Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural insights into the evolution of the RAG recombinase

Abstract

Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)–RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein–DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of V(D)J recombination, RAG and RAGL transposases.
Fig. 2: Transposition, recombination and evolution of the RAG recombinase.
Fig. 3: Structural comparison of HzTransib and RAG illustrating functional implications of RAG2 acquisition.
Fig. 4: Regulation of transposition in RAG and RAGL proteins.
Fig. 5: Domains and residues regulating RAG binding and cleavage activity.
Fig. 6: Distribution of modules in RAG and RAGL proteins in metazoans.

Similar content being viewed by others

References

  1. Flajnik, M. F. Re-evaluation of the immunological Big Bang. Curr. Biol. 24, R1060–R1065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boehm, T. et al. Evolution of alternative adaptive immune systems in vertebrates. Annu. Rev. Immunol. 36, 19–42 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinzelle, L., Izsvak, Z. & Ivics, Z. Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell. Mol. Life Sci. 66, 1073–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Cosby, R. L. et al. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 371, eabc6405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McClintock, B. Induction of instability at selected loci in maize. Genetics 38, 579–599 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hancks, D. C. & Kazazian, H. H. Jr Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Burns, K. H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol. 15, 51–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, S. M. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv. Immunol. 56, 27–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Schatz, D. G. & Swanson, P. C. V(D)J recombination: mechanisms of initiation. Annu. Rev. Genet. 45, 167–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, J. M. & Simkus, C. The roles of the RAG1 and RAG2 “non-core” regions in V(D)J recombination and lymphocyte development. Arch. Immunol. Ther. Exp. 57, 105–116 (2009).

    Article  CAS  Google Scholar 

  13. Callebaut, I. & Mornon, J. P. The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis. Cell. Mol. Life Sci. 54, 880–891 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, M. S., Lapkouski, M., Yang, W. & Gellert, M. Crystal structure of the V(D)J recombinase RAG1–RAG2. Nature 518, 507–511 (2015). Using X-ray crystallography, this paper reports the first structure of the RAG1–RAG2 protein complex, revealing the domain architecture and interaction interface of the RAG1 and RAG2 core regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swanson, P. C. The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunol. Rev. 200, 90–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ru, H. et al. Molecular mechanism of V(D)J recombination from synaptic RAG1–RAG2 complex structures. Cell 163, 1138–1152 (2015). Using cryo-electron microscopy, this paper describes the first structures of RAG1–RAG2–RSS synaptic complexes, revealing fundamental features of RAG–RSS interactions and RAG domain movements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, M. S. et al. Cracking the DNA code for V(D)J recombination. Mol. Cell 70, 358–370 e354 (2018). Using X-ray crystallography and cryo-electron microscopy, this paper reports high-resolution structures of multiple RAG1–RAG2–RSS synaptic complexes, providing a wealth of insight into RAG domain movements and RAG–RSS interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280, 288–294 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Thompson, C. B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Ru, H. et al. DNA melting initiates the RAG catalytic pathway. Nat. Struct. Mol. Biol. 25, 732–742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, X. et al. Cutting antiparallel DNA strands in a single active site. Nat. Struct. Mol. Biol. 27, 119–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, X. et al. How mouse RAG recombinase avoids DNA transposition. Nat. Struct. Mol. Biol. 27, 127–133 (2020). Using cryo-electron microscopy, this paper reports the structure of the RAG STC, revealing that target DNA contains two bends of nearly 90°.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang, Y., Corbett, E., Wu, S. & Schatz, D. G. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. EMBO J. 39, e105857 (2020). Using cryo-electron microscopy, this paper reports structures of the RAG TCC and STC using RAG1 containing an R848M mutation, revealing the mechanism by which mutation of RAG1 at position 848 regulates transposition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, C., Yang, Y. & Schatz, D. G. Structures of a RAG-like transposase during cut-and-paste transposition. Nature 575, 540–544 (2019). Using X-ray crystallography and cryo-electron microscopy, this paper reports structures of HzTransib transposase that span the entire transposition reaction, from the apo enzyme to the STC, revealing fundamental similarities to and important differences from the equivalent RAG structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, S. & Li, X. Molecular characterization of the first intact Transib transposon from Helicoverpa zea. Gene 408, 51–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y. et al. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 569, 79–84 (2019). This study uses cryo-electron microscopy, biochemistry and functional assays to determine structures of BbRAGL transposase–DNA complexes, which reveal the modular design of BbRAGL and RAG enzymes, and to identify evolutionary adaptations that powerfully suppress RAG-mediated transposition in jawed vertebrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, S. et al. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166, 102–114 (2016). This paper reports the discovery of the ProtoRAG family transposon BbRAGL in the genome of the lancelet B. belcheri and shows mechanistic parallels between BbRAGL transposase and the RAG recombinase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bednarski, J. J. & Sleckman, B. P. At the intersection of DNA damage and immune responses. Nat. Rev. Immunol. 19, 231–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carmona, L. M. & Schatz, D. G. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J. 284, 1590–1605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e181 (2005). This paper demonstrates that numerous invertebrate genomes contain Transib transposons encoding transposases that resemble the RAG1 core region and have TIRs that resemble the 12RSS and 23RSS that mediate V(D)J recombination.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Martin, E. C. et al. Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin. Mob. DNA 11, 17 (2020). This paper identifies RAG1LRAG2L gene pairs and RAGL transposons in the genomes of protostomes and a cnidarian, providing evidence that the RAGL transposon arose earlier and spread more widely in evolution than previously thought.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morales Poole, J. R., Huang, S. F., Xu, A., Bayet, J. & Pontarotti, P. The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 69, 391–400 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Hsu, E. & Lewis, S. M. in Molecular Biology of B Cells Ch. 9 (eds Alt, F. W., Honjo, T., Radbruch, A., & Reth, M.) 133–149 (Academic, 2015).

  36. Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Jangam, D., Feschotte, C. & Betran, E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33, 817–831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koonin, E. V., Makarova, K. S., Wolf, Y. I. & Krupovic, M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat. Rev. Genet. 21, 119–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Ru, H., Zhang, P. & Wu, H. Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination. Curr. Opin. Struct. Biol. 53, 178–186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, X., Gellert, M. & Yang, W. Inner workings of RAG recombinase and its specialization for adaptive immunity. Curr. Opin. Struct. Biol. 71, 79–86 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Hencken, C. G., Li, X. & Craig, N. L. Functional characterization of an active Rag-like transposase. Nat. Struct. Mol. Biol. 19, 834–836 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carmona, L. M., Fugmann, S. D. & Schatz, D. G. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes Dev. 30, 909–917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fugmann, S. D. The origins of the Rag genes — from transposition to V(D)J recombination. Semin. Immunol. 22, 10–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Orgel, L. E., Crick, F. H. & Sapienza, C. Selfish DNA. Nature 288, 645–646 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Helmink, B. A. & Sleckman, B. P. The response to and repair of RAG-mediated DNA double-strand breaks. Annu. Rev. Immunol. 30, 175–202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lescale, C. & Deriano, L. The RAG recombinase: beyond breaking. Mech. Ageing Dev. 165, 3–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Chatterji, M., Tsai, C. L. & Schatz, D. G. Mobilization of RAG-generated signal ends by transposition and insertion in vivo. Mol. Cell Biol. 26, 1558–1568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reddy, Y. V., Perkins, E. J. & Ramsden, D. A. Genomic instability due to V(D)J recombination-associated transposition. Genes Dev. 20, 1575–1582 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Curry, J. D. et al. Chromosomal reinsertion of broken RSS ends during T cell development. J. Exp. Med. 204, 2293–2303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barsoum, E., Martinez, P. & Astrom, S. U. α3, a transposable element that promotes host sexual reproduction. Genes Dev. 24, 33–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng, C. Y., Vogt, A., Mochizuki, K. & Yao, M. C. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol. Biol. Cell 21, 1753–1762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rajaei, N., Chiruvella, K. K., Lin, F. & Astrom, S. U. Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc. Natl Acad. Sci. USA 111, 15491–15496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng, C. Y. et al. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev. 30, 2724–2736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng, L. et al. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucl. Acids Res. 45, 9481–9502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanson, S. J. & Wolfe, K. H. An evolutionary perspective on yeast mating-type switching. Genetics 206, 9–32 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Majumdar, S., Singh, A. & Rio, D. C. The human THAP9 gene encodes an active P-element DNA transposase. Science 339, 446–448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Henssen, A. G. et al. Genomic DNA transposition induced by human PGBD5. eLife 4, e10565 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Haniford, D. B., Chelouche, A. R. & Kleckner, N. A specific class of IS10 transposase mutants are blocked for target site interactions and promote formation of an excised transposon fragment. Cell 59, 385–394 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Li, X. et al. piggyBac transposase tools for genome engineering. Proc. Natl Acad. Sci. USA 110, E2279–E2287 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kesselring, L. et al. A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucl. Acids Res. 48, 316–331 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Coussens, M. A. et al. RAG2’s acidic hinge restricts repair-pathway choice and promotes genomic stability. Cell Rep. 4, 870–878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Corneo, B. et al. Rag mutations reveal robust alternative end joining. Nature 449, 483–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Lu, C., Ward, A., Bettridge, J., Liu, Y. & Desiderio, S. An autoregulatory mechanism imposes allosteric control on the V(D)J recombinase by histone H3 methylation. Cell Rep. 10, 29–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Ward, A., Kumari, G., Sen, R. & Desiderio, S. The RAG-2 inhibitory domain gates accessibility of the V(D)J recombinase to chromatin. Mol. Cell Biol. 38, e00159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kriatchko, A. N., Anderson, D. K. & Swanson, P. C. Identification and characterization of a gain-of-function RAG-1 mutant. Mol. Cell Biol. 26, 4712–4728 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yin, F. F. et al. Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Nat. Struct. Mol. Biol. 16, 499–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Lapkouski, M., Chuenchor, W., Kim, M. S., Gellert, M. & Yang, W. Assembly pathway and characterization of the RAG1/2-DNA paired and signal-end complexes. J. Biol. Chem. 290, 14618–14625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cuomo, C. A., Mundy, C. L. & Oettinger, M. A. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol. Cell Biol. 16, 5683–5690 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramsden, D. A., McBlane, J. F., van Gent, D. C. & Gellert, M. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 15, 3197–3206 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, M. & Swanson, P. C. V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies. J. Biol. Chem. 283, 6717–6727 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6–RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu, J. et al. Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163, 947–959 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marculescu, R. et al. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair. 5, 1246–1258 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Lieber, M. R. Mechanisms of human lymphoid chromosomal translocations. Nat. Rev. Cancer 16, 387–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koralov, S. B., Novobrantseva, T. I., Konigsmann, J., Ehlich, A. & Rajewsky, K. Antibody repertoires generated by VH replacement and direct VH to JH joining. Immunity 25, 43–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Z. VH replacement in mice and humans. Trends Immunol. 28, 132–137 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. Grundy, G. J., Yang, W. & Gellert, M. Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination. Proc. Natl Acad. Sci. USA 107, 22487–22492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arbuckle, J. L., Rahman, N. S., Zhao, S., Rodgers, W. & Rodgers, K. K. Elucidating the domain architecture and functions of non-core RAG1: the capacity of a non-core zinc-binding domain to function in nuclear import and nucleic acid binding. BMC Biochem. 12, 23 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bellon, S. F., Rodgers, K. K., Schatz, D. G., Coleman, J. E. & Steitz, T. A. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nat. Struct. Biol. 4, 586–591 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Jones, J. M. & Gellert, M. Autoubiquitylation of the V(D)J recombinase protein RAG1. Proc. Natl Acad. Sci. USA 100, 15446–15451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yurchenko, V., Xue, Z. & Sadofsky, M. The RAG1 N-terminal domain is an E3 ubiquitin ligase. Genes Dev. 17, 581–585 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Panchin, Y. & Moroz, L. L. Molluscan mobile elements similar to the vertebrate recombination-activating genes. Biochem. Biophys. Res. Commun. 369, 818–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kapitonov, V. V. & Koonin, E. V. Evolution of the RAG1–RAG2 locus: both proteins came from the same transposon. Biol. Direct 10, 20 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Fugmann, S. D., Messier, C., Novack, L. A., Cameron, R. A. & Rast, J. P. An ancient evolutionary origin of the Rag1/2 gene locus. Proc. Natl Acad. Sci. USA 103, 3728–3733 (2006). This paper is the first to report a RAG1L–RAG2L gene pair in any organism other than a jawed vertebrate (in this case, the purple sea urchin S. purpuratus), providing evidence for an early evolutionary origin for the RAG recombinase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schabla, N. M., Perry, G. A., Palmer, V. L. & Swanson, P. C. VprBP (DCAF1) regulates RAG1 expression independently of Dicer by mediating RAG1 degradation. J. Immunol. 201, 930–939 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Brecht, R. M. et al. Nucleolar localization of RAG1 modulates V(D)J recombination activity. Proc. Natl Acad. Sci. USA 117, 4300–4309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Singh, S. K. & Gellert, M. Role of RAG1 autoubiquitination in V(D)J recombination. Proc. Natl Acad. Sci. USA 112, 8579–8583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Beilinson, H. A. et al. The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination. J. Exp. Med. 218, e20210250 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grazini, U. et al. The RING domain of RAG1 ubiquitylates histone H3: a novel activity in chromatin-mediated regulation of V(D)J joining. Mol. Cell 37, 282–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Y., Subrahmanyam, R., Chakraborty, T., Sen, R. & Desiderio, S. A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen–receptor–gene rearrangement. Immunity 27, 561–571 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matthews, A. G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ji, Y. et al. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141, 419–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Teng, G. et al. RAG represents a widespread threat to the lymphocyte genome. Cell 162, 751–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maman, Y., Teng, G., Seth, R., Kleinstein, S. H. & Schatz, D. G. RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucl. Acids Res. 44, 9624–9637 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shimazaki, N., Tsai, A. G. & Lieber, M. R. H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol. Cell 34, 535–544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wilson, D. R., Norton, D. D. & Fugmann, S. D. The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails. Dev. Comp. Immunol. 32, 1221–1230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alder, M. N. et al. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310, 1970–1973 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Hirano, M., Das, S., Guo, P. & Cooper, M. D. The evolution of adaptive immunity in vertebrates. Adv. Immunol. 109, 125–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Morimoto, R. et al. Cytidine deaminase 2 is required for VLRB antibody gene assembly in lampreys. Sci. Immunol. 5, eaba0925 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  PubMed  CAS  Google Scholar 

  102. Krishnan, A., Iyer, L. M., Holland, S. J., Boehm, T. & Aravind, L. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc. Natl Acad. Sci. USA 115, E3201–E3210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, M. C. et al. AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat. Commun. 9, 1948 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Craig, N. L. in Mobile DNA III (eds Craig, N. L. et al.) 3–39 (ASM, 2015).

  106. McBlane, J. F. et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387–395 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Hickman, A. B. & Dyda, F. in Mobile DNA III (eds Craig, N. L. et al.) 531–553 (ASM, 2015).

  108. van Gent, D. C., Mizuuchi, K. & Gellert, M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271, 1592–1594 (1996).

    Article  PubMed  Google Scholar 

  109. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Kapitonov, V. V. & Jurka, J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl Acad. Sci. USA 100, 6569–6574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Montano, S. P. & Rice, P. A. Moving DNA around: DNA transposition and retroviral integration. Curr. Opin. Struct. Biol. 21, 370–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rice, P. A. & Baker, T. A. Comparative architecture of transposase and integrase complexes. Nat. Struct. Biol. 8, 302–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Hickman, A. B., Chandler, M. & Dyda, F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 45, 50–69 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Martin and A. Petrescu for sequence and structural analyses that contributed to developing the conceptual framework for this Review, and A. Roger and D. Pisani for advice on the timing of divergence of metazoan lineages. This work was supported by US National Institutes of Health (NIH) grants AI137079 and AI32524 (to D.G.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the design of the figures, discussion of content and writing of the manuscript.

Corresponding author

Correspondence to David G. Schatz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks T. Boehm; M. Criscitiello, who co-reviewed with J. Ott; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

RCSB Protein Data Bank (PDB): https://www.rcsb.org/

Glossary

Selfish DNA

A genetic element that can make additional copies of itself in the genome of a host and that provides no specific benefit to the host.

Terminal inverted repeats

(TIRs). Inverted repeat sequences found at the extreme termini of transposons that are recognized and cleaved by the transposase during transposition.

Target capture complex

(TCC). A complex formed after DNA cleavage that contains transposase, terminal inverted repeats (TIRs) flanking the transposon and captured target DNA, and in which TIRs and target DNA have yet to be covalently linked.

Strand transfer complex

(STC). A complex formed from the target capture complex that contains transposase, terminal inverted repeats (TIRs) and captured target DNA, in which covalent links connect the TIRs to the target DNA.

Coding joints

The products that result from joining of the two coding segments after DNA cleavage during V(D)J recombination.

Signal joints

The products that result from joining of the two recombination signal sequences after DNA cleavage during V(D)J recombination.

Transposon molecular domestication

An evolutionary process in which components of a transposon are repurposed to carry out a function that is useful to the host organism.

Pre-reaction complex

A protein–DNA complex in which RAG or RAG-like (RAGL) protein is bound to its DNA substrates but DNA cleavage has not yet been initiated.

Hairpin-forming complex

(HFC). An intermediate in the DNA cleavage reaction in which RAG or RAG-like (RAGL) protein is bound to its DNA substrates and DNA nicking, but not hairpin formation, has occurred.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, Y., Liu, C.C. et al. Structural insights into the evolution of the RAG recombinase. Nat Rev Immunol 22, 353–370 (2022). https://doi.org/10.1038/s41577-021-00628-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00628-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing