Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spatio-temporal control of effector T cell migration

Abstract

Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of ‘stop’ and ‘go’ guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study of T cell migration: a trade-off between molecular resolution and biological complexity.
Fig. 2: Mode of migration is shaped by input from multiple signals.
Fig. 3: Regulation of effector T cell migration within inflamed tissues.
Fig. 4: Spatio-temporal optimization of effector T cell positioning.

Similar content being viewed by others

References

  1. Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 13, 309–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Schulz, O., Hammerschmidt, S. I., Moschovakis, G. L. & Forster, R. Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu. Rev. Immunol. 34, 203–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Te Boekhorst, V., Preziosi, L. & Friedl, P. Plasticity of cell migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 32, 491–526 (2016).

    Article  CAS  Google Scholar 

  4. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vargas, P., Barbier, L., Saez, P. J. & Piel, M. Mechanisms for fast cell migration in complex environments. Curr. Opin. Cell Biol. 48, 72–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Lam, P. Y. & Huttenlocher, A. Interstitial leukocyte migration in vivo. Curr. Opin. Cell Biol. 25, 650–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lammermann, T. & Germain, R. N. The multiple faces of leukocyte interstitial migration. Semin. Immunopathol. 36, 227–251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kameritsch, P. & Renkawitz, J. Principles of leukocyte migration strategies. Trends Cell Biol. 30, 818–832 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11, 1438–1443 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20, 8–20 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. Wolf, K., Muller, R., Borgmann, S., Brocker, E. B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Harris, T. H. et al. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012). This paper is the first to suggest that the random interstitial migration pattern of T cells resembles a Levy walk, a pattern thought to increase the chances of finding rare targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lim, K. et al. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, aaa4352 (2015). This study demonstrates that neutrophils can leave chemokine-rich trails that guide virus-specific CD8+ T cell migration in the infected airway.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Egen, J. G. et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28, 271–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Overstreet, M. G. et al. Inflammation-induced interstitial migration of effector CD4+ T cells is dependent on integrin αV. Nat. Immunol. 14, 949–958 (2013). This paper identifies the matrix-binding αV integrin as critical for CD4+ T cell interstitial migration within inflamed skin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Renkawitz, J. et al. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature 568, 546–550 (2019). The study shows that the ‘nucleus-first configuration’, a distinctive feature of amoeboid cells, facilitates rapid navigation of dendritic cells along the path of least resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bufi, N. et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys. J. 108, 2181–2190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGregor, A. L., Hsia, C. R. & Lammerding, J. Squish and squeeze — the nucleus as a physical barrier during migration in confined environments. Curr. Opin. Cell Biol. 40, 32–40 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davidson, P. M., Denais, C., Bakshi, M. C. & Lammerding, J. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. Cell Mol. Bioeng. 7, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Salvermoser, M., Begandt, D., Alon, R. & Walzog, B. Nuclear deformation during neutrophil migration at sites of inflammation. Front. Immunol. 9, 2680 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Olins, A. L. et al. The human granulocyte nucleus: unusual nuclear envelope and heterochromatin composition. Eur. J. Cell Biol. 87, 279–290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salvermoser, M. et al. Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation. Blood 131, 1887–1898 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Thiam, H. R. et al. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thompson, S. B. et al. Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity. eLife 9, e58046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Degroote, R. L. et al. Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis. J. Proteom. 154, 102–108 (2017).

    Article  CAS  Google Scholar 

  28. Odoardi, F. et al. T cells become licensed in the lung to enter the central nervous system. Nature 488, 675–679 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    Article  PubMed  CAS  Google Scholar 

  31. Reversat, A. et al. Cellular locomotion using environmental topography. Nature 582, 582–585 (2020). This paper is the first demonstration that T cells can transmit forces by coupling the retrograde flow of actin to a geometrically irregular environment, in the complete absence of any adhesion.

    Article  CAS  PubMed  Google Scholar 

  32. Stolp, B. et al. Salivary gland macrophages and tissue-resident CD8+ T cells cooperate for homeostatic organ surveillance. Sci. Immunol. 5, eaaz4371 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Martens, R. et al. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat. Commun. 11, 1114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Lammermann, T. & Kastenmuller, W. Concepts of GPCR-controlled navigation in the immune system. Immunol. Rev. 289, 205–231 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nourshargh, S. & Alon, R. Leukocyte migration into inflamed tissues. Immunity 41, 694–707 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Hogg, N., Patzak, I. & Willenbrock, F. The insider’s guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11, 416–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Shulman, Z. et al. Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat. Immunol. 13, 67–76 (2011).

    Article  PubMed  CAS  Google Scholar 

  39. Handel, T. M., Johnson, Z., Crown, S. E., Lau, E. K. & Proudfoot, A. E. Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Mihov, D. & Spiess, M. Glycosaminoglycans: sorting determinants in intracellular protein traffic. Int. J. Biochem. Cell Biol. 68, 87–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Stoler-Barak, L. et al. Blood vessels pattern heparan sulfate gradients between their apical and basolateral aspects. PLoS ONE 9, e85699 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang, J. & Kubes, P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165, 668–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Steinert, E. M. et al. Cutting edge: evidence for nonvascular route of visceral organ immunosurveillance by T cells. J. Immunol. 201, 337–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Thompson, S. et al. Regulation of chemokine function: the roles of GAG-binding and post-translational nitration. Int. J. Mol. Sci. 18, 1692 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  45. Proudfoot, A. E. et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl Acad. Sci. USA 100, 1885–1890 (2003). This paper demonstrates that GAG binding mediates chemokine tethering and immobilization, which is a prerequisite of chemokine activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gangavarapu, P. et al. The monomer–dimer equilibrium and glycosaminoglycan interactions of chemokine CXCL8 regulate tissue-specific neutrophil recruitment. J. Leukoc. Biol. 91, 259–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salanga, C. L. & Handel, T. M. Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp. Cell Res. 317, 590–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Graham, G. J., Handel, T. M. & Proudfoot, A. E. I. Leukocyte adhesion: reconceptualizing chemokine presentation by glycosaminoglycans. Trends Immunol. 40, 472–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Schumann, K. et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Sun, Z., Costell, M. & Fassler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Hons, M. et al. Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nat. Immunol. 19, 606–616 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Hallmann, R. et al. The regulation of immune cell trafficking by the extracellular matrix. Curr. Opin. Cell Biol. 36, 54–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Hyun, Y. M. et al. Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J. Exp. Med. 209, 1349–1362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203, 1519–1532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, C. et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nat. Med. 15, 519–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Sixt, M. et al. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood–brain barrier in experimental autoimmune encephalomyelitis. J. Cell Biol. 153, 933–946 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, X. et al. The endothelial basement membrane acts as a checkpoint for entry of pathogenic T cells into the brain. J. Exp. Med. 217, e20191339 (2020). This study highlights the functional importance of spatial patterning of ECM components, showing that the expression of laminin at the interface between the endothelial monolayer and the underlying basement membrane is critical to control pathogenicity of infiltrating T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, X., Rodda, L. B., Bannard, O. & Cyster, J. G. Integrin-mediated interactions between B cells and follicular dendritic cells influence germinal center B cell fitness. J. Immunol. 192, 4601–4609 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Schrock, D. C. et al. Pivotal role for αV integrins in Tfh GC positioning and support of the germinal center response. 116, 4462–4470 (2019).

  61. Ray, S. J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Reilly, E. C. et al. TRM integrins CD103 and CD49a differentially support adherence and motility after resolution of influenza virus infection. Proc. Natl Acad. Sci. USA 117, 12306–12314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilson, E. H. et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30, 300–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moreau, H. D., Piel, M., Voituriez, R. & Lennon-Dumenil, A. M. Integrating physical and molecular insights on immune cell migration. Trends Immunol. 39, 632–643 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Nicolas-Boluda, A. & Donnadieu, E. Obstacles to T cell migration in the tumor microenvironment. Comp. Immunol. Microbiol. Infect. Dis. 63, 22–30 (2019).

    Article  PubMed  Google Scholar 

  66. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012). This study demonstrates that the density and orientation of the stromal ECM play key roles in controlling the migration of T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA 109, 6933–6938 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fernandes, N. R. J. et al. CD4+ T cell interstital migration controlled by fibronectin in the inflamed skin. Front. Immunol. 11, 1501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, W. Y., Davidson, C. D., Lin, D. & Baker, B. M. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat. Commun. 10, 1186 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sarris, M. & Sixt, M. Navigating in tissue mazes: chemoattractant interpretation in complex environments. Curr. Opin. Cell Biol. 36, 93–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Krummel, M. F., Bartumeus, F. & Gerard, A. T cell migration, search strategies and mechanisms. Nat. Rev. Immunol. 16, 193–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bromley, S. K., Peterson, D. A., Gunn, M. D. & Dustin, M. L. Cutting edge: hierarchy of chemokine receptor and TCR signals regulating T cell migration and proliferation. J. Immunol. 165, 15–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Dustin, M. L. & Choudhuri, K. Signaling and polarized communication across the T cell immunological synapse. Annu. Rev. Cell Dev. Biol. 32, 303–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Baker, C. M. et al. Opposing roles for RhoH GTPase during T-cell migration and activation. Proc. Natl Acad. Sci. USA 109, 10474–10479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brunner-Weinzierl, M. C. & Rudd, C. E. CTLA-4 and PD-1 control of T-cell motility and migration: implications for tumor immunotherapy. Front. Immunol. 9, 2737 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Schneider, H. et al. Reversal of the TCR stop signal by CTLA-4. Science 313, 1972–1975 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Sarris, M. et al. Inflammatory chemokines direct and restrict leukocyte migration within live tissues as glycan-bound gradients. Curr. Biol. 22, 2375–2382 (2012). The study highlights that, by interacting with extracellular heparan sulfate proteoglycans, chemokines can establish robust surface-bound gradients that mediate both recruitment and retention of leukocytes at sites of infection.

    Article  CAS  PubMed  Google Scholar 

  79. Hickman, H. D. et al. CXCR3 chemokine receptor enables local CD8+ T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015). This paper is a powerful in vivo demonstration that chemokine signals guide the ability of CD8+ T cells to locate virus-infected cells within the infected tissue and thereby exert antiviral effector functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Egen, J. G. et al. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34, 807–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shakhar, G. et al. Stable T cell–dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat. Immunol. 6, 707–714 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40, 235–247 (2014). This dynamic analysis of T cell interactions with APCs in the inflamed tissue reveals that the pattern of transient arrest and rapid resumption of migration is controlled by a TCR-dependent negative-feedback loop mediated by effector T cell upregulation of PD1, which may protect the host from immunopathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moreau, H. D. et al. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37, 351–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Sadik, C. D. & Luster, A. D. Lipid–cytokine–chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 207–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tager, A. M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982–990 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Qi, H. T follicular helper cells in space–time. Nat. Rev. Immunol. 16, 612–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Cyster, J. G., Dang, E. V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14, 731–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Yan, H. et al. Plexin B2 and semaphorin 4C guide T cell recruitment and function in the germinal center. Cell Rep. 19, 995–1007 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Moriyama, S. et al. Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J. Exp. Med. 211, 1297–1305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, P., Shih, C. & Qi, H. Ephrin B1-mediated repulsion and signaling control germinal center T cell territoriality and function. Science 356, eaai9264 (2017).

    Article  PubMed  CAS  Google Scholar 

  92. Muppidi, J. R., Lu, E. & Cyster, J. G. The G protein-coupled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination. J. Exp. Med. 212, 2213–2222 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, E., Wolfreys, F. D., Muppidi, J. R., Xu, Y. & Cyster, J. G. S-Geranylgeranyl-l-glutathione is a ligand for human B cell-confinement receptor P2RY8. Nature 567, 244–248 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Muller, A. J. et al. CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37, 147–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Mandl, J. N. et al. Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naive CD4+ and CD8+ T cells. Proc. Natl Acad. Sci. USA 109, 18036–18041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Leon, B. & Lund, F. E. Compartmentalization of dendritic cell and T-cell interactions in the lymph node: anatomy of T-cell fate decisions. Immunol. Rev. 289, 84–100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kurachi, M. et al. Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration. J. Exp. Med. 208, 1605–1620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hu, J. K., Kagari, T., Clingan, J. M. & Matloubian, M. Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc. Natl Acad. Sci. USA 108, E118–E127 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Groom, J. R. et al. CXCR3 chemokine receptor–ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37, 1091–1103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sallusto, F. & Lanzavecchia, A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev. 177, 134–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Tough, D. F., Rioja, I., Modis, L. K. & Prinjha, R. K. Epigenetic regulation of T cell memory: recalling therapeutic implications. Trends Immunol. 41, 29–45 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Gerard, A. et al. Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g. Cell 158, 492–505 (2014). This study identifies MYO1G as a T cell-intrinsic regulator of the meandering search pattern of migrating T cells that appears to enhance the detection of rare cognate APCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Laakso, J. M., Lewis, J. H., Shuman, H. & Ostap, E. M. Myosin I can act as a molecular force sensor. Science 321, 133–136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mrass, P. et al. ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs. Nat. Commun. 8, 1010 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gaylo-Moynihan, A. et al. Programming of distinct chemokine-dependent and -independent search strategies for TH1 and TH2 cells optimizes function at inflamed sites. Immunity 51, 298–309 e296 (2019). This study reveals that TH cell differentiation imparts distinct effector subset-specific migration patterns and particular dependencies on migrational cues: TH1 cells explored the inflamed tissue in a GPCR- and chemokine-dependent fashion, whereas TH2 cells scanned the tissue independent of GPCR signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Du, F. et al. Inflammatory TH17 cells express integrin αvβ3 for pathogenic function. Cell Rep. 16, 1339–1351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Osborn, J. F. et al. Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8+ T cells. Sci. Immunol. 2, eaan6049 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weber, M. et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Ariotti, S. et al. Subtle CXCR3-dependent chemotaxis of CTLs within infected tissue allows efficient target localization. J. Immunol. 195, 5285–5295 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature 440, 890–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Petrie Aronin, C. E. et al. Migrating myeloid cells sense temporal dynamics of chemoattractant concentrations. Immunity 47, 862–874.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Witt, C. M., Raychaudhuri, S., Schaefer, B., Chakraborty, A. K. & Robey, E. A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, e160 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Majumdar, R., Sixt, M. & Parent, C. A. New paradigms in the establishment and maintenance of gradients during directed cell migration. Curr. Opin. Cell Biol. 30, 33–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Vanheule, V., Metzemaekers, M., Janssens, R., Struyf, S. & Proost, P. How post-translational modifications influence the biological activity of chemokines. Cytokine 109, 29–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Borroni, E. M., Mantovani, A., Locati, M. & Bonecchi, R. Chemokine receptors intracellular trafficking. Pharmacol. Ther. 127, 1–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Mantovani, A., Bonecchi, R. & Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol. 6, 907–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol. 7, 224 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lau, S. et al. A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration. Nat. Cell Biol. 22, 266–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Molon, B. et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 208, 1949–1962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nieto, M. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 186, 153–158 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hyun, Y. M., Chung, H. L., McGrath, J. L., Waugh, R. E. & Kim, M. Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-1. J. Immunol. 183, 359–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Vroon, A., Heijnen, C. J. & Kavelaars, A. GRKs and arrestins: regulators of migration and inflammation. J. Leukoc. Biol. 80, 1214–1221 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Schwarz, J. et al. Dendritic cells interpret haptotactic chemokine gradients in a manner governed by signal-to-noise ratio and dependent on GRK6. Curr. Biol. 27, 1314–1325 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Kehrl, J. H. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem. Pharmacol. 114, 40–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bromley, S. K., Mempel, T. R. & Luster, A. D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9, 970–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Campbell, J. J., Foxman, E. F. & Butcher, E. C. Chemoattractant receptor cross talk as a regulatory mechanism in leukocyte adhesion and migration. Eur. J. Immunol. 27, 2571–2578 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lin, F. & Butcher, E. C. Modeling the role of homologous receptor desensitization in cell gradient sensing. J. Immunol. 181, 8335–8343 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Wu, D. & Lin, F. Modeling cell gradient sensing and migration in competing chemoattractant fields. PLoS ONE 6, e18805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zidar, D. A., Violin, J. D., Whalen, E. J. & Lefkowitz, R. J. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc. Natl Acad. Sci. USA 106, 9649–9654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Coombs, C. et al. Chemokine receptor trafficking coordinates neutrophil clustering and dispersal at wounds in zebrafish. Nat. Commun. 10, 5166 (2019). This elegant study visualizes the differential membrane trafficking of chemokine receptors in neutrophils and links chemokine receptor availability to the accumulation and subsequent dispersal of neutrophils at a wound site, ensuring an effective and self-resolving response to tissue damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sun, H. et al. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev. Cell 30, 61–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Prentice-Mott, H. V. et al. Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proc. Natl Acad. Sci. USA 110, 21006–21011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moses, M. E., Cannon, J. L., Gordon, D. M. & Forrest, S. Distributed adaptive search in T cells: lessons from ants. Front. Immunol. 10, 1357 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Torabi-Parizi, P. et al. Pathogen-related differences in the abundance of presented antigen are reflected in CD4+ T cell dynamic behavior and effector function in the lung. J. Immunol. 192, 1651–1660 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Afonso, P. V. et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell 22, 1079–1091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013). This study shows that neutrophil production of LTB4 and cell surface integrins were required for long-distance neutrophil warming in the extravascular space of a damaged tissue.

    Article  PubMed  CAS  Google Scholar 

  141. Lim, K. et al. In situ neutrophil efferocytosis shapes T cell immunity to influenza infection. Nat. Immunol. 21, 1046–1057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Leon, B. et al. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13, 681–690 (2012). Together with Groom et al. (2012), this study was the first to define a chemokine-controlled intranodal repositioning event that was critical for the completion of TH cell differentiation in the lymph node.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Goldberg, M. F. et al. Salmonella persist in activated macrophages in T cell-sparse granulomas but are contained by surrounding CXCR3 ligand-positioned TH1 cells. Immunity 49, 1090–1102.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Richmond, J. M. et al. Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease. J. Invest. Dermatol. 137, 350–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell Res. 317, 620–631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sung, J. H. et al. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150, 1249–1263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kastenmuller, W. et al. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 38, 502–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Woodruff, M. C. et al. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. J. Exp. Med. 211, 1611–1621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Baptista, A. P. et al. The chemoattractant receptor Ebi2 drives intranodal naive CD4+ T cell peripheralization to promote effective adaptive immunity. Immunity 50, 1188–1201.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. McFarland, A. P. & Colonna, M. Sense and immuno-sensibility: innate lymphoid cell niches and circuits. Curr. Opin. Immunol. 62, 9–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Dahlgren, M. W. et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50, 707–722.e6 (2019). This study implicates adventitial stromal cells in the support of conserved niches for type 2 lymphocyte expansion and function in the lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Moriyama, S. et al. β2-Adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056–1061 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Dahlgren, M. W. & Molofsky, A. B. Adventitial cuffs: regional hubs for tissue immunity. Trends Immunol. 40, 877–887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Veres, T. Z. et al. Allergen-induced CD4+ T cell cytokine production within airway mucosal dendritic cell-T cell clusters drives the local recruitment of myeloid effector cells. J. Immunol. 198, 895–907 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Filipe-Santos, O. et al. A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Siracusa, F. et al. Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow. Proc. Natl Acad. Sci. USA 115, 1334–1339 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Natsuaki, Y. et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15, 1064–1069 (2014). This work defines an induced perivascular niche in the skin where dendritic cells form clusters with effector T cells to promote in situ T cell proliferation and activation.

    Article  CAS  PubMed  Google Scholar 

  162. Huang, L. R. et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8+ T cells and successful immunotherapy against chronic viral liver infection. Nat. Immunol. 14, 574–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014). This study is one of the first to identify a TRM tissue niche, where chemokines secreted by local macrophages maintained vaginal CD4 TRM cells in memory lymphocyte clusters, independent of circulating memory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nordenfelt, P. et al. Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nat. Commun. 8, 2047 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Guillou, L. et al. T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs. Mol. Biol. Cell 27, 3574–3582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Song, J., Wu, C., Zhang, X. & Sorokin, L. M. In vivo processing of CXCL5 (LIX) by matrix metalloproteinase (MMP)-2 and MMP-9 promotes early neutrophil recruitment in IL-1β-induced peritonitis. J. Immunol. 190, 401–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Proost, P. et al. Proteolytic processing of CXCL11 by CD13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood 110, 37–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Proost, P. et al. Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood 98, 3554–3561 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Ludwig, A., Schiemann, F., Mentlein, R., Lindner, B. & Brandt, E. Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J. Leukoc. Biol. 72, 183–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Oravecz, T. et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J. Exp. Med. 186, 1865–1872 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Barker, C. E. et al. CCL2 nitration is a negative regulator of chemokine-mediated inflammation. Sci. Rep. 7, 44384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Loos, T. et al. Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 112, 2648–2656 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Kiermaier, E. et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 351, 186–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Denard, B., Han, S., Kim, J., Ross, E. M. & Ye, J. Regulating G protein-coupled receptors by topological inversion. eLife 8, e40234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Weber, C., Zernecke, A. & Libby, P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat. Rev. Immunol. 8, 802–815 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Gewaltig, J., Kummer, M., Koella, C., Cathomas, G. & Biedermann, B. C. Requirements for CD8 T-cell migration into the human arterial wall. Hum. Pathol. 39, 1756–1762 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Kyaw, T. et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation 127, 1028–1039 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Kleinschmidt-DeMasters, B. K. & Tyler, K. L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β-1a for multiple sclerosis. N. Engl. J. Med. 353, 369–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  PubMed  Google Scholar 

  182. Fisher, D. T. et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J. Clin. Invest. 121, 3846–3859 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Moon, E. K. et al. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. Oncoimmunology 7, e1395997 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hu, Z. et al. Mouse IP-10 gene delivered by folate-modified chitosan nanoparticles and dendritic/tumor cells fusion vaccine effectively inhibit the growth of hepatocellular carcinoma in mice. Theranostics 7, 1942–1952 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Peng, S. B. et al. Distinct mobilization of leukocytes and hematopoietic stem cells by CXCR4 peptide antagonist LY2510924 and monoclonal antibody LY2624587. Oncotarget 8, 94619–94634 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. O’Hara, M. H. et al. Safety and pharmacokinetics of CXCR4 peptide antagonist, LY2510924, in combination with durvalumab in advanced refractory solid tumors. J. Pancreat. Cancer 6, 21–31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Weinstein, E. J. et al. VCC-1, a novel chemokine, promotes tumor growth. Biochem. Biophys. Res. Commun. 350, 74–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Kuroda, T. et al. Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin. Cancer Res. 11, 7629–7636 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Kang, H., Mansel, R. E. & Jiang, W. G. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1–CXCR4 pathway in the aggressiveness of breast cancer cells. Int. J. Oncol. 26, 1429–1434 (2005).

    CAS  PubMed  Google Scholar 

  193. Campanella, G. S., Medoff, B. D., Manice, L. A., Colvin, R. A. & Luster, A. D. Development of a novel chemokine-mediated in vivo T cell recruitment assay. J. Immunol. Methods 331, 127–139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gopinath, S., Lu, P. & Iwasaki, A. Cutting edge: the use of topical aminoglycosides as an effective pull in “prime and pull” vaccine strategy. J. Immunol. 204, 1703–1707 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gola, A. et al. Prime and target immunization protects against liver-stage malaria in mice. Sci. Transl Med. 10, eaap9128 (2018).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the ‘Tissue Regulation of T cell Function’ P01 for their input, P. Oakes for discussion and design of the graphics shown in Figure 2 and R. Alon for careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Deborah J. Fowell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks J. Schenkel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowell, D.J., Kim, M. The spatio-temporal control of effector T cell migration. Nat Rev Immunol 21, 582–596 (2021). https://doi.org/10.1038/s41577-021-00507-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00507-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing