapping the accessible genome of individual cells that allows epigenetic profiling with single-cell resolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogilenko, D.A., Shchukina, I. & Artyomov, M.N. Immune ageing at single-cell resolution. Nat Rev Immunol 22, 484–498 (2022). https://doi.org/10.1038/s41577-021-00646-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00646-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing