Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunobiology and pathogenesis of hepatitis B virus infection

Abstract

Hepatitis B virus (HBV) is a non-cytopathic, hepatotropic virus with the potential to cause a persistent infection, ultimately leading to cirrhosis and hepatocellular carcinoma. Over the past four decades, the basic principles of HBV gene expression and replication as well as the viral and host determinants governing infection outcome have been largely uncovered. Whereas HBV appears to induce little or no innate immune activation, the adaptive immune response mediates both viral clearance as well as liver disease. Here, we review our current knowledge on the immunobiology and pathogenesis of HBV infection, focusing in particular on the role of CD8+ T cells and on several recent breakthroughs that challenge current dogmas. For example, we now trust that HBV integration into the host genome often serves as a relevant source of hepatitis B surface antigen (HBsAg) expression during chronic infection, possibly triggering dysfunctional T cell responses and favouring detrimental immunopathology. Further, the unique haemodynamics and anatomy of the liver — and the changes they frequently endure during disease progression to liver fibrosis and cirrhosis — profoundly influence T cell priming, differentiation and function. We also discuss why therapeutic approaches that limit the intrahepatic inflammatory processes triggered by HBV-specific T cells might be surprisingly beneficial for patients with chronic infection.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: HBV particle.
Fig. 2: Genomic structure of HBV.
Fig. 3: Spatiotemporal dynamics and genomic landscape of CD8+ T cells undergoing intrahepatic priming.
Fig. 4: Immune surveillance of the liver by effector CD8+ T cells.

References

  1. 1.

    Guidotti, L. G. & Chisari, F. V. Immunobiology and pathogenesis of viral hepatitis. Annu. Rev. Pathol. Mech. Dis. 1, 23–61 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Locarnini, S., Hatzakis, A., Chen, D.-S. & Lok, A. Strategies to control hepatitis B: public policy, epidemiology, vaccine and drugs. J. Hepatol. 62, S76–S86 (2015).

    PubMed  Article  Google Scholar 

  3. 3.

    Yuen, M.-F. et al. Hepatitis B virus infection. Nat. Rev. Dis. Primers 4, 18035 (2018).

    PubMed  Article  Google Scholar 

  4. 4.

    Revill, P. A. et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 4, 545–558 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Udompap, P. & Kim, W. R. Development of hepatocellular carcinoma in patients with suppressed viral replication: changes in risk over time. Clin. Liver Dis. 15, 85–90 (2020).

    Article  Google Scholar 

  6. 6.

    Levrero, M., Testoni, B. & Zoulim, F. HBV cure: why, how, when? Curr. Opin. Virol. 18, 135–143 (2016).

    PubMed  Article  Google Scholar 

  7. 7.

    Fanning, G. C., Zoulim, F., Hou, J. & Bertoletti, A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat. Rev. Drug Discov. 18, 827–844 (2019).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Rehermann, B., Ferrari, C., Pasquinelli, C. & Chisari, F. V. The hepatitis B virus persists for decades after patients’ recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat. Med. 2, 1104–1108 (1996).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kim, C. Y. & Tilles, J. G. Purification and biophysical characterization of hepatitis B antigen. J. Clin. Invest. 52, 1176–1186 (1973).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Seeger, C. & Mason, W. S. Molecular biology of hepatitis B virus infection. Virology 479, 672–686 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  11. 11.

    Bertoletti, A. & Ferrari, C. Adaptive immunity in HBV infection. J. Hepatol. 64, S71–S83 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Guidotti, L. G., Isogawa, M. & Chisari, F. V. Host–virus interactions in hepatitis B virus infection. Curr. Opin. Immunol. 36, 61–66 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Tu, T. et al. Integration occurs early in the viral life cycle in an in vitro infection model via sodium taurocholate cotransporting polypeptide-dependent uptake of enveloped virus particles. J. Virol. 92, e02007–e02017 (2018). This study shows that HBV DNA integration occurs early upon infection in an in vitro infection model.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Summers, J. et al. Hepatocyte turnover during resolution of a transient hepadnaviral infection. Proc. Natl Acad. Sci. USA 100, 11652–11659 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Yang, W. & Summers, J. Integration of hepadnavirus DNA in infected liver: evidence for a linear precursor. J. Virol. 73, 9710–9717 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Wooddell, C. I. et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl Med. 9, eaan0241 (2017). This paper reveals integrated HBV DNA as a relevant source of HBsAg in patients and chimpanzees with chronic infection.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Simon, T. G. et al. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N. Engl. J. Med. 382, 1018–1028 (2020). This manuscript represents one of a large number of meta-analyses describing an association between low-dose aspirin treatment and reduced HCC incidence.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Sitia, G. et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc. Natl Acad. Sci. USA 109, E2165–E2172 (2012). This preclinical study shows that anti-platelet therapy reduces liver fibrosis and prevents HCC in mouse models of CHB.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Iannacone, M., Sitia, G., Narvaiza, I., Ruggeri, Z. M. & Guidotti, L. G. Antiplatelet drug therapy moderates immune-mediated liver disease and inhibits viral clearance in mice infected with a replication-deficient adenovirus. Clin. Vaccine Immunol. 14, 1532–1535 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Jilbert, A. R., Miller, D. S., Scougall, C. A., Turnbull, H. & Burrell, C. J. Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology 226, 338–345 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Asabe, S. et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J. Virol. 83, 9652–9662 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Wisse, E., Jacobs, F., Topal, B., Frederik, P. & Geest, B. D. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 15, 1193–1199 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Vollmar, B. & Menger, M. D. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol. Rev. 89, 1269–1339 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Whalley, S. A. et al. Kinetics of acute hepatitis B virus infection in humans. J. Exp. Med. 193, 847–854 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Guidotti, L. G., Matzke, B., Schaller, H. & Chisari, F. V. High-level hepatitis B virus replication in transgenic mice. J. Virol. 69, 6158–6169 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Guidotti, L. G. et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 284, 825–829 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Wieland, S. F., Spangenberg, H. C., Thimme, R., Purcell, R. H. & Chisari, F. V. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc. Natl Acad. Sci. USA 101, 2129–2134 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 6669–6674 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Suslov, A. et al. Virus does not interfere with innate immune responses in the human liver. Gastroenterology 154, 1778–1790 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Tsui, L. V., Guidotti, L. G., Ishikawa, T. & Chisari, F. V. Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc. Natl Acad. Sci. USA 92, 12398–12402 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Heise, T., Guidotti, L. G., Cavanaugh, V. J. & Chisari, F. V. Hepatitis B virus RNA-binding proteins associated with cytokine-induced clearance of viral RNA from the liver of transgenic mice. J. Virol. 73, 474–481 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Heise, T., Guidotti, L. G. & Chisari, F. V. La autoantigen specifically recognizes a predicted stem-loop in hepatitis B virus RNA. J. Virol. 73, 5767–5776 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    McClary, H., Koch, R., Chisari, F. V. & Guidotti, L. G. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. J. Virol. 74, 2255–2264 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Wieland, S. F., Guidotti, L. G. & Chisari, F. V. Intrahepatic induction of α/β interferon eliminates viral RNA-containing capsids in hepatitis B virus transgenic mice. J. Virol. 74, 4165–4173 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Kimura, K., Kakimi, K., Wieland, S., Guidotti, L. G. & Chisari, F. V. Activated intrahepatic antigen-presenting cells inhibit hepatitis B virus replication in the liver of transgenic mice. J. Immunol. 169, 5188–5195 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Vilarinho, S., Ogasawara, K., Nishimura, S., Lanier, L. L. & Baron, J. L. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc. Natl Acad. Sci. USA 104, 18187–18192 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Isogawa, M., Robek, M. D., Furuichi, Y. & Chisari, F. V. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J. Virol. 79, 7269–7272 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Suslov, A., Wieland, S. & Menne, S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Curr. Opin. Virol. 30, 9–17 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Iwasaki, A. A virological view of innate immune recognition. Annu. Rev. Microbiol. 66, 177–196 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Webster, G. J. M. et al. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32, 1117–1124 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Thimme, R. et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Hoofnagle, J. H., Gerety, R. J. & Barker, L. F. Antibody to hepatitis-B-virus core in man. Lancet 302, 869–873 (1973).

    Article  Google Scholar 

  43. 43.

    Maini, M. K. & Burton, A. R. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat. Rev. Gastroenterol. Hepatol. 16, 662–675 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Guidotti, L. G. et al. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc. Natl Acad. Sci. USA 91, 3764–3768 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Guidotti, L. G. et al. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4, 25–36 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Wong, Y. C., Tay, S. S., McCaughan, G. W., Bowen, D. G. & Bertolino, P. Immune outcomes in the liver: is CD8 T cell fate determined by the environment? J. Hepatol. 63, 1005–1014 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Isogawa et al. CD40 activation rescues antiviral CD8+ T cells from PD-1-mediated exhaustion. PLoS Pathog. 9, e1003490 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Bénéchet, A. P. et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 574, 200–205 (2019). This paper reveals that hepatocellular priming leads to a T cell dysfunction that is refractory to checkpoint inhibition but responds to IL-2.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Bertolino, P. et al. Death by neglect as a deletional mechanism of peripheral tolerance. Int. Immunol. 11, 1225–1238 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Pol et al. Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med. 217, 2261 (2020).

    Article  CAS  Google Scholar 

  51. 51.

    Blattman, J. N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med. 9, 540–547 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    West, E. E. et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123, 2604–2615 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Kuipery, A., Gehring, A. J. & Isogawa, M. Mechanisms of HBV immune evasion. Antivir. Res. 179, 104816 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Kennedy, P. T. F. et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology 143, 637–645 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Shimizu, Y., Guidotti, L. G., Fowler, P. & Chisari, F. V. Dendritic cell immunization breaks cytotoxic T lymphocyte tolerance in hepatitis B virus transgenic mice. J. Immunol. 161, 4520–4529 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Kakimi, K., Isogawa, M., Chung, J., Sette, A. & Chisari, F. V. Immunogenicity and tolerogenicity of hepatitis B virus structural and nonstructural proteins: implications for immunotherapy of persistent viral infections. J. Virol. 76, 8609–8620 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Ishak, K. et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 22, 696–699 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23, 327–336 (2017). This article suggests a central role for reactive oxygen species in T cell exhaustion during CHB, thus providing novel potential therapeutic targets.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Wieland, S. F. The chimpanzee model for hepatitis B virus infection. CSH Perspect. Med. 5, a021469 (2015).

    Google Scholar 

  60. 60.

    Chen, M. T. et al. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc. Natl Acad. Sci. USA 101, 14913–14918 (2004).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Chen, M. et al. Immune tolerance split between hepatitis B virus precore and core proteins. J. Virol. 79, 3016–3027 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Tian, Y., Kuo, C., Akbari, O. & Ou, J. J. Maternal-derived hepatitis B virus e antigen alters macrophage function in offspring to drive viral persistence after vertical transmission. Immunity 44, 1204–1214 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Publicover, J. et al. Age-dependent hepatic lymphoid organization directs successful immunity to hepatitis B. J. Clin. Invest. 123, 3728–3739 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Brunetto, M. R. et al. Wild-type and e antigen-minus hepatitis B viruses and course of chronic hepatitis. Proc. Natl Acad. Sci. USA 88, 4186–4190 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Rivino, L. et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J. Clin. Invest. 128, 668–681 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Schuch, A. et al. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load. Gut 68, 905–915 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Fumagalli, V. et al. Serum HBsAg clearance has minimal impact on CD8+ T cell responses in mouse models of HBV infection. J. Exp. Med. 217, e20200298 (2020). This study shows that circulating HBsAg clearance does not improve HBV-specific CD8+ T cell responses.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Bert, N. L. et al. Effects of hepatitis B surface antigen on virus-specific and global T cells in patients with chronic hepatitis B virus infection. Gastroenterology 159, 652–664 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  69. 69.

    Li et al. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. eLife 6, e26738 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Zhang, T.-Y. et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 65, 658 (2015).

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Neumann et al. Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. Hepatology 52, 875–885 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Galun, E. et al. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 35, 673–679 (2002).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Bertoletti, A. et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J. Exp. Med. 180, 933–943 (1994).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Bertoletti, A. et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 369, 407–410 (1994).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Maini, M. K. et al. T cell receptor usage of virus-specific CD8 cells and recognition of viral mutations during acute and persistent hepatitis B virus infection. Eur. J. Immunol. 30, 3067–3078 (2000).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Bertoletti, A. & Kennedy, P. T. The immune tolerant phase of chronic HBV infection: new perspectives on an old concept. Cell Mol. Immunol. 12, 258–263 (2015).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Fisicaro, P. et al. Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches. Front. Immunol. 11, 849 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Burton, A. R. et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J. Clin. Invest. 128, 4588–4603 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Salimzadeh, L. et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J. Clin. Invest. 128, 4573–4587 (2018). Together with Burton et al. (2018), this paper detects and characterizes dysfunctional HBsAg-specific B cell responses in patients with chronic HBV infection.

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Tian, C. et al. Use of ELISpot assay to study HBs-specific B cell responses in vaccinated and HBV infected humans. Emerg. Microbes Infec 7, 16 (2018).

    Google Scholar 

  81. 81.

    Xu, X. et al. Reversal of B-cell hyperactivation and functional impairment is associated with HBsAg seroconversion in chronic hepatitis B patients. Cell Mol. Immunol. 12, 309–316 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Bert, N. L. et al. Comparative characterization of B cells specific for HBV nucleocapsid and envelope proteins in patients with chronic hepatitis B. J. Hepatol. 72, 34–44 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  83. 83.

    Vanwolleghem, T. et al. Hepatitis B core-specific memory B cell responses associate with clinical parameters in patients with chronic HBV. J. Hepatol. 73, 52–61 (2020).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Milich, D. & McLachlan, A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 234, 1398–1401 (1986).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Guidotti, L. G. & Iannacone, M. Effector CD8 T cell trafficking within the liver. Mol. Immunol. 55, 94–99 (2013).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Iannacone, M. Hepatic effector CD8+ T-cell dynamics. Cell Mol. Immunol. 12, 269–272 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Inverso, D. & Iannacone, M. Spatiotemporal dynamics of effector CD8+ T cell responses within the liver. J. Leukoc. Biol. 99, 51–55 (2016).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Benechet, A. P. & Iannacone, M. Determinants of hepatic effector CD8+ T cell dynamics. J. Hepatol. 66, 228–233 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell 161, 486–500 (2015). This manuscript reports that effector CD8+ T cells can recognize and kill antigen-expressing hepatocytes without extravasating by extending cytoplasmic protrusions through endothelial fenestration.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Sironi, L. et al. In vivo flow mapping in complex vessel networks by single image correlation. Sci. Rep. 4, 7341 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Warren, A. et al. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44, 1182–1190 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Guidotti, L. G. The role of cytotoxic T cells and cytokines in the control of hepatitis B virus infection. Vaccine 20, A80–A82 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Fioravanti, J. et al. Effector CD8+ T cell-derived interleukin-10 enhances acute liver immunopathology. J. Hepatol. 67, 543–548 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Iannacone, M. & Guidotti, L. G. Mouse models of hepatitis B virus pathogenesis. CSH Perspect. Med. 5, a021477 (2015).

    Google Scholar 

  95. 95.

    Guidotti, L. G., McClary, H., Loudis, J. M. & Chisari, F. V. Nitric oxide inhibits hepatitis b virus replication in the livers of transgenic mice. J. Exp. Med. 191, 1247–1252 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Wieland, S. F., Eustaquio, A., Whitten-Bauer, C., Boyd, B. & Chisari, F. V. Interferon prevents formation of replication-competent hepatitis B virus RNA-containing nucleocapsids. Proc. Natl Acad. Sci. USA 102, 9913–9917 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Robek, M. D., Wieland, S. F. & Chisari, F. V. Inhibition of hepatitis B virus replication by interferon requires proteasome activity. J. Virol. 76, 3570–3574 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Xia, Y. et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 150, 194–205 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Michalak, T. I., Pasquinelli, C., Guilhot, S. & Chisari, F. V. Hepatitis B virus persistence after recovery from acute viral hepatitis. J. Clin. Invest. 93, 230–239 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017). This paper characterizes tissue-resident memory T cells in the liver of patients chronically infected by HBV.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Ando, K. et al. Class I-restricted cytotoxic T lymphocytes are directly cytopathic for their target cells in vivo. J. Immunol. 152, 3245–3253 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Nakamoto, Y., Guidotti, L. G., Pasquetto, V., Schreiber, R. D. & Chisari, F. V. Differential target cell sensitivity to CTL-activated death pathways in hepatitis B virus transgenic mice. J. Immunol. 158, 5692–5697 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Sitia, G. et al. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis. PLoS Pathog. 7, e1002061 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Sitia et al. Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. J. Leukoc. Biol. 81, 100–107 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Sitia, G. et al. Depletion of neutrophils blocks the recruitment of antigen-nonspecific cells into the liver without affecting the antiviral activity of hepatitis B virus-specific cytotoxic T lymphocytes. Proc. Natl Acad. Sci. USA 99, 13717–13722 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Sitia, G. et al. MMPs are required for recruitment of antigen-nonspecific mononuclear cells into the liver by CTLs. J. Clin. Invest. 113, 1158–1167 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Kakimi, K. et al. Blocking chemokine responsive to γ-2/interferon (IFN)-γ inducible protein and monokine induced by IFN-γ activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J. Exp. Med. 194, 1755–1766 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Maini, M. K. et al. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Reignat, S. et al. Escaping high viral load exhaustion CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J. Exp. Med. 195, 1089–1101 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Webster, G. J. M. et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J. Virol. 78, 5707–5719 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Boni, C. et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215–4225 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Hoogeveen, R. C. et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 68, 893–904 (2018).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Nakamoto, Y., Guidotti, L. G., Kuhlen, C. V., Fowler, P. & Chisari, F. V. Immune pathogenesis of hepatocellular carcinoma. J. Exp. Med. 188, 341–350 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Isogawa, M., Furuichi, Y. & Chisari, F. V. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity 23, 53–63 (2005).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Khakpoor, A. et al. Spatiotemporal differences in presentation of CD8 T cell epitopes during hepatitis B virus infection. J. Virol. 93, e01457-18 (2018).

    Article  Google Scholar 

  116. 116.

    Nakamoto, Y., Suda, T., Momoi, T. & Kaneko, S. Different procarcinogenic potentials of lymphocyte subsets in a transgenic mouse model of chronic hepatitis B. Cancer Res. 64, 3326–3333 (2004).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Tang, L. S. Y., Covert, E., Wilson, E. & Kottilil, S. Chronic hepatitis B infection: a review. JAMA 319, 1802–1813 (2018).

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Buendia, M.-A. & Neuveut, C. Hepatocellular carcinoma. CSH Perspect. Med. 5, a021444 (2015).

    Google Scholar 

  119. 119.

    Levrero, M. & Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 64, S84–S101 (2016).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Bisceglie, A. M. D. Hepatitis B and hepatocellular carcinoma. Hepatology 49, S56–S60 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Schuppan, D. & Afdhal, N. H. Liver cirrhosis. Lancet 371, 838–851 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Friedman, S. L. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastr 1, 98–105 (2004).

    Google Scholar 

  124. 124.

    Iannacone, M. et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat. Med. 11, 1167–1169 (2005). This study establishes platelets as critical mediators of liver damage through their capacity to promote liver homing of effector CD8+ T cells.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Ornelas, A. et al. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metast Rev. 36, 289–303 (2017).

    CAS  Article  Google Scholar 

  126. 126.

    Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V. & Sood, A. K. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell 33, 965–983 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Lee, P.-C. et al. Antiplatelet therapy is associated with a better prognosis for patients with hepatitis B virus-related hepatocellular carcinoma after liver resection. Ann. Surg. Oncol. 23, 874–883 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Hwang, I. C., Chang, J., Kim, K. & Park, S. M. Aspirin use and risk of hepatocellular carcinoma in a national cohort study of Korean adults. Sci. Rep. 8, 4968 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Simon, T. G. et al. Association between aspirin use and risk of hepatocellular carcinoma. JAMA Oncol. 4, 1683 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Lee, T.-Y. et al. Association of daily aspirin therapy with risk of hepatocellular carcinoma in patients with chronic hepatitis B. JAMA Intern. Med. 179, 633–640 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Wang, S. et al. Association of aspirin therapy with risk of hepatocellular carcinoma: a systematic review and dose–response analysis of cohort studies with 2.5 million participants. Pharmacol. Res. 151, 104585 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  132. 132.

    Liao, Y.-H. et al. Aspirin decreases hepatocellular carcinoma risk in hepatitis C virus carriers: a nationwide cohort study. BMC Gastroenterol. 20, 6 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Bosetti, C., Santucci, C., Gallus, S., Martinetti, M. & Vecchia, C. L. Aspirin and the risk of colorectal and other digestive tract cancers: an updated meta-analysis through 2019. Ann. Oncol. 31, 558–568 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Hayashi, T. et al. Antiplatelet therapy improves the prognosis of patients with hepatocellular carcinoma. Cancers 12, 3215 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  135. 135.

    Guidotti, L. G., Vecchia, C. L. & Colombo, M. Is it time to recommend low-dose aspirin treatment for the prevention of hepatocellular carcinoma? Gastroenterology 159, 1988–1990 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Martinez, M. G., Villeret, F., Testoni, B. & Zoulim, F. Can we cure hepatitis B virus with novel direct-acting antivirals? Liver Int. 40, 27–34 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Hillis, W. D. Viral hepatitis associated with sub-human primates. Transfusion 3, 445–454 (1963).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Walter, E., Keist, R., Niederöst, B., Pult, I. & Blum, H. E. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 24, 1–5 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Schulze, A., Gripon, P. & Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46, 1759–1768 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Sureau, C. & Salisse, J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus A-determinant. Hepatology 57, 985–994 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Roskams, T. et al. Heparan sulfate proteoglycan expression in normal human liver. Hepatology 21, 950–958 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Döring, B., Lütteke, T., Geyer, J. & Petzinger, E. The SLC10 carrier family: transport functions and molecular structure. Curr. Top. Membr. 70, 105–168 (2012).

    PubMed  Article  CAS  Google Scholar 

  144. 144.

    Hu, J. & Liu, K. Complete and incomplete hepatitis B virus particles: formation, function, and application. Viruses 9, 56 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  145. 145.

    Seitz, S., Habjanič, J., Schütz, A. K. & Bartenschlager, R. The hepatitis B virus envelope proteins: molecular gymnastics throughout the viral life cycle. Ann. Rev. Virol. 7, 1–26 (2020).

    Article  CAS  Google Scholar 

  146. 146.

    Wisse, E., de Zanger, R. B., Charels, K., Van Der Smissen, P. & McCuskey, R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of disse. Hepatology 5, 683–692 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Ficht, X. & Iannacone, M. Immune surveillance of the liver by T cells. Sci. Immunol. 5, eaba2351 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Iwakiri, Y. The lymphatic system: a new frontier in hepatology. Hepatology 64, 706–707 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Horst, A. K., Neumann, K., Diehl, L. & Tiegs, G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol. Immunol. 13, 277–292 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Wong, Y. C., McCaughan, G. W., Bowen, D. G. & Bertolino, P. The CD8 T-cell response during tolerance induction in liver transplantation. Clin. Transl Immunol. 5, e102 (2016).

    Article  CAS  Google Scholar 

  152. 152.

    Mason, W. S. et al. HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology 151, 986–998.e4 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Tu, T., Budzinska, M. A., Shackel, N. A. & Urban, S. HBV DNA integration: molecular mechanisms and clinical implications. Viruses 9, 75 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  154. 154.

    Budzinska, M. A., Shackel, N. A., Urban, S. & Tu, T. Cellular genomic sites of hepatitis B virus DNA integration. Genes 9, 365 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  155. 155.

    Huang, Z. M. & Yen, T. S. Dysregulated surface gene expression from disrupted hepatitis B virus genomes. J. Virol. 67, 7032–7040 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Dienes, H. P. et al. Hepatic expression patterns of the large and middle hepatitis B virus surface proteins in viremic and nonviremic chronic hepatitis B. Gastroenterology 98, 1017–1023 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Chisari, F. V. et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59, 1145–1156 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Su, I., Wang, H., Wu, H. & Huang, W. Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. J. Gastroen Hepatol. 23, 1169–1174 (2008).

    CAS  Article  Google Scholar 

  159. 159.

    Hadziyannis, S., Gerber, M. A., Vissoulis, C. & Popper, H. Cytoplasmic hepatitis B antigen in “ground-glass” hepatocytes of carriers. Arch. Pathol. 96, 327–330 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Tu, T. et al. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J. Viral Hepat. 22, 737–753 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Silva for secretarial assistance, F. Andreata for help with figure preparation and the members of the Iannacone and Guidotti laboratories for helpful discussions. They apologize to all authors whose work they could not cite due to space constraints. M.I. is supported by the European Research Council (ERC) Consolidator Grant 725038, ERC Proof of Concept Grant 957502, Italian Association for Cancer Research (AIRC) Grants 19891 and 22737, Italian Ministry of Health (MoH) Grants RF-2018-12365801 and COVID-2020-12371617, Lombardy Foundation for Biomedical Research (FRRB) Grant 2015-0010, the European Molecular Biology Organization Young Investigator Program and a Funded Research Agreement from Gilead Sciences. L.G.G. is supported by the AIRC Grant 22737, Lombardy Open Innovation Grant 229452, PRIN Grant 2017MPCWPY from the Italian Ministry of Education, University and Research, and Funded Research Agreements from Gilead Sciences, Avalia Therapeutics and CNCCS SCARL.

Author information

Affiliations

Authors

Contributions

M.I. and L.G.G. contributed equally to this work.

Corresponding authors

Correspondence to Matteo Iannacone or Luca G. Guidotti.

Ethics declarations

Competing interests

M.I. participates in advisory boards/consultancies for Gilead Sciences, Roche, Third Rock Ventures, Amgen, Asher Bio and Allovir. L.G.G is a member of the board of directors at Genenta Science and Epsilon Bio and participates in advisory boards/consultancies for Gilead Sciences, Roche and Arbutus Biopharma. M.I. and L.G.G. are inventors on patents filed, owned and managed by San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Telethon Foundation on technology related to work discussed in this manuscript (WO2020/016434, WO2020/016427, WO2020/030781, WO2020/234483, EU patent applications n. 19211249.8 and n. 20156716.1, and UK patent application n. 1907493.9).

Additional information

Peer review information

Nature Reviews Immunology thanks Anna Lok, Antonio Bertoletti and Mala Maini for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cirrhosis

The final stage of fibrosis in which fibrous septa surrounding nodules of regenerating hepatocytes induce profound architectural distortion of the liver and functional insufficiency.

Cross-priming

A functional outcome of cross-presentation (the presentation of extracellular antigens on MHC class I molecules), whereby antigen-specific naive CD8+ T cells are activated by antigen-presenting cells to become effector cells.

Checkpoint inhibitor therapy

A form of cancer immunotherapy targeting immune checkpoints (for example, PD1, CTLA4).

SSB/La-dependent mechanism

T cell-induced cytokines such as IFNγ and TNF have been shown to induce the post-transcriptional downregulation of hepatitis B virus (HBV) RNAs in vivo. This process appears to rely on the degradation of the full-length SSB/La protein, which normally functions as a HBV RNA stabilizer in the nucleus of the hepatocyte.

sALT values

The serum concentrations of the liver enzyme alanine aminotransferase. Commonly measured clinically as a biomarker for liver damage.

Space of Disse

(Also referred to as perisinusoidal space). The space that lies between the hepatocytes and the sinusoids.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iannacone, M., Guidotti, L.G. Immunobiology and pathogenesis of hepatitis B virus infection. Nat Rev Immunol (2021). https://doi.org/10.1038/s41577-021-00549-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing