Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases

Abstract

Mast cells have crucial roles in allergic and other inflammatory diseases. Preclinical approaches provide circumstantial evidence for mast cell involvement in many diseases, but these studies have major limitations — for example, there is still a lack of suitable mouse models for some mast cell-driven diseases such as urticaria. Some approaches for studying mast cells are invasive or can induce severe reactions, and very few mediators or receptors are specific for mast cells. Recently, several drugs that target human mast cells have been developed. These include monoclonal antibodies and small molecules that can specifically inhibit mast cell degranulation via key receptors (such as FcεRI), that block specific signal transduction pathways involved in mast cell activation (for example, BTK), that silence mast cells via inhibitory receptors (such as Siglec-8) or that reduce mast cell numbers and prevent their differentiation by acting on the mast/stem cell growth factor receptor KIT. In this Review, we discuss the existing and emerging therapies that target mast cells, and we consider how these treatments can help us to understand mast cell functions in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches for characterizing the functions of human mast cells in disease.
Fig. 2: Timeline for the development of mast cell-targeted treatments.
Fig. 3: Current targets and relevant mast cell-targeted treatments under development.

Similar content being viewed by others

References

  1. Ehrlich, P. Beiträge zur Kenntniss der Anilinfärbungen und ihrer Verwendung in der mikroskopischen Technik [German]. Archiv. f. mikrosk. Anat. 13, 263–277 (1877).

    Article  Google Scholar 

  2. Abraham, S. N. & John, A. L. S. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440–452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maurer, M., Köberle, M., Metz, M. & Biedermann, T. Mast cells: promoters of health and modulators of disease. J. Allergy Clin. Immunol. 144, 1–3 (2019).

    Article  CAS  Google Scholar 

  4. Wernersson, S. & Pejler, G. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol. 14, 478–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Di Nardo, A., Yamasaki, K., Dorschner, R. A., Lai, Y. & Gallo, R. L. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus Infection of the skin. J. Immunol. 180, 7565–7573 (2008).

    Article  PubMed  Google Scholar 

  6. Zimmermann, C. et al. Mast cells are critical for controlling the bacterial burden and the healing of infected wounds. Proc. Natl Acad. Sci. USA 116, 20500–20504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. von Köckritz-Blickwede, M. et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111, 3070–3080 (2008).

    Article  CAS  Google Scholar 

  8. Metz, M. et al. Mast cells can enhance resistance to snake and honeybee venoms. Science 313, 526–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Marichal, T. et al. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity 39, 963–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Starkl, P. et al. IgE effector mechanisms, in concert with mast cells, contribute to acquired host defense against staphylococcus aureus. Immunity 53, 793–804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soto, D., Malmsten, C., Blount, J. L., Muilenburg, D. J. & Caughey, G. H. Genetic deficiency of human mast cell α-tryptase. Clin. Exp. Allergy 32, 1000–1006 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Desai, A. et al. GATA-2-deficient mast cells limit IgE-mediated immediate hypersensitivity reactions in human subjects. J. Allergy Clin. Immunol. 144, 613–617 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Sandig, H. & Bulfone-Paus, S. TLR signaling in mast cells: common and unique features. Front. Immunol. 3, 185 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moon, T. C. et al. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 3, 111–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Bischoff, S. C. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat. Rev. Immunol. 7, 93–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Galli, S. J. et al. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv. Immunol. 126, 45–127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo, Y. et al. Chymase-Cre; Mcl-1fl/fl mice exhibit reduced numbers of mucosal mast cells. Front. Immunol. 10, 2399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dahlin, J. S. et al. The ingenious mast cell: contemporary insights into mast cell behavior and function. Allergy https://doi.org/10.1111/all.14881 (2021).

    Article  PubMed  Google Scholar 

  20. Maurer, M. et al. Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J. Allergy Clin. Immunol. 144, 19–30 (2019).

    Article  CAS  Google Scholar 

  21. Feyerabend, T. B. et al. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35, 832–844 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Ghouse, S. M. et al. Although abundant in tumor tissue, mast cells have no effect on immunological micro-milieu or growth of HPV-induced or transplanted tumors. Cell Rep. 22, 27–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Gutierrez, DarioA. et al. Hematopoietic Kit deficiency, rather than lack of mast cells, protects mice from obesity and insulin resistance. Cell Metab. 21, 678–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Gaudenzio, N., Marichal, T., Galli, S. J. & Reber, L. L. Genetic and imaging approaches reveal pro-inflammatory and immunoregulatory roles of mast cells in contact hypersensitivity. Front. Immunol. 9, 1275 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mencarelli, A. et al. A humanized mouse model to study mast cells mediated cutaneous adverse drug reactions. J. Leukoc. Biol. 107, 797–807 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Dispenza, M. C. et al. Bruton’s tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J. Clin. Invest. 130, 4759–4770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Kuehn, H. S., Radinger, M. & Gilfillan, A. M. Measuring mast cell mediator release. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im0738s91 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wolf, K. et al. A group of cationic amphiphilic drugs activates MRGPRX2 and induces scratching behavior in mice. J. Allergy Clin. Immunol. 148, 506–522 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Fujisawa, D. et al. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J. Allergy Clin. Immunol. 134, 622–633 (2014). This study reveals the importance of the MRGPRX2 pathway for mast cell activation in patients with CSU, thus suggesting a novel therapeutic angle in mast cell-driven diseases.

    Article  CAS  PubMed  Google Scholar 

  32. Baumann, K. Y. et al. Skin microdialysis: methods, applications and future opportunities — an EAACI position paper. Clin. Transl. Allergy 9, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. John, L. M. et al. In vitro prediction of in vivo pseudo-allergenic response via MRGPRX2. J. Immunotoxicol. 18, 30–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Ribatti, D. The staining of mast cells: a historical overview. Int. Arch. Allergy Immunol. 176, 55–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Orban, N. T., Jacobson, M. R., Nouri-Aria, K. T., Durham, S. R. & Eifan, A. O. Repetitive nasal allergen challenge in allergic rhinitis: priming and TH2-type inflammation but no evidence of remodelling. Clin. Exp. Allergy 51, 329–338 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Magerl, M. et al. Critical temperature threshold measurement for cold urticaria: a randomized controlled trial of H1-antihistamine dose escalation. Br. J. Dermatol. 166, 1095–1099 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Krause, K., Spohr, A., Zuberbier, T., Church, M. K. & Maurer, M. Up-dosing with bilastine results in improved effectiveness in cold contact urticaria. Allergy 68, 921–928 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kröger, M. et al. In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging. Sci. Rep. 10, 14930 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Baumann, R. et al. Noninvasive and minimally invasive techniques for the diagnosis and management of allergic diseases. Allergy 76, 1010–1023 (2021).

    Article  PubMed  Google Scholar 

  40. Metcalfe, D. D. et al. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organ. J. 9, 7–7 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lyons, J. J. et al. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat. Genet. 48, 1564–1569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolmert, J. et al. Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 inflammation. a clinical observational study. Am. J. Respir. Crit. Care Med. 203, 37–53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butterfield, J. H. Increased leukotriene E4 excretion in systemic mastocytosis. Prostaglandins Other Lipid Mediat. 92, 73–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Jarjour, N. N., Calhoun, W. J., Schwartz, L. B. & Busse, W. W. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction. Am. Rev. Respir. Dis. 144, 83–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Mersha, T. B. et al. Resolving clinical phenotypes into endotypes in allergy: molecular and omics approaches. Clin. Rev. Allergy Immunol. 60, 200–219 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thangam, E. B. et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front. Immunol. 9, 1873 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Maul, J.-T. et al. Canakinumab lacks efficacy in treating adult patients with moderate to severe chronic spontaneous urticaria in a phase II randomized double-blind placebo-controlled single-center study. J. Allergy Clin. Immunol. Pract. 9, 463–468 (2021).

    Article  PubMed  Google Scholar 

  48. Maurer, M. et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N. Engl. J. Med. 368, 924–935 (2013). This key study demonstrates omalizumab efficacy in patients with antihistamine-resistant CSU and highlights the importance of IgE–FcεRI-driven mast cell activation in this disease.

    Article  CAS  PubMed  Google Scholar 

  49. Maurer, M. et al. Ligelizumab for chronic spontaneous urticaria. N. Engl. J. Med. 381, 1321–1332 (2019). This study shows, for the first time, the high therapeutic potential of ligelizumab in CSU and its superiority over omalizumab.

    Article  CAS  PubMed  Google Scholar 

  50. Metz, M. et al. Fenebrutinib in refractory chronic spontaneous urticaria. Allergy 75, 108–110 (2020).

    Google Scholar 

  51. Youngblood, B. A. et al. AK002, a humanized sialic acid-binding immunoglobulin-like lectin-8 antibody that induces antibody-dependent cell-mediated cytotoxicity against human eosinophils and inhibits mast cell-mediated anaphylaxis in mice. Int. Arch. Allergy Immunol. 180, 91–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Kerr, S. C. et al. An anti-Siglec-8 antibody depletes sputum eosinophils from asthmatic subjects and inhibits lung mast cells. Clin. Exp. Allergy 50, 904–914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schanin, J. et al. A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol. 14, 366–376 (2021). This study demonstrates the ability of anti-Siglec-8 antibody to diminish airway inflammation and IgE-independent mast cell activation.

    Article  CAS  PubMed  Google Scholar 

  54. Zuberbier, T. et al. The EAACI/GA²LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy 73, 1393–1414 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Brightling, C. E. et al. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705 (2002).

    Article  PubMed  Google Scholar 

  56. Bradding, P. et al. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J. Immunol. 151, 3853–3865 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Damsgaard, T. E., Olesen, A. B., Sørensen, F. B., Thestrup-Pedersen, K. & Schiøtz, P. O. Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin. Arch. Dermatol. Res. 289, 256–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Begueret, H. et al. Inflammation of bronchial smooth muscle in allergic asthma. Thorax 62, 8–15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maun, H. R. et al. An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell 179, 417–431.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hinks, T. S. C. et al. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J. Allergy Clin. Immunol. 136, 323–333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aguilera-Lizarraga, J. et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590, 151–156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Toms, R., Weiner, H. L. & Johnson, D. Identification of IgE-positive cells and mast cells in frozen sections of multiple sclerosis brains. J. Neuroimmunol. 30, 169–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Crisp, A. J., Chapman, C. M., Kirkham, S. E., Schiller, A. L. & Krane, S. M. Articular mastocytosis in rheumatoid arthritis. Arthritis Rheum. 27, 845–851 (1984).

    Article  CAS  PubMed  Google Scholar 

  64. Zebrowska, A. et al. Mediators of mast cells in bullous pemphigoid and dermatitis herpetiformis. Med. Inflamm. 2014, 936545 (2014).

    Article  CAS  Google Scholar 

  65. Komi, D. E. A. & Redegeld, F. A. Role of mast cells in shaping the tumor microenvironment. Clin. Rev. Allergy Immunol. 58, 313–325 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Bieber, K. et al. Analysis of serum markers of cellular immune activation in patients with bullous pemphigoid. Exp. Derm. 26, 1248–1252 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. van Nieuwenhuijze, A. E., Cauwe, B., Klatt, D., Humblet-Baron, S. & Liston, A. Lpr-induced systemic autoimmunity is unaffected by mast cell deficiency. Immunol. Cell Biol. 93, 841–848 (2015).

    Article  PubMed  CAS  Google Scholar 

  68. Inaba, Y. et al. Severer lupus erythematosus-like skin lesions in MRL/lpr mice with homozygous Kitwsh/wsh mutation. Mod. Rheumatol. 28, 319–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Gutierrez, D. A. et al. Type 1 diabetes in NOD mice unaffected by mast cell deficiency. Diabetes 63, 3827–3834 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Marichal, T., Tsai, M. & Galli, S. J. Mast cells: potential positive and negative roles in tumor biology. Cancer Immunol. Res. 1, 269–279 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Welsh, T. J. et al. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J. Clin. Oncol. 23, 8959–8967 (2005).

    Article  PubMed  Google Scholar 

  72. Bousquet, J. et al. Next-generation Allergic Rhinitis and Its Impact on Asthma (ARIA) guidelines for allergic rhinitis based on Grading of Recommendations Assessment, Development and Evaluation (GRADE) and real-world evidence. J. Allergy Clin. Immunol. 145, 70–80 (2020).

    Article  PubMed  Google Scholar 

  73. Liu, C. et al. Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol. Pharmacol. 59, 420–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Murata, Y. et al. Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4 R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis. J. Dermatol. 42, 129–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Kollmeier, A. P. et al. A phase 2a study of toreforant, a histamine H4 receptor antagonist, in eosinophilic asthma. Ann. Allergy Asthma Immunol. 121, 568–574 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Werfel, T. et al. Efficacy and safety of the histamine H4 receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J. Allergy Clin. Immunol. 143, 1830–18374 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Maun, H. R. et al. Bivalent antibody pliers inhibit β-tryptase by an allosteric mechanism dependent on the IgG hinge. Nat. Commun. 11, 6435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oliver, E. T. et al. Effects of an oral CRTh2 antagonist (AZD1981) on eosinophil activity and symptoms in chronic spontaneous urticaria. Int. Arch. Allergy Immunol. 179, 21–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Brightling, C. E. et al. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): two phase 3 randomised controlled trials. Lancet Respir. Med. 9, 43–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Asano, K. et al. A phase 2a study of DP2 antagonist GB001 for asthma. J. Allergy Clin. Immunol. Pract. 8, 1275–1283 (2020).

    Article  PubMed  Google Scholar 

  81. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention www.ginasthma.org (2021).

  82. Wollenberg, A. et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J. Eur. Acad. Derm. Venereol. 32, 850–878 (2018).

    Article  CAS  Google Scholar 

  83. Okayama, Y. et al. IgE-dependent expression of mRNA for IL-4 and IL-5 in human lung mast cells. J. Immunol. 155, 1796–1808 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Simpson, E. L. et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375, 2335–2348 (2016). This study shows that, in two phase III studies, dupilumab improved symptoms of moderate to severe atopic dermatitis, concomitant anxiety and depression, and quality of life.

    Article  CAS  PubMed  Google Scholar 

  85. Beck, L. A. et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 371, 130–139 (2014). This paper reports marked and rapid effects of dupilumab in atopic dermatitis disease activity, indicating involvement of IL-4 and IL-13 in disease pathogenesis.

    Article  PubMed  CAS  Google Scholar 

  86. Castro, M. et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N. Engl. J. Med. 378, 2486–2496 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, J. K. & Simpson, R. S. Dupilumab as a novel therapy for difficult to treat chronic spontaneous urticaria. J. Allergy Clin. Immunol. Pract. 7, 1659–1661 (2019).

    Article  PubMed  Google Scholar 

  88. Chiricozzi, A. et al. Dupilumab improves clinical manifestations, symptoms, and quality of life in adult patients with chronic nodular prurigo. J. Am. Acad. Dermatol. 83, 39–45 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Hanania, N. A. et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4, 781–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Panettieri, R. A. Jr et al. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Resp. Med. 6, 511–525 (2018).

    Article  CAS  Google Scholar 

  91. Wollenberg, A. et al. Treatment of atopic dermatitis with tralokinumab, an anti–IL-13 mAb. J. Allergy Clin. Immunol. 143, 135–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Guttman-Yassky, E. et al. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatol. 156, 411–420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Castro, M. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 3, 355–366 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).

    Article  PubMed  CAS  Google Scholar 

  95. Harrison, T. W. et al. Onset of effect and impact on health-related quality of life, exacerbation rate, lung function, and nasal polyposis symptoms for patients with severe eosinophilic asthma treated with benralizumab (ANDHI): a randomised, controlled, phase 3b trial. Lancet Resp. Med. 9, 260–274 (2021). This recently published phase IIIb study in patients with severe asthma shows early benefits of benralizumab in patient-reported outcomes and lung function.

    Article  CAS  Google Scholar 

  96. Castro, M. et al. Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir. Med. 2, 879–890 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Haldar, P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360, 973–984 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bernstein, J. A. et al. Benralizumab for chronic spontaneous urticaria. N. Engl. J. Med. 383, 1389–1391 (2020). This clinical study is the first to show that benralizumab can be effective in patients with antihistamine-resistant CSU, supporting the investigation of this treatment approach in mast cell-driven diseases.

    Article  PubMed  Google Scholar 

  99. Kenna, T. J. & Brown, M. A. The role of IL-17-secreting mast cells in inflammatory joint disease. Nat. Rev. Rheumatol. 9, 375–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Tu, J.-F. et al. Mast cells comprise the major of interleukin 17-producing cells and predict a poor prognosis in hepatocellular carcinoma. Medicine 95, e3220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sabag, D. A. et al. Interleukin-17 is a potential player and treatment target in severe chronic spontaneous urticaria. Clin. Exp. Allergy 50, 799–804 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Busse, W. W. et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 188, 1294–1302 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Silverberg, J. I. et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J. Allergy Clin. Immunol. 145, 173–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Kabashima, K., Matsumura, T., Komazaki, H. & Kawashima, M. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N. Engl. J. Med. 383, 141–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Ruzicka, T. et al. Anti-interleukin-31 receptor a antibody for atopic dermatitis. N. Engl. J. Med. 376, 826–835 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Ständer, S. et al. Trial of nemolizumab in moderate-to-severe prurigo nodularis. N. Engl. J. Med. 382, 706–716 (2020).

    Article  PubMed  Google Scholar 

  107. Busse, W. W. et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N. Engl. J. Med. 364, 1005–1015 (2011). This trial in children, adolescents and young adults with persistent allergic asthma shows that omalizumab reduced exacerbation rates and improved asthma control when added to guideline-based therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Maurer, M. et al. Efficacy and safety of omalizumab in patients with chronic urticaria who exhibit IgE against thyroperoxidase. J. Allergy Clin. Immunol. 128, 202–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Okayama, Y. et al. Roles of omalizumab in various allergic diseases. Allergol. Int. 69, 167–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Carter, M. C. et al. A randomized double-blind, placebo-controlled study of omalizumab for idiopathic anaphylaxis. J. Allergy Clin. Immunol. 147, 1004–1010.e2 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Gasser, P. et al. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat. Commun. 11, 165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pennington, L. F. et al. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nat. Commun. 7, 11610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cruse, G. et al. Exon skipping of FcεRIβ eliminates expression of the high-affinity IgE receptor in mast cells with therapeutic potential for allergy. Proc. Natl Acad. Sci. USA 113, 14115–14120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Corren, J. et al. Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med. 377, 936–946 (2017). This study shows that tezepelumab reduces exacerbation rates in patients with asthma independent of baseline blood eosinophil counts, highlighting the potential advantage of targeting upstream cytokines.

    Article  CAS  PubMed  Google Scholar 

  115. Simpson, E. L. et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J. Am. Acad. Dermatol. 80, 1013–1021 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Chinthrajah, S. et al. Phase 2a randomized, placebo-controlled study of anti–IL-33 in peanut allergy. JCI Insight 4, e131347 (2019).

    Article  PubMed Central  Google Scholar 

  117. Chen, Y. L. et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 11, eaax2945 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Holgado, A. et al. IL-33trap is a novel IL-33-neutralizing biologic that inhibits allergic airway inflammation. J. Allergy Clin. Immunol. 144, 204–215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ballantyne, S. J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1324–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Tatemoto, K. et al. Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2. Scand. J. Immunol. 87, e12655 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Meixiong, J. et al. Activation of mast-cell-expressed Mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50, 1163–1171 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chompunud Na Ayudhya, C., Roy, S., Alkanfari, I., Ganguly, A. & Ali, H. Identification of gain and loss of function missense variants in MRGPRX2’s transmembrane and intracellular domains for mast cell activation by substance P. Int. J. Mol. Sci. 20, 5247 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  123. Borici-mazi, R., Kouridakis, S. & Kontou-fili, K. Cutaneous responses to substance P and calcitonin gene-related peptide in chronic urticaria: the effect of cetirizine and dimethindene. Allergy 54, 46–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Ogasawara, H., Furuno, M., Edamura, K. & Noguchi, M. Novel MRGPRX2 antagonists inhibit IgE-independent activation of human umbilical cord blood-derived mast cells. J. Leukoc. Biol. 106, 1069–1077 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Suzuki, Y. et al. A novel MRGPRX2-targeting antagonistic DNA aptamer inhibits histamine release and prevents mast cell-mediated anaphylaxis. Eur. J. Pharmacol. 878, 173104 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Plum, T. et al. Human mast cell proteome reveals unique lineage, putative functions, and structural basis for cell ablation. Immunity 52, 404–416 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Werfel, T., Oppermann, M., Begemann, G., Götze, O. & Zwirner, J. C5a receptors are detectable on mast cells in normal human skin and in psoriatic plaques but not in weal and flare reactions or in uticaria pigmentosa by immunohistochemistry. Arch. Dermatol. Res. 289, 83–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Ferrer, M., Nakazawa, K. & Kaplan, A. P. Complement dependence of histamine release in chronic urticaria. J. Allergy Clin. Immunol. 104, 169–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Bradding, P. & Arthur, G. Mast cells in asthma — state of the art. Clin. Exp. Allergy 46, 194–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Molina, C. R. et al. GSK2646264, a spleen tyrosine kinase inhibitor, attenuates the release of histamine in ex vivo human skin. Br. J. Pharmacol. 176, 1135–1142 (2019).

    Article  CAS  Google Scholar 

  131. Dickson, M. C. et al. Effects of a topical treatment with spleen tyrosine kinase inhibitor in healthy subjects and patients with cold urticaria or chronic spontaneous urticaria: results of a phase 1a/b randomised double-blind placebo-controlled study. Br. J. Clin. Pharmacol. https://doi.org/10.1111/bcp.14923 (2021).

    Article  PubMed  Google Scholar 

  132. Meltzer, E. O., Berkowitz, R. B. & Grossbard, E. B. An Intranasal syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J. Allergy Clin. Immunol. 115, 791–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Dispenza, M. C., Pongracic, J. A., Singh, A. M. & Bochner, B. S. Short-term ibrutinib therapy suppresses skin test responses and eliminates IgE-mediated basophil activation in adults with peanut or tree nut allergy. J. All. Clin. Immunol. 141, 1914–1916 (2018).

    Article  Google Scholar 

  134. Karra, L., Berent-Maoz, B., Ben-Zimra, M. & Levi-Schaffer, F. Are we ready to downregulate mast cells? Curr. Opin. Immunol. 21, 708–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Dellon, E. S. et al. Anti-Siglec-8 antibody for eosinophilic gastritis and duodenitis. N. Engl. J. Med. 383, 1624–1634 (2020). In this study, lirentelimab decreases both blood eosinophils and gastrointestinal mast cell counts in patients with eosinophilic gastritis and duodenitis, pointing to the possible contribution of mast cells to the pathogenesis of these disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bachelet, I., Munitz, A. & Levi-Schaffer, F. Abrogation of allergic reactions by a bispecific antibody fragment linking IgE to CD300a. J. Allergy Clin. Immunol. 117, 1314–1320 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Bachelet, I., Munitz, A., Berent-Maoz, B., Mankuta, D. & Levi-Schaffer, F. Suppression of normal and malignant kit signaling by a bispecific antibody linking kit with CD300a. J. Immunol. 180, 6064–6069 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Zhu, D., Kepley, C. L., Zhang, M., Zhang, K. & Saxon, A. A novel human immunoglobulin Fcγ–Fcε bifunctional fusion protein inhibits FcεRI-mediated degranulation. Nat. Med. 8, 518 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Eggel, A. et al. Inhibition of ongoing allergic reactions using a novel anti-IgE DARPin–Fc fusion protein. Allergy 66, 961–968 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Kim, B. et al. Accelerated disassembly of IgE:receptor complexes by a disruptive macromolecular inhibitor. Nature 491, 613–617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. DeAngelo, D. J. et al. Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia 32, 470–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Valent, P. et al. Midostaurin: a magic bullet that blocks mast cell expansion and activation. Ann. Oncol. 28, 2367–2376 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Gotlib, J. et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N. Engl. J. Med. 374, 2530–2541 (2016). This phase II study provides initial evidence for the efficacy of midostaurin in patients with advanced systemic mastocytosis, including mast cell leukaemia.

    Article  CAS  PubMed  Google Scholar 

  144. Hochhaus, A. et al. Nilotinib in patients with systemic mastocytosis: analysis of the phase 2, open-label, single-arm nilotinib registration study. J. Cancer Res. Clin. Oncol. 141, 2047–2060 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Verstovsek, S. et al. Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin. Cancer Res. 14, 3906–3915 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Paul, C. et al. Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am. J. Hematol. 85, 921–925 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Lortholary, O. et al. Masitinib for treatment of severely symptomatic indolent systemic mastocytosis: a randomised, placebo-controlled, phase 3 study. Lancet 389, 612–620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Smith, B. D. et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell 35, 738–751.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Cahill, K. N. et al. KIT inhibition by imatinib in patients with severe refractory asthma. N. Engl. J. Med. 376, 1911–1920 (2017). This proof-of-principle trial demonstrates the association between antagonism of KIT, decreases in mast cell numbers and tryptase levels induced by imatinib with a decrease in airway hyperresponsiveness in patients with poorly controlled severe asthma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chanez, P. et al. Masitinib significantly decreases the rate of asthma exacerbations in patients with severe asthma uncontrolled by oral corticosteroids: a phase 3 multicenter study. Am. J. Respir. Crit. Care Med. 201, A4210 (2020).

    Google Scholar 

  151. Gotlib, J. et al. Pure pathologic response is associated with improved overall survival in patients with advanced systemic mastocytosis receiving avapritinib in the phase I EXPLORER study. Blood 136, 37–38 (2020).

    Article  Google Scholar 

  152. Valent, P., Akin, C. & Metcalfe, D. D. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood 129, 1420–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.K. and M.Ma. conceived the idea for the Review. P.K. researched data for the article and wrote the first version of the manuscript under the supervision of M.Ma., with constructive input from M.Me. and F.S. D.E.-A.-K. prepared figures under the supervision of P.K. and M.Ma., and contributed to the discussion of the content. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Marcus Maurer.

Ethics declarations

Competing interests

P.K. was recently a speaker for Novartis and Roche. M.Me. was recently a speaker and/or adviser for Amgen, Aralez, ArgenX, Bayer, Beiersdorf, Celgene, Galderma, Menlo, Moxie, Novartis, Roche, Sanofi, Shire, Siennabio and Uriach. F.S. was recently a speaker and/or adviser for and/or has received research funding from Allakos, Blueprint, Celldex, Genentech, Novartis, Moxie and Uriach. M.Ma. was recently a speaker and/or adviser for and/or has received research funding from Allakos, Alnylam, Amgen, Aralez, ArgenX, AstraZeneca, BioCryst, Blueprint, Celldex, Centogene, CSL Behring, Dyax, FAES, Genentech, GIInnovation, Innate Pharma, Kalvista, Kyowa Kirin, Leo Pharma, Lilly, Menarini, Moxie, Novartis, Pharming, Pharvaris, Roche, Sanofi/Regeneron, Shire/Takeda, Third HarmonicBio, UCB and Uriach. D.E.-A.-K. declares no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks P. Bradding and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Type I hypersensitivity

An IgE and mast cell-mediated allergic reaction in response to environmental antigens (allergens) in sensitized individuals.

β-Hexosaminidase

A mediator stored in mast cell granules, the release of which is measured in mast cell supernatants in vitro in order to determine the degree of cell activation and degranulation upon stimulation with various substances, such as drugs or neuropeptides.

Canakinumab

A recombinant, human anti-IL-1β mAb, approved by the FDA (US Food and Drug Administration) for the treatment of periodic fever syndromes and active systemic juvenile idiopathic arthritis.

Bullous pemphigoid

A chronic autoimmune skin disease characterized by the production of autoantibodies against hemidesmosomal antigens, leading to the formation of subepidermal blisters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolkhir, P., Elieh-Ali-Komi, D., Metz, M. et al. Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 22, 294–308 (2022). https://doi.org/10.1038/s41577-021-00622-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00622-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing