Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune and non-immune functions of adipose tissue leukocytes

Abstract

Adipose tissue is a complex dynamic organ with whole-body immunometabolic influence. Much of the work into understanding the role of immune cells in adipose tissue has been in the context of obesity. These investigations have also uncovered a range of typical (immune) and non-typical functions exerted by adipose tissue leukocytes. Here we provide an overview of the adipose tissue immune system, including its role as an immune reservoir in the whole-body response to infection and as a site of parasitic and viral infections. We also describe the functional roles of specialized immunological structures found within adipose tissue. However, our main focus is on the recently discovered ‘non-immune’ functions of adipose tissue immune cells, which include the regulation of adipocyte homeostasis, as well as responses to changing nutrient status and body temperature. In doing so, we outline the therapeutic potential of the adipose tissue immune system in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fat-associated lymphoid structures.
Fig. 2: Adipose tissue macrophage populations.
Fig. 3: Immunological regulation of adipocyte homeostasis.
Fig. 4: Immunological control of adipocyte browning and thermogenesis.
Fig. 5: An overview of adipose tissue distribution between mice and humans.

Similar content being viewed by others

References

  1. v. Recklinghausen, F. Ueber Eiter-und Bindegewebskörperchen. Arch. Pathol. Anat. 28, 157–197 (1863).

    Article  Google Scholar 

  2. Ranvier, L. Du dévelopment et de l’accroissement desvaiseaux sanguins. Arch. Physiol. Norm. Pathol. 6, 429–446 (1874).

    Google Scholar 

  3. Wertheimer, E. & Shapiro, B. The physiology of adipose tissue. Physiol. Rev. 28, 451 (1948).

    Article  CAS  PubMed  Google Scholar 

  4. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science https://doi.org/10.1126/science.7678183 (1993). This is the first study to identify adipose tissue as a source of inflammation in obesity, which is a direct contributing factor in the development of obesity-associated insulin resistance.

    Article  PubMed  Google Scholar 

  5. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003). This study identifies that obesity is associated with a profound increase in the numbers of adipose tissue macrophages, which are an important source of adipose tissue inflammation in obesity in both humans and mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kane, H. & Lynch, L. Innate immune control of adipose tissue homeostasis. Trends Immunol. 40, 857–872 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Trim, W., Turner, J. E. & Thompson, D. Parallels in immunometabolic adipose tissue dysfunction with ageing and obesity. Front. Immunol. https://doi.org/10.3389/fimmu.2018.00169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thompson, D., Karpe, F., Lafontan, M. & Frayn, K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol. Rev. 92, 157–191 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Afshin, A. et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

    Article  PubMed  Google Scholar 

  11. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. https://doi.org/10.1038/nrendo.2017.90 (2017).

    Article  PubMed  Google Scholar 

  12. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Shimobayashi, M. et al. Insulin resistance causes inflammation in adipose tissue. J. Clin. Invest. 128, 1538–1550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Asp. Med. 34, 1–11 (2013).

    Article  CAS  Google Scholar 

  15. Exley, M. A., Hand, L., O’Shea, D. & Lynch, L. Interplay between the immune system and adipose tissue in obesity. J. Endocrinol. 223, R41–R48 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Cox, A. R., Chernis, N., Masschelin, P. M. & Hartig, S. M. Immune cells gate white adipose tissue expansion. Endocrinology 160, 1645–1658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Article  PubMed  Google Scholar 

  18. LaMarche, N. M., Kohlgruber, A. C. & Brenner, M. B. Innate T cells govern adipose tissue biology. J. Immunol. 201, 1827–1834 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Lynch, L. et al. Regulatory iNKT cells lack PLZF expression and control Treg cell and macrophage homeostasis in adipose tissue. Nat. Immunol. 16, 85–95 (2015). This study shows adipose tissue is home to a resident population of iNKT cells that provide important anti-inflammatory signals within the tissue as well as controlling the number, proliferation and suppressor function of Treg cells.

    Article  CAS  PubMed  Google Scholar 

  20. Kohlgruber, A. C. et al. gammadelta T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018). This is the first study to identify the importance of adipose tissue γδ T cells in body temperature regulation and in sustaining Treg cell abundance via IL-17A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pond, C. M. & Mattacks, C. A. Interactions between adipose tissue around lymph nodes and lymphoid cells in vitro. J. Lipid Res. 36, 2219–2231 (1995). This is one of the earliest studies to investigate the interplay between adipose tissue and the immune system, identifying in guinea pigs that the proximity of lymph nodes to adipose tissues influences both lipolysis and lymphocyte proliferation.

    Article  CAS  PubMed  Google Scholar 

  22. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005). This study identifies how most adipose tissue macrophages coalesce around dead/dying adipocytes in obese mice and humans with obesity so as to scavenge adipocyte debris.

    Article  CAS  PubMed  Google Scholar 

  23. Bénézech, C. et al. Inflammation-induced formation of fat-associated lymphoid clusters. Nat. Immunol. 16, 819–828 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rangel-Moreno, J. et al. Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 30, 731–743 (2009). This is the first report to elucidate the immunological functions of omental fat-associated lymphoid structures, showing how they promote immunity to peritoneal antigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Portis, B. Role of omentum of rabbits, dogs and guinea-pigs in antibody production. J. Infect. Dis. 34, 159–185 (1924).

    Article  CAS  Google Scholar 

  26. Frasca, D. & Blomberg, B. B. Adipose tissue: a tertiary lymphoid organ: does it change with age? Gerontology https://doi.org/10.1159/000502036 (2019).

    Article  PubMed  Google Scholar 

  27. Meza-Perez, S. & Randall, T. D. Immunological functions of the omentum. Trends Immunol. 38, 526–536 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carlow, D. A., Gold, M. R. & Ziltener, H. J. Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells. J. Immunol. 183, 1155–1165 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Shibayama, C. et al. Fibroblastic reticular cells initiate immune responses in visceral adipose tissues and secure peritoneal immunity. Sci. Immunol. 3, eaar4539 (2018).

    Article  PubMed  Google Scholar 

  30. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Jackson-Jones, L. H. et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat. Commun. 7, 12651 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jackson-Jones, L. H. et al. Stromal cells covering omental fat-associated lymphoid clusters trigger formation of neutrophil aggregates to capture peritoneal contaminants. Immunity 52, 700–715.e706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimotsuma, M. et al. Morpho-physiological function and role of omental milky spots as omentum-associated lymphoid tissue (OALT) in the peritoneal cavity. Lymphology 26, 90–101 (1993).

    CAS  PubMed  Google Scholar 

  35. Macdougall, C. E. & Longhi, M. P. Adipose tissue dendritic cells in steady-state. Immunology 156, 228–234 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. GeurtsvanKessel, C. H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus–infected mice. J. Exp. Med. 206, 2339–2349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ansel, K. M., Harris, R. B. S. & Cyster, J. G. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16, 67–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ha, S. A. et al. Regulation of B1 cell migration by signals through Toll-like receptors. J. Exp. Med. 203, 2541–2550 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen, L. et al. B-1a lymphocytes attenuate insulin resistance. Diabetes 64, 593–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Buechler, M. B. et al. A stromal niche defined by expression of the transcription factor WT1 mediates programming and homeostasis of cavity-resident macrophages. Immunity 51, 119–130.e115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mora, J. R. & von Andrian, U. H. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin. Immunol. 21, 28–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, M., Silva-Sanchez, A., Randall, T. D. & Meza-Perez, S. Specialized immune responses in the peritoneal cavity and omentum. J. Leukoc. Biol. https://doi.org/10.1002/JLB.5MIR0720-271RR (2020).

    Article  PubMed  Google Scholar 

  43. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Bertola, A. et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61, 2238–2247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han, S. J. et al. White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity 47, 1154–1168.e1156 (2017). This is the first study to show that adipose tissue is a reservoir for memory T cells, after infection, identifying white adipose tissue as a potentially major contributor to immunological memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Honce, R. & Schultz-Cherry, S. Impact of obesity on influenza a virus pathogenesis, immune response, and evolution. Front. Immunol. 10, 1071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Misumi, I. et al. Obesity expands a distinct population of T cells in adipose tissue and increases vulnerability to infection. Cell Rep. 27, 514–524.e515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sheridan, P. A. et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 36, 1072–1077 (2012).

    Article  CAS  Google Scholar 

  49. Porsche, C. E., Delproposto, J. B., Patrick, E., Zamarron, B. F. & Lumeng, C. N. Adipose tissue dendritic cell signals are required to maintain T cell homeostasis and obesity-induced expansion. Mol. Cell. Endocrinol. 505, 110740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Combs, T. P. et al. The adipocyte as an important target cell for Trypanosoma cruzi infection. J. Biol. Chem. 280, 24085–24094 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Caljon, G. et al. The dermis as a delivery site of trypanosoma brucei for tsetse flies. PLoS Pathog. 12, e1005744 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Damouche, A. et al. Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog. 11, e1005153 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tanowitz, H. B., Scherer, P. E., Mota, M. M. & Figueiredo, L. M. Adipose tissue: a safe haven for parasites? Trends Parasitol. 33, 276–284 (2017).

    Article  PubMed  Google Scholar 

  54. Trindade, S. et al. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19, 837–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Anhê, F. F. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat. Metab. 2, 233–242 (2020).

    Article  PubMed  Google Scholar 

  57. Bourgeois, C. et al. Specific biological features of adipose tissue, and their impact on HIV persistence. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02837 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Agarwal, N. et al. HIV-1 Vpr induces adipose dysfunction in vivo through reciprocal effects on PPAR/GR co-regulation. Sci. Transl. Med. 5, 213ra164 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Nagajyothi, F. et al. Trypanosoma cruzi infection of cultured adipocytes results in an inflammatory phenotype. Obesity 16, 1992–1997 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Beigier-Bompadre, M. et al. Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathog. 13, e1006676 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cabalén, M. E. et al. Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model. Oncotarget 7, 13400–13415 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nagajyothi, F. et al. Mechanisms of trypanosoma cruzi persistence in chagas disease. Cell Microbiol. 14, 634–643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuan, E. L. et al. Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node–homing adipose tissue dendritic cells. J. Immunol. 194, 5200 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Ivanov, S. et al. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J. Clin. Invest. 126, 1581–1591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Macdougall, C. E. et al. Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets. Cell Metab. 27, 588–601.e584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eisele, E. & Siliciano, R. F. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37, 377–388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lilienfeld, D. E., Vlahov, D., Tenney, J. H. & McLaughlin, J. S. Obesity and diabetes as risk factors for postoperative wound infections after cardiac surgery. Am. J. Infect. Control. 16, 3–6 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Nagajyothi, F. et al. Crucial role of the central leptin receptor in murine Trypanosoma cruzi (Brazil strain) infection. J. Infect. Dis. 202, 1104–1113 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Bourlier, V. et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation https://doi.org/10.1161/circulationaha.107.724096 (2008).

    Article  PubMed  Google Scholar 

  70. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014). This report is the first to show how inflammatory signals in adipose tissue are vital for healthy tissue turnover, expansion and remodelling.

    Article  CAS  PubMed  Google Scholar 

  71. Hubler, M. J., Peterson, K. R. & Hasty, A. H. Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol. Metab. 26, 101–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Travers, R. L., Motta, A. C., Betts, J. A., Bouloumie, A. & Thompson, D. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int. J. Obes. 39, 762–769 (2015).

    Article  CAS  Google Scholar 

  73. Silva, H. M. et al. Vasculature-associated adipose tissue macrophages dynamically adapt to inflammatory and metabolic challenges. J. Exp. Med. 216, 786–806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, Y. H., Petkova, A. P. & Granneman, J. G. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 18, 355–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Korf, H. et al. Depicting the landscape of adipose tissue-specific macrophages and their immunometabolic signatures during obesity. Immunometabolism 2, e200001 (2019).

    Google Scholar 

  76. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Fischer, K. et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat. Med. 23, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pirzgalska, R. M. et al. Sympathetic neuron–associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309 (2017). This is one of three reports in 2017 that identified a unique population of macrophages within adipose tissue that modulate sympathetic tone in adipose tissue through their sequestration and degradation of noradrenaline released by sympathetic nerves.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wolf, Y. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18, 665–674 (2017). This study demonstrates a unique population of adipose tissue macrophages that directly control innervation within brown adipose tissue by repelling sympathetic axon growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bartness, T. J., Vaughan, C. H. & Song, C. K. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. 34 (Suppl. 1), S36–S42 (2010).

    Article  Google Scholar 

  82. Griggio, M. A., Richard, D. & Leblanc, J. Effects of fasting and food restriction on sympathetic activity in brown adipose tissue in mice. J. Comp. Physiol. B 162, 602–606 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Seydoux, J., Assimacopoulos-Jeannet, F., Jeanrenaud, B. & Girardier, L. Alterations of brown adipose tissue in genetically obese (ob/ob) mice. I. Demonstration of loss of metabolic response to nerve stimulation and catecholamines and its partial recovery after fasting or cold adaptation. Endocrinology 110, 432–438 (1982).

    Article  CAS  PubMed  Google Scholar 

  84. Arner, P. Catecholamine-induced lipolysis in obesity. Int. J. Obes. Relat. Metab. Disord. 23 (Suppl. 1), 10–13 (1999).

    Article  PubMed  Google Scholar 

  85. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011). This study is the first to establish the NLRP3 inflammasome in the pathophysiology of obesity-associated inflammation and insulin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pang, C. et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am. J. Physiol. Endocrinol. Metab. 295, E313–E322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cho, C. H. et al. Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ. Res. 100, e47–e57 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 326–341.e327 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Watanabe, S. & Boucrot, E. Fast and ultrafast endocytosis. Curr. Opin. Cell Biol. 47, 64–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Weinstock, A. et al. Single-cell RNA sequencing of visceral adipose tissue leukocytes reveals that caloric restriction following obesity promotes the accumulation of a distinct macrophage population with features of phagocytic cells. Immunometabolism https://doi.org/10.20900/immunometab20190008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alemán, J. O. et al. Effects of rapid weight loss on systemic and adipose tissue inflammation and metabolism in obese postmenopausal women. J. Endocr. Soc. 1, 625–637 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. https://doi.org/10.1016/j.cmet.2014.08.010 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Coats, B. R. et al. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep. 20, 3149–3161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e614 (2019). This study produces the first single-cell atlas to compare both mouse and human white adipose tissue and identifies a unique population of LAMs that regulate tissue homeostasis in obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lynch, L. et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37, 574–587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lynch, L. et al. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur. J. Immunol. 39, 1893–1901 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Lynch, L. Adipose invariant natural killer T cells. Immunology 142, 337–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huh, J. Y. et al. A novel function of adipocytes in lipid antigen presentation to iNKT cells. Mol. Cell Biol. 33, 328–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rakhshandehroo, M. et al. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein. J. Biol. Chem. 289, 22128–22139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rakhshandehroo, M. et al. Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1157–1167 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Park, J. et al. Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes Dev. 33, 1657–1672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. LaMarche, N. M. et al. Distinct iNKT cell populations use IFNγ or ER stress-induced IL-10 to control adipose tissue homeostasis. Cell Metab. https://doi.org/10.1016/j.cmet.2020.05.017 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wu, L. et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc. Natl Acad. Sci. USA 109, E1143–E1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pamir, N. et al. Granulocyte/macrophage colony-stimulating factor-dependent dendritic cells restrain lean adipose tissue expansion. J. Biol. Chem. 290, 14656–14667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mattacks, C. A., Sadler, D. & Pond, C. M. The control of lipolysis in perinodal and other adipocytes by lymph node and adipose tissue-derived dendritic cells in rats. Adipocytes 1, 43–56 (2005).

    Google Scholar 

  107. Ibrahim, J. et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143, 1061–1072 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cao, W. et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J. Immunol. 192, 2920 (2014).

    Article  CAS  Google Scholar 

  110. Cipolletta, D. et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue T-reg cells. Nature 486, 549–U151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009). This is the first study to identify that lean adipose tissue is host to a unique population of resident Treg cells that protect metabolic homeostasis within the tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jones, J. R. et al. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc. Natl Acad. Sci. USA 102, 6207–6212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Elieh Ali Komi, D., Shafaghat, F. & Christian, M. Crosstalk between mast cells and adipocytes in physiologic and pathologic conditions. Clin. Rev. Allergy Immunol. 58, 388–400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hirai, S. et al. Involvement of mast cells in adipose tissue fibrosis. Am. J. Physiol. Endocrinol. Metab. 306, E247–E255 (2013).

    Article  PubMed  CAS  Google Scholar 

  116. Tanaka, A., Nomura, Y., Matsuda, A., Ohmori, K. & Matsuda, H. Mast cells function as an alternative modulator of adipogenesis through 15-deoxy-delta-12, 14-prostaglandin J2. Am. J. Physiol. Cell Physiol. 301, C1360–C1367 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Saslow, L. R. et al. A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes. PLoS ONE 9, e91027 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Grey, N. J., Karl, I. & Kipnis, D. M. Physiologic mechanisms in the development of starvation ketosis in man. Diabetes 24, 10–16 (1975).

    Article  CAS  PubMed  Google Scholar 

  119. Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Betz, M. J. & Enerback, S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol. 14, 77–87 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Villarroya, J. et al. New insights into the secretory functions of brown adipose tissue. J. Endocrinol. https://doi.org/10.1530/joe-19-0295 (2019).

    Article  PubMed  Google Scholar 

  123. Mahlakõiv, T. et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4, eaax0416 (2019). This report identifies the importance of stromal cell-derived IL-33 in regulating immune cell homeostasis and anti-inflammatory signals in adipose tissue.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Spallanzani, R. G. et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci. Immunol. 4, eaaw3658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hu, B. et al. gammadelta T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu, Y. et al. IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184, 4307–4316 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, M.-W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015). This is the first study to show the importance of ILC2s in the regulation of adipose tissue function and as a source of Met-Enk, directly inducing adipocyte beiging.

    Article  CAS  PubMed  Google Scholar 

  129. Medrikova, D. et al. Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS ONE 10, e0118534 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Kolodin, D. et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21, 543–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Figueiro, F. et al. Methotrexate up-regulates ecto-5′-nucleotidase/CD73 and reduces the frequency of T lymphocytes in the glioblastoma microenvironment. Purinergic Signal. 12, 303–312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fakhimi, M., Talei, A. R., Ghaderi, A., Habibagahi, M. & Razmkhah, M. Helios, CD73 and CD39 induction in regulatory T cells exposed to adipose derived mesenchymal stem cells. Cell J. 22, 236–244 (2020).

    PubMed  Google Scholar 

  135. Schuler, P. J. et al. Human CD4+CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin. Exp. Immunol. 177, 531–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lynch, L. et al. iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab. 24, 510–519 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fabbiano, S. et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 24, 434–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Villarroya, F., Cereijo, R., Villarroya, J., Gavalda-Navarro, A. & Giralt, M. Toward an understanding of how immune cells control brown and beige adipobiology. Cell Metab. 27, 954–961 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Garcia-Zepeda, E. A. et al. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat. Med. 2, 449–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Knights, A. J. et al. Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nat. Commun. 11, 2922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Löffler, D. et al. METRNL decreases during adipogenesis and inhibits adipocyte differentiation leading to adipocyte hypertrophy in humans. Int. J. Obes. 41, 112–119 (2017).

    Article  CAS  Google Scholar 

  143. Li, Z.-Y. et al. Subfatin is a novel adipokine and unlike meteorin in adipose and brain expression. CNS Neurosci. Ther. 20, 344–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yabut, J. M. et al. Genetic deletion of mast cell serotonin synthesis prevents the development of obesity and insulin resistance. Nat. Commun. 11, 463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, X. et al. Functional inactivation of mast cells enhances subcutaneous adipose tissue browning in mice. Cell Rep. 28, 792–803.e794 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Moysidou, M. et al. CD8+ T cells in beige adipogenesis and energy homeostasis. JCI Insight 3, e95456 (2018).

    Article  PubMed Central  Google Scholar 

  149. Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1304–1310 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. McLaughlin, T. et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler. Thromb. Vasc. Biol. 34, 2637–2643 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pandolfi, J. B. et al. ATP-induced inflammation drives tissue-resident Th17 cells in metabolically unhealthy obesity. J. Immunol. https://doi.org/10.4049/jimmunol.1502506 (2016).

    Article  PubMed  Google Scholar 

  153. Cipolletta, D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 142, 517–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kalin, S. et al. A Stat6/Pten axis links regulatory T cells with adipose tissue function. Cell Metab. 26, 475–492.e477 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Toubal, A. et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun. 11, 3755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Magalhaes, I. et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Invest. 125, 1752–1762 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. https://doi.org/10.1016/j.cmet.2019.10.006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Frasca, D. et al. Obesity decreases B cell responses in young and elderly individuals. Obesity 24, 615–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Frasca, D. & Blomberg, B. B. Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01003 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Srikakulapu, P. & McNamara, C. A. B lymphocytes and adipose tissue inflammation. Arterioscler. Thromb. Vasc. Biol. 40, 1110–1122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011). This is the first study to identify B cells as a key player in the inflammatory dysregulation that occurs within adipose tissue in obesity, and that they also secrete autoantibodies that impair insulin signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Frasca, D. et al. Identification and characterization of adipose tissue-derived human antibodies with “anti-self” specificity. Front. Immunol. https://doi.org/10.3389/fimmu.2020.00392 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Ghosh, A. R. et al. Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation. Diabetes 65, 3440–3452 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Boulenouar, S. et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity 46, 273–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Wang, H. et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat. Commun. 10, 3254 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Oldenhove, G. et al. PD-1 is involved in the dysregulation of type 2 innate lymphoid cells in a murine model of obesity. Cell Rep. 25, 2053–2060.e2054 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018). This study establishes how the lipotoxic environment in obesity causes a metabolic reprogramming of natural killer cells, impairing their immunosurveillance capabilities, establishing another link between obesity and cancer.

    Article  CAS  PubMed  Google Scholar 

  168. Theurich, S. et al. IL-6/Stat3-dependent induction of a distinct, obesity-associated NK cell subpopulation deteriorates energy and glucose homeostasis. Cell Metab. 26, 171–184.e176 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Lee, B.-C. et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23, 685–698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011). This is the first study to identify the importance of eosinophils in maintaining adipose tissue metabolic and inflammatory homeostasis via their production of IL-4 and IL-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lee, E.-H. et al. Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Sci. Rep. 8, 9894 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Bolus, W. R., Kennedy, A. J. & Hasty, A. H. Obesity-induced reduction of adipose eosinophils is reversed with low-calorie dietary intervention. Physiol. Rep. 6, e13919 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Brigger, D. et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat. Metab. 2, 688–702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Watanabe, Y. et al. Bidirectional crosstalk between neutrophils and adipocytes promotes adipose tissue inflammation. FASEB J. 33, 11821–11835 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012). This study identifies neutrophils as the first leukocytes to infiltrate adipose tissue in response to a high-fat diet, thereby exacerbating inflammatory and metabolic dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Amano, S. U. et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. https://doi.org/10.1016/j.cmet.2013.11.017 (2014).

    Article  PubMed  Google Scholar 

  178. Ye, J. & Keller, J. N. Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging 2, 361–368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Speakman, J. R. The evolution of body fatness: trading off disease and predation risk. J. Exp. Biol. 221, jeb167254 (2018).

    Article  PubMed  Google Scholar 

  180. Ganeshan, K. et al. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell 177, 399–413.e312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998). This study identifies leptin as a potent modulator of T cell function, identifying a direct communication network between adipocytes and the immune system.

    Article  CAS  PubMed  Google Scholar 

  182. Kovacikova, M. et al. Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int. J. Obes. https://doi.org/10.1038/ijo.2010.112 (2011).

    Article  Google Scholar 

  183. Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114.e1117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nagai, M. et al. Fasting-refeeding impacts immune cell dynamics and mucosal immune responses. Cell 178, 1072–1087.e1014 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101.e1015 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fazeli, P. K. et al. Prolonged fasting drives a program of metabolic inflammation in human adipose tissue. Mol. Metab. 42, 101082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nei, M., Xu, P. & Glazko, G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl Acad. Sci. USA 98, 2497 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Shay, T. et al. Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc. Natl Acad. Sci. USA 110, 2946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Laparra, A. et al. The frequencies of immunosuppressive cells in adipose tissue differ in human, non-human primate, and mouse models. Front. Immunol. 10, 117–117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Harman-Boehm, I. et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab. 92, 2240–2247 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Mestas, J. & Hughes, C. C. W. Of Mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Haley, P. J. Species differences in the structure and function of the immune system. Toxicology 188, 49–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Valiathan, R., Ashman, M. & Asthana, D. Effects of ageing on the immune system: infants to elderly. Scand. J. Immunol. 83, 255–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tao, L. & Reese, T. A. Making mouse models that reflect human immune responses. Trends immunol. 38, 181–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Giordano, A., Frontini, A. & Cinti, S. Convertible visceral fat as a therapeutic target to curb obesity. Nat. Rev. Drug Discov. 15, 405–424 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Carpentier, A. C. et al. Brown adipose tissue energy metabolism in humans. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00447 (2018).

    Article  Google Scholar 

  201. Ekelund, U. et al. Physical activity but not energy expenditure is reduced in obese adolescents: a case-control study. Am. J. Clin. Nutr. 76, 935–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  202. Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dutton, G. R. et al. 25-year weight gain in a racially balanced sample of U.S. adults: the CARDIA study. Obesity 24, 1962–1968 (2016).

    Article  PubMed  Google Scholar 

  204. Sanghvi, A., Redman, L. M., Martin, C. K., Ravussin, E. & Hall, K. D. Validation of an inexpensive and accurate mathematical method to measure long-term changes in free-living energy intake. Am. J. Clin. Nutr. 102, 353–358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Muller, M. J., Enderle, J. & Bosy-Westphal, A. Changes in energy expenditure with weight gain and weight loss in humans. Curr. Obes. Rep. 5, 413–423 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Muller, M. J. et al. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am. J. Clin. Nutr. 102, 807–819 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 AI134861, ERC Starting Grant (679173), SFI FRL3865 and an American Diabetes Association grant (1-16-JDF-061).

Author information

Authors and Affiliations

Authors

Contributions

W.V.T. and L.L. contributed equally to the article.

Corresponding author

Correspondence to L. Lynch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks Sean Hartig, Cecile Benezec and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Parabiotic

The surgical attachment of two living organisms (mice) that allows the connection of circulatory systems.

Innate-like B cell

An unconventional B cell that responds to innate signals such as Toll-like receptor agonists and microbial pathogens. Innate-like B cells produce regulatory cytokines (for example, IL-10) and large amounts of natural antibodies (primarily IgM) in the steady state, and provide early responses to infectious challenges.

Crowning macrophages

Large clusters of macrophages that coalesce around dead or dying adipocytes to facilitate the clearance and sequestration of cellular debris and lipids.

Matrix-induced neogenesis

The process by which, in the case of adipose tissue, macrophages interact with the extracellular matrix proteins that facilitate the recruitment, proliferation and differentiation of adipocyte progenitor cells, thereby leading to adipose tissue remodelling and adipogenesis.

Adipocyte browning and thermogenesis

Adipocyte browning is the adaptive process white adipocytes undergo in response to often environmentally derived signals such as cold exposure whereupon they increase their rate of mitochondrial biogenesis and mitochondrial respiration. Adipocyte thermogenesis is driven by the uncoupling of oxidative metabolism from ATP production, resulting in proton leakage across the mitochondrial inner membrane, eventually leading to heat production.

NLRP3 inflammasome

A multimeric protein complex that acts as an intracellular sensor for a wide-range of environmental and endogenous danger signals. Activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome initiates inflammation-induced cell death and triggers the release of IL-1β and IL-18.

Ketogenic diet

A high-fat, low-carbohydrate diet that drives a reliance on fats over carbohydrates for whole-body energetic needs. The resultant lack of available carbohydrates brings about the biochemical production of ketone bodies from fatty acids by the liver, inducing a metabolic state called ‘ketosis’.

Vγ6+δ1+ T cells

A subpopulation of γδ T cells characterized by their distinct T cell receptor γ and δ variable chains that specifically home (by an unknown mechanism) to, among other sites, adipose tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trim, W.V., Lynch, L. Immune and non-immune functions of adipose tissue leukocytes. Nat Rev Immunol 22, 371–386 (2022). https://doi.org/10.1038/s41577-021-00635-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00635-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing