Neuronal regulation of immunity: why, how and where?

Abstract

Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction — the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain’s unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain–immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Pavlov, V. A., Chavan, S. S. & Tracey, K. J. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 36, 783–812 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kent, S., Bluthé, R. M., Kelley, K. W. & Dantzer, R. Sickness behavior as a new target for drug development. Trends Pharmacol. Sci. 13, 24–28 (1992).

    CAS  PubMed  Google Scholar 

  5. 5.

    Konsman, J. P., Parnet, P. & Dantzer, R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. 25, 154–159 (2002).

    CAS  PubMed  Google Scholar 

  6. 6.

    Kelley, K. W. et al. Cytokine-induced sickness behavior. Brain, Behav. Immun. 17, 112–118 (2003).

    Google Scholar 

  7. 7.

    Imeri, L. & Opp, M. R. How (and why) the immune system makes us sleep. Nat. Rev. Neurosci. 10, 199–210 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Krueger, J. The role of cytokines in sleep regulation. Curr. Pharm. Des. 14, 3408–3416 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ahima, R. S. & Antwi, D. A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. North. Am. 37, 811–823 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Buchanan, J. B. & Johnson, R. W. Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology 86, 183–190 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Marin, I. & Kipnis, J. Learning and memory… and the immune system. Learn. Mem. 20, 601–606 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bay-Richter, C., Janelidze, S., Hallberg, L. & Brundin, L. Changes in behaviour and cytokine expression upon a peripheral immune challenge. Behav. Brain Res. 222, 193–199 (2011).

    CAS  PubMed  Google Scholar 

  14. 14.

    Miller, A. H., Maletic, V. & Raison, C. L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 65, 732–741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Raison, C. L., Capuron, L. & Miller, A. H. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27, 24–31 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Müller, N. & Schwarz, M. J. Immune system and schizophrenia. Curr. Immunol. Rev. 6, 213–220 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Elstad, J. I. & Vabø, M. Job stress, sickness absence and sickness presenteeism in Nordic elderly care. Scand. J. Public. Health 36, 467–474 (2008).

    PubMed  Google Scholar 

  19. 19.

    Johnson, J. D., O’Connor, K. A., Hansen, M. K., Watkins, L. R. & Maier, S. F. Effects of prior stress on LPS-induced cytokine and sickness responses. Am. J. Physiol. Integr. Comp. Physiol. 284, R422–R432 (2003).

    CAS  Google Scholar 

  20. 20.

    Wulsin, L. R., Vaillant, G. E. & Wells, V. E. A systematic review of the mortality of depression. Psychosom. Med. 61, 6–17 (1999).

    CAS  PubMed  Google Scholar 

  21. 21.

    Leonard, B. E. The immune system, depression and the action of antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 767–780 (2001).

    CAS  PubMed  Google Scholar 

  22. 22.

    Eyre, H. & Baune, B. T. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 37, 1397–1416 (2012).

    CAS  PubMed  Google Scholar 

  23. 23.

    Benedetti, F. Placebo Effects (Oxford University Press, 2014).

  24. 24.

    Enck, P., Benedetti, F. & Schedlowski, M. New insights into the placebo and nocebo responses. Neuron 59, 195–206 (2008).

    CAS  PubMed  Google Scholar 

  25. 25.

    Shi, K., Wood, K., Shi, F.-D., Wang, X. & Liu, Q. Stroke-induced immunosuppression and poststroke infection. Stroke Vasc. Neurol. 3, 34–41 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dirnagl, U. et al. Stroke-induced immunodepression. Stroke 38, 770–773 (2007).

    PubMed  Google Scholar 

  27. 27.

    Wong, C. H. Y., Jenne, C. N., Lee, W.-Y., Leger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011). This study demonstrates that stroke induces functional changes in hepatic invariant natural killer T cells, an effect mediated via the SNS.

    CAS  PubMed  Google Scholar 

  28. 28.

    Sellars, C. et al. Risk factors for chest infection in acute stroke. Stroke 38, 2284–2291 (2007).

    PubMed  Google Scholar 

  29. 29.

    Tarkowski, E., Ekelund, P. & Tarkowski, A. Enhancement of antigen-specific T-cell reactivity on the affected side in stroke patients. J. Neuroimmunol. 34, 61–67 (1991).

    CAS  PubMed  Google Scholar 

  30. 30.

    Tarkowski, E., Naver, H., Wallin, B. G., Blomstrand, C. & Tarkowski, A. Lateralization of T-lymphocyte responses in patients with stroke. Effect of sympathetic dysfunction? Stroke 26, 57–62 (1995).

    CAS  PubMed  Google Scholar 

  31. 31.

    Moshel, Y. A., Durkin, H. G. & Amassian, V. E. Lateralized neocortical control of T lymphocyte export from the thymus. J. Neuroimmunol. 158, 3–13 (2005).

    CAS  PubMed  Google Scholar 

  32. 32.

    Neveu, P. J., Barnéoud, P., Vitiello, S., Betancur, C. & Le Moal, M. Brain modulation of the immune system: association between lymphocyte responsiveness and paw preference in mice. Brain Res. 457, 392–394 (1988).

    CAS  PubMed  Google Scholar 

  33. 33.

    Betancur, C. Natural killer cell activity is associated with brain asymmetry in male mice. Brain. Behav. Immun. 5, 162–169 (1991).

    CAS  PubMed  Google Scholar 

  34. 34.

    Neveu, P. J. Asymmetrical brain modulation of the immune response. Brain Res. Brain Res. Rev. 17, 101–107 (1992).

    CAS  PubMed  Google Scholar 

  35. 35.

    Wittling, W., Block, A., Schweiger, E. & Genzel, S. Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cogn. 38, 17–35 (1998).

    CAS  PubMed  Google Scholar 

  36. 36.

    Meyer, S., Strittmatter, M., Fischer, C., Georg, T. & Schmitz, B. Lateralization in autononic dysfunction in ischemic stroke involving the insular cortex. Neuroreport 15, 357–361 (2004).

    CAS  Google Scholar 

  37. 37.

    Guo, C. C. et al. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proc. Natl Acad. Sci. USA 113, E2430–E2439 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Wittling, W., Block, A., Genzel, S. & Schweiger, E. Hemisphere asymmetry in parasympathetic control of the heart. Neuropsychologia 36, 461–468 (1998).

    CAS  PubMed  Google Scholar 

  39. 39.

    Demas, G. E. The energetics of immunity: a neuroendocrine link between energy balance and immune function. Horm. Behav. 45, 173–180 (2004).

    CAS  PubMed  Google Scholar 

  40. 40.

    Derting, T. L. & Compton, S. Immune response, not immune maintenance, is energetically costly in wild white-footed mice (Peromyscus leucopus). Physiol. Biochem. Zool. 76, 744–752 (2003).

    PubMed  Google Scholar 

  41. 41.

    Muehlenbein, M. P., Hirschtick, J. L., Bonner, J. Z. & Swartz, A. M. Toward quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. Am. J. Hum. Biol. 22, 546–556 (2010).

    PubMed  Google Scholar 

  42. 42.

    Straub, R. H., Cutolo, M., Buttgereit, F. & Pongratz, G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J. Intern. Med. 267, 543–560 (2010).

    CAS  PubMed  Google Scholar 

  43. 43.

    Cámara‑Lemarroy, C. R. et al. Gemfibrozil attenuates the inflammatory response and protects rats from abdominal sepsis. Exp. Ther. Med. 9, 1018–1022 (2015).

    Google Scholar 

  44. 44.

    Budd, A. et al. Increased survival after gemfibrozil treatment of severe mouse influenza. Antimicrob. Agents Chemother. 51, 2965–2968 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wang, A. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525.e12 (2016). This study shows the critical role of nutritional regulation in the organism’s response to bacterial versus viral sepsis.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Austin, J. & Marks, D. Hormonal regulators of appetite. Int. J. Pediatr. Endocrinol. 2009, 141753 (2009).

    PubMed  Google Scholar 

  47. 47.

    Becskei, C. et al. Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake. Brain. Behav. Immun. 22, 56–64 (2008).

    CAS  PubMed  Google Scholar 

  48. 48.

    Gillette, M. U. & Tischkau, S. A. Suprachiasmatic nucleus: the brain’s Circadian clock. Recent Prog. Horm. Res. 54, 33–59 (1999).

    CAS  PubMed  Google Scholar 

  49. 49.

    Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Druzd, D. et al. Lymphocyte Circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132 (2017). This study demonstrates that lymphocyte migration in the lymphatic system occurs in a circadian manner: lymphocyte homing to lymph nodes peaked at night and cells left the tissue during the day.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Halberg, F., Johnson, E. A., Brown, B. W. & Bittner, J. J. Susceptibility Rhythm to E. coli endotoxin and bioassay. Proc. Soc. Exp. Biol. Med. 103, 142–144 (1960).

    CAS  PubMed  Google Scholar 

  52. 52.

    Long, J. E. et al. Morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. Vaccine 34, 2679–2685 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008). This study discovers that the SNS regulates circadian fluctuations in the release and homing of circulating haematopoietic stem cells.

    PubMed  Google Scholar 

  54. 54.

    Rolls, A. et al. Sleep disruption impairs haematopoietic stem cell transplantation in mice. Nat. Commun. 6, 8516 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Born, J. & Wilhelm, I. System consolidation of memory during sleep. Psychol. Res. 76, 192–203 (2012).

    PubMed  Google Scholar 

  56. 56.

    Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Huang, W., Ramsey, K. M., Marcheva, B. & Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Invest. 121, 2133–2141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Besedovsky, L., Lange, T. & Born, J. Sleep and immune function. Pflugers Arch. 463, 121–137 (2012).

    CAS  PubMed  Google Scholar 

  59. 59.

    Bryant, P. A., Trinder, J. & Curtis, N. Sick and tired: does sleep have a vital role in the immune system? Nat. Rev. Immunol. 4, 457–467 (2004).

    CAS  PubMed  Google Scholar 

  60. 60.

    Born, J., Lange, T., Hansen, K., Mölle, M. & Fehm, H. L. Effects of sleep and circadian rhythm on human circulating immune cells. J. Immunol. 158, 4454–4464 (1997).

    CAS  PubMed  Google Scholar 

  61. 61.

    Ader, R. & Cohen, N. Behaviorally conditioned immunosuppression. Psychosom. Med. 37, 333–340 (1975). This is the classical demonstration that the immune response can be behaviourally conditioned.

    CAS  PubMed  Google Scholar 

  62. 62.

    Ader, R. & Cohen, N. Behaviorally conditioned immunosuppression and murine systemic lupus erythematosus. Science 215, 1534–1536 (1982).

    CAS  PubMed  Google Scholar 

  63. 63.

    Vits, S. et al. Behavioural conditioning as the mediator of placebo responses in the immune system. Philos. Trans. R. Soc. B Biol. Sci. 366, 1799–1807 (2011).

    Google Scholar 

  64. 64.

    Lysle, D. T., Luecken, L. J. & Maslonek, K. A. Suppression of the development of adjuvant arthritis by a conditioned aversive stimulus. Brain Behav. Immun. 6, 64–73 (1992).

    CAS  PubMed  Google Scholar 

  65. 65.

    Giang, D. W. et al. Conditioning of cyclophosphamide-induced leukopenia in humans. J. Neuropsychiatry Clin. Neurosci. 8, 194–201 (1996).

    CAS  PubMed  Google Scholar 

  66. 66.

    Longo, D. L. et al. Conditioned immune response to interferon-γ in humans. Clin. Immunol. 90, 173–181 (1999).

    CAS  PubMed  Google Scholar 

  67. 67.

    Pacheco-López, G. et al. Neural substrates for behaviorally conditioned immunosuppression in the rat. J. Neurosci. 25, 2330–2337 (2005).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ramírez-Amaya, V. et al. Insular cortex lesions impair the acquisition of conditioned immunosuppression. Brain. Behav. Immun. 10, 103–114 (1996).

    PubMed  Google Scholar 

  69. 69.

    Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016). This study establishes the causal relastionship between activation of a specific brain area, the reward system and strengthening of innate and adaptive immune responses.

    CAS  PubMed  Google Scholar 

  70. 70.

    Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat. Commun. 9, 2723 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Cole, S. W. et al. Social regulation of gene expression in human leukocytes. Genome Biol. 8, (2007). This study reports that gene expression in humans is altered in different social environments.

  72. 72.

    Cole, S. W. Human social genomics. PLoS Genet. 10, 1004601 (2014).

    Google Scholar 

  73. 73.

    Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013). This study demonstrates that bacteria, independently of the immune response, can directly activate nociceptor sensory neurons and induce pain in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Cohen, J. A. et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178, 919–932.e14 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 180, 33–49.e22 (2020).

    CAS  PubMed  Google Scholar 

  76. 76.

    Wallrapp, A. et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity 51, 709–723.e6 (2019).

    CAS  PubMed  Google Scholar 

  77. 77.

    Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Meixiong, J. et al. Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50, 1163–1171.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Matteoli, G. et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63, 938–948 (2014).

    CAS  PubMed  Google Scholar 

  80. 80.

    Talbot, J. et al. Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Chu, C., Artis, D. & Chiu, I. M. Neuro-immune interactions in the tissues. Immunity 52, 464–474 (2020).

    CAS  PubMed  Google Scholar 

  83. 83.

    Mayer, E. A., Tillisch, K. & Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest. 125, 926–938 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Cryan, J. F. & O’Mahony, S. M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187–192 (2011).

    CAS  PubMed  Google Scholar 

  85. 85.

    Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Ochoa-Repáraz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    PubMed  Google Scholar 

  87. 87.

    Singh, V. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Foster, J. A. & McVey Neufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    CAS  PubMed  Google Scholar 

  89. 89.

    Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Baral, P., Udit, S. & Chiu, I. M. Pain and immunity: implications for host defence. Nat. Rev. Immunol. 19, 433–447 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Dhabhar, F. S., Malarkey, W. B., Neri, E. & McEwen, B. S. Stress-induced redistribution of immune cells-from barracks to boulevards to battlefields: a tale of three hormones - Curt Richter Award winner. Psychoneuroendocrinology 37, 1345–1368 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Schedlowski, M. et al. Changes of natural killer cells during acute psychological stress. J. Clin. Immunol. 13, 119–126 (1993).

    CAS  PubMed  Google Scholar 

  94. 94.

    Benschop, R. J., Rodriguez-Feuerhahn, M. & Schedlowski, M. Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain. Behav. Immun. 10, 77–91 (1996).

    CAS  PubMed  Google Scholar 

  95. 95.

    Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  96. 96.

    Straub, R. H. & Kalden, J. R. Stress of different types increases the proinflammatory load in rheumatoid arthritis. Arthritis Res. Ther. 11, 114 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Pongratz, G. & Straub, R. H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 16, 504 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    CAS  PubMed  Google Scholar 

  99. 99.

    Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000). This study describes the ‘inflammatory reflex’, whereby ACh and direct stimulation of the vagus nerve can attenuate immune responses.

    CAS  Google Scholar 

  100. 100.

    Churchland, P. S. & Winkielman, P. Modulating social behavior with oxytocin: how does it work? What does it mean? Horm. Behav. 61, 392–399 (2012).

    CAS  PubMed  Google Scholar 

  101. 101.

    Neumann, I. D. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J. Neuroendocrinol. 20, 858–865 (2008).

    CAS  PubMed  Google Scholar 

  102. 102.

    Boone, M. & Deen, P. M. T. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pfluger Arch. 456, 1005–1024 (2008).

    CAS  Google Scholar 

  103. 103.

    Jankowski, M. et al. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic. Res. Cardiol. 105, 205–218 (2010).

    CAS  PubMed  Google Scholar 

  104. 104.

    Oliveira-Pelegrin, G. R., Saia, R. S., Cárnio, E. C. & Rocha, M. J. A. Oxytocin affects nitric oxide and cytokine production by sepsis-sensitized macrophages. Neuroimmunomodulation 20, 65–71 (2013).

    CAS  PubMed  Google Scholar 

  105. 105.

    Poutahidis, T. et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS ONE 8, e78898 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Boyd, J. H., Holmes, C. L., Wang, Y., Roberts, H. & Walley, K. R. Vasopressin decreases sepsis-induced pulmonary inflammation through the V2R. Resuscitation 79, 325–331 (2008).

    CAS  PubMed  Google Scholar 

  107. 107.

    Palin, K. et al. Interleukin-6 activates arginine vasopressin neurons in the supraoptic nucleus during immune challenge in rats. Am. J. Physiol. Endocrinol. Metab. 296, E1289–E1299 (2009).

    CAS  PubMed  Google Scholar 

  108. 108.

    Tanriverdi, F., Silveira, L., MacColl, G. & Bouloux, P. The hypothalamic-pituitary-gonadal axis: immune function and autoimmunity. J. Endocrinol. 176, 293–304 (2003).

    CAS  PubMed  Google Scholar 

  109. 109.

    Taneja, V. Sex hormones determine immune response. Front. Immunol. 9, 1931 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Butterworth, M., McClellan, B. & Allansmith, M. Influence of sex in immunoglobulin levels. Nature 214, 1224–1225 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Von Haam, E. & Rosenfeld, I. The effect of estrone on antibody-production. J. Immunol. 43, 109–117 (1942).

    Google Scholar 

  112. 112.

    Mangalam, A. K., Taneja, V. & David, C. S. HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. J. Immunol. 190, 513–519 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 35, 347–369 (2014).

    CAS  PubMed  Google Scholar 

  114. 114.

    Robinson, D. P. & Klein, S. L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 62, 263–271 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Pawlikowski, M., Stepien, H. & Komorowski, J. Hypothalamic-pituitary-thyroid axis and the immune system. Neuroimmunomodulation 1, 149–152 (1994).

    CAS  PubMed  Google Scholar 

  116. 116.

    Barreiro Arcos, M. L., Gorelik, G., Klecha, A., Genaro, A. M. & Cremaschi, G. A. Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-ζ in murine tumor T lymphocytes. Am. J. Physiol. Cell Physiol. 291, C327–C336 (2006).

    PubMed  Google Scholar 

  117. 117.

    Klecha, A. J. et al. Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: Thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase C signaling pathway. J. Endocrinol. 189, 44–55 (2006).

    Google Scholar 

  118. 118.

    Tan, T. L., Rajeswaran, H., Haddad, S., Shahi, A. & Parvizi, J. Increased risk of periprosthetic joint infections in patients with hypothyroidism undergoing total joint arthroplasty. J. Arthroplasty 31, 868–871 (2016).

    PubMed  Google Scholar 

  119. 119.

    Nóbrega, M. M. et al. Bacteriuria and urinary tract infection after female urodynamic studies: Risk factors and microbiological analysis. Am. J. Infect. Control. 43, 1035–1039 (2015).

    PubMed  Google Scholar 

  120. 120.

    Nance, D. M. & Sanders, V. M. Autonomic innervation and regulation of the immune system (1987–2007). Brain. Behav. Immun. 21, 736–745 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Kin, N. W. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol. 79, 1093–1104 (2006).

    CAS  PubMed  Google Scholar 

  122. 122.

    Pert, C. B., Ruff, M. R., Weber, R. J. & Herkenham, M. Neuropeptides and their receptors: a psychosomatic network. J. Immunol. 135, 820s–826s (1985).

    CAS  PubMed  Google Scholar 

  123. 123.

    Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011). This study provides a mechanistic perspective of the ‘inflammatory reflex’, demonstrating that ACh-producing T cells are required for the inhibition of cytokine production following vagus nerve stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Jänig, W. Sympathetic nervous system and inflammation: a conceptual view. Auton. Neurosci. 182, 4–14 (2014).

    PubMed  Google Scholar 

  125. 125.

    Habecker, B. A., Asmus, S. E., Francis, N. & Landis, S. C. Target regulation of VIP expression in sympathetic neurons. Ann. N. Y. Acad. Sci. 814, 198–208 (1997).

    CAS  PubMed  Google Scholar 

  126. 126.

    Lundberg, J. M., Franco-Cereceda, A., Lacroix, J. S. & Pernow, J. Neuropeptide Y and sympathetic neurotransmission. Ann. N. Y. Acad. Sci. 611, 166–174 (1990).

    CAS  PubMed  Google Scholar 

  127. 127.

    Reichmann, F. & Holzer, P. Neuropeptide Y: a stressful review. Neuropeptides 55, 99–109 (2016).

    CAS  PubMed  Google Scholar 

  128. 128.

    Farzi, A., Reichmann, F. & Holzer, P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol. 213, 603–627 (2015).

    CAS  Google Scholar 

  129. 129.

    Chandrasekharan, B., Nezami, B. G. & Srinivasan, S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G949–G957 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Gomariz, R. P., Martinez, C., Abad, C., Leceta, J. & Delgado, M. Immunology of VIP: a review and therapeutical perspectives. Curr. Pharm. Des. 7, 89–111 (2001).

    CAS  PubMed  Google Scholar 

  131. 131.

    Ganea, D., Hooper, K. M. & Kong, W. The neuropeptide vasoactive intestinal peptide: direct effects on immune cells and involvement in inflammatory and autoimmune diseases. Acta Physiol. 213, 442–452 (2015).

    CAS  Google Scholar 

  132. 132.

    Scanzano, A. & Cosentino, M. Adrenergic regulation of innate immunity: a review. Front. Pharmacol. 6, 171 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Maestroni, G. J. M. Dendritic cell migration controlled by α1b-adrenergic receptors. J. Immunol. 165, 6743–6747 (2000).

    CAS  PubMed  Google Scholar 

  134. 134.

    Kohm, A. P. & Sanders, V. M. Norepinephrine and β2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol. Rev. 53, 487–525 (2001).

    CAS  PubMed  Google Scholar 

  135. 135.

    Szelényi, J., Kiss, J. P. & Vizi, E. S. Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice. J. Neuroimmunol. 103, 34–40 (2000).

    PubMed  Google Scholar 

  136. 136.

    Bellinger, D. L. et al. Sympathetic modulation of immunity: relevance to disease. Cell. Immunol. 252, 27–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Loza, M. J., Peters, S. P., Foster, S., Khan, I. U. & Penn, R. B. β-Agonist enhances type 2 T-cell survival and accumulation. J. Allergy Clin. Immunol. 119, 235–244 (2007).

    CAS  PubMed  Google Scholar 

  138. 138.

    Swanson, M. A., Lee, W. T. & Sanders, V. M. IFN-γ production by Th1 cells generated from naive CD4 + T cells exposed to norepinephrine. J. Immunol. 166, 232–240 (2001).

    CAS  PubMed  Google Scholar 

  139. 139.

    Chelmicka-Schorr, E., Kwasniewski, M. N. & Czlonkowska, A. Sympathetic nervous system modulates macrophage function. Int. J. Immunopharmacol. 14, 841–846 (1992).

    CAS  PubMed  Google Scholar 

  140. 140.

    Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017). This study discovers a population of macrophages that mediate clearance of noradrenaline in brown adipose tissue, thereby regulating weight loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Hanoun, M., Maryanovich, M., Arnal-Estapé, A. & Frenette, P. S. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86, 360–373 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019). This study directly demonstrates the involvement of sympathetic and parasympathetic nerves in tumour growth.

    CAS  PubMed  Google Scholar 

  143. 143.

    Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    De Jonge, W. J. & Ulloa, L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br. J. Pharmacol. 151, 915–929 (2007).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    CAS  PubMed  Google Scholar 

  146. 146.

    Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 113, 8284–8289 (2016).

    CAS  PubMed  Google Scholar 

  147. 147.

    Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618–639 (2013).

    CAS  PubMed  Google Scholar 

  148. 148.

    Navarro, X., Verdú, E., Wendelschafer-Crabb, G. & Kennedy, W. R. Innervation of cutaneous structures in the mouse hind paw: a confocal microscopy immunohistochemical study. J. Neurosci. Res. 41, 111–120 (1995).

    CAS  PubMed  Google Scholar 

  149. 149.

    Ishida-Yamamoto, A., Senba, E. & Tohyama, M. Distribution and fine structure of calcitonin gene-related peptide-like immunoreactive nerve fibers in the rat skin. Brain Res. 491, 93–101 (1989).

    CAS  PubMed  Google Scholar 

  150. 150.

    Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    CAS  PubMed  Google Scholar 

  151. 151.

    Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    CAS  PubMed  Google Scholar 

  153. 153.

    Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    CAS  PubMed  Google Scholar 

  154. 154.

    Blake, K. J. et al. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat. Commun. 9, 37 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015). This study shows that nociceptive sensory neurons in the skin drive production of IL-23 by dermal dendritic cells, resulting in IL-17 production from γδ T cells and resistance to cutaneous candidiasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24, 417–426 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Kihara, N. et al. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut 52, 713–719 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Engel, M. A. et al. Opposite effects of substance P and calcitonin gene-related peptide in oxazolone colitis. Dig. Liver Dis. 44, 24–29 (2012).

    CAS  PubMed  Google Scholar 

  159. 159.

    Yamada, K. & Hoshino, T. An examination of the close relationship between lymphatic vessels and nerve fibers containing calcitonin gene-related peptide and substance P in rat skin. Nagoya J. Med. Sci. 59, 143–150 (1996).

    CAS  PubMed  Google Scholar 

  160. 160.

    Chakraborty, S., Nepiyushchikh, Z., Davis, M. J., Zawieja, D. C. & Muthuchamy, M. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R. Microcirculation 18, 24–35 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Kurashige, C. et al. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice. FASEB J. 28, 1237–1247 (2014).

    CAS  PubMed  Google Scholar 

  162. 162.

    Davis, M. J. et al. Modulation of lymphatic muscle contractility by the neuropeptide substance P. Am. J. Physiol. Heart Circ. Physiol. 295, H587–H597 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Gomes, R. N. et al. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia. Shock 24, 590–594 (2006).

    Google Scholar 

  164. 164.

    Fernandes, E. S. et al. TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. J. Immunol. 188, 5741–5751 (2012).

    CAS  PubMed  Google Scholar 

  165. 165.

    Chiu, I. M., Von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This study demonstrates functional lymphatic vessels lining the dural sinuses that can carry immune cells to the deep cervical lymph nodes.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Antila, S. et al. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 214, 3645–3667 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. 171.

    Kraynak, T. E., Marsland, A. L., Wager, T. D. & Gianaros, P. J. Functional neuroanatomy of peripheral inflammatory physiology: a meta-analysis of human neuroimaging studies. Neurosci. Biobehav. Rev. 94, 76–92 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Baker, E. & Lui, F. Neuroanatomy, vagal nerve nuclei (Nucleus vagus). in StatPearls [Internet] (StatPearls, 2019).

  173. 173.

    Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    CAS  PubMed  Google Scholar 

  174. 174.

    Samuels, E. & Szabadi, E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr. Neuropharmacol. 6, 254–285 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Jansen, A. S., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).

    CAS  PubMed  Google Scholar 

  176. 176.

    Kanbar, R., Depuy, S. D., West, G. H., Stornetta, R. L. & Guyenet, P. G. Regulation of visceral sympathetic tone by A5 noradrenergic neurons in rodents. J. Physiol. 589, 903–917 (2011).

    CAS  PubMed  Google Scholar 

  177. 177.

    Nakamura, K. et al. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci. 22, 4600–4610 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Morrison, S. F., Sved, A. F. & Passerin, A. M. GABA-mediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue. Am. J. Physiol. 276, R290–R297 (1999).

    CAS  PubMed  Google Scholar 

  179. 179.

    Abe, C. et al. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat. Neurosci. 20, 700–707 (2017). This study describes an anti-inflammatory effect following acute stress, mediated by C1 neurons, located in the medulla oblongata.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Engler, H. et al. Chemical destruction of brain noradrenergic neurons affects splenic cytokine production. J. Neuroimmunol. 219, 75–80 (2010).

    CAS  PubMed  Google Scholar 

  181. 181.

    Nikolic´, V., Jovanova-Nešic´, K. & Jankovic´, B. D. Locus ceruleus and immunity. I. Suppression of plaque-forming cell response and antibody production in rats with lesioned locus ceruleus. Int. J. Neurosci. 68, 283–287 (1993).

    PubMed  Google Scholar 

  182. 182.

    Chalermpalanupap, T. et al. Locus coeruleus ablation exacerbates cognitive deficits, neuropathology, and lethality in P301S tau transgenic mice. J. Neurosci. 38, 74–92 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Borodovitsyna, O., Flamini, M. D. & Chandler, D. J. Acute stress persistently alters locus coeruleus function and anxiety-like behavior in adolescent rats. Neuroscience 373, 7–19 (2018).

    CAS  PubMed  Google Scholar 

  184. 184.

    Valentino, R. J. & Van Bockstaele, E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur. J. Pharmacol. 583, 194–203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Rassnick, S., Sved, A. F. & Rabin, B. S. Locus coeruleus stimulation by corticotropin-releasing hormone suppresses in vitro cellular immune responses. J. Neurosci. 14, 6033–6040 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Hefco, V., Olariu, A., Hefco, A. & Nabeshima, T. The modulator role of the hypothalamic paraventricular nucleus on immune responsiveness. Brain. Behav. Immun. 18, 158–165 (2004).

    CAS  PubMed  Google Scholar 

  187. 187.

    Sakic, B. & Vlajkovic, S. Self-stimulation behavior: consequences upon immunity? Brain Behav. Immun. 4, 255–264 (1990).

    CAS  PubMed  Google Scholar 

  188. 188.

    Wrona, D., Jurkowski, M., Luszawska, D., Tokarski, J. & Trojniar, W. The effects of lateral hypothalamic lesions on peripheral blood natural killer cell cytotoxicity in rats hyper- and hyporesponsive to novelty. Brain. Behav. Immun. 17, 453–461 (2003).

    CAS  PubMed  Google Scholar 

  189. 189.

    Elmquist, J. K., Scammell, T. E., Jacobson, C. D. & Saper, C. B. Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J. Comp. Neurol. 371, 85–103 (1996).

    CAS  PubMed  Google Scholar 

  190. 190.

    Soto-Tinoco, E., Guerrero-Vargas, N. N. & Buijs, R. M. Interaction between the hypothalamus and the immune system. Exp. Physiol. 101, 1463–1471 (2016).

    CAS  PubMed  Google Scholar 

  191. 191.

    Ganong, W. F. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin. Exp. Pharmacol. Physiol. 27, 422–427 (2000).

    CAS  PubMed  Google Scholar 

  192. 192.

    Berczi, I. Pituitary hormones and immune function. Acta Paediatr. 86, 70–75 (1997).

    Google Scholar 

  193. 193.

    Johnson, E. W., Hughes, T. K. & Smith, E. M. ACTH enhancement of T-lymphocyte cytotoxic responses. Cell. Mol. Neurobiol. 25, 743–757 (2005).

    CAS  PubMed  Google Scholar 

  194. 194.

    Genedani, S. et al. Influence of f-MLP, ACTH(1-24) and CRH on in vitro chemotaxis of monocytes from centenarians. Neuroimmunomodulation 15, 285–289 (2008).

    CAS  PubMed  Google Scholar 

  195. 195.

    Borba, V. V., Zandman-Goddard, G. & Shoenfeld, Y. Prolactin and autoimmunity. Front. Immunol. 9, 73 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. 196.

    Jara, E. L. et al. Modulating the function of the immune system by thyroid hormones and thyrotropin. Immunol. Lett. 184, 76–83 (2017).

    CAS  PubMed  Google Scholar 

  197. 197.

    K, D. & ND, H. Anterior pituitary hormones, stress, and immune system homeostasis. BioEssays 23, 288–294 (2001).

    Google Scholar 

  198. 198.

    Allen, G. V., Saper, C. B., Hurley, K. M. & Cechetto, D. F. Organization of visceral and limbic connections in the insular cortex of the rat. J. Comp. Neurol. 311, 1–16 (1991).

    CAS  PubMed  Google Scholar 

  199. 199.

    Craig, A. D. Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13, 500–505 (2003).

    CAS  PubMed  Google Scholar 

  200. 200.

    Ohira, H. et al. Imaging brain and immune association accompanying cognitive appraisal of an acute stressor. Neuroimage 39, 500–514 (2008).

    PubMed  Google Scholar 

  201. 201.

    Rosenkranz, M. A. et al. Neural circuitry underlying the interaction between emotion and asthma symptom exacerbation. Proc. Natl Acad. Sci. USA 102, 13319–13324 (2005).

    CAS  PubMed  Google Scholar 

  202. 202.

    Hannestad, J. et al. Glucose metabolism in the insula and cingulate is affected by systemic inflammation in humans. J. Nucl. Med. 53, 601–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Ramírez-Amaya, V., Alvarez-Borda, B. & Bermudez-Rattoni, F. Differential effects of NMDA-induced lesions into the insular cortex and amygdala on the acquisition and evocation of conditioned immunosuppression. Brain. Behav. Immun. 12, 149–160 (1998).

    PubMed  Google Scholar 

  204. 204.

    Bubic, A., Yves von Cramon, D. & Schubotz, R. I. Prediction, cognition and the brain. Front. Hum. Neurosci. 4, 25 (2010).

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Paniccia, J. E. et al. Dorsal hippocampal neural immune signaling regulates heroin-conditioned immunomodulation but not heroin-conditioned place preference. Brain. Behav. Immun. 73, 698–707 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    McCarthy, L., Wetzel, M., Sliker, J. K., Eisenstein, T. K. & Rogers, T. J. Opioids, opioid receptors, and the immune response. Drug. Alcohol. Depend. 62, 111–123 (2001).

    CAS  PubMed  Google Scholar 

  207. 207.

    Wang, X., Zhang, T. & Ho, W. Z. Opioids and HIV/HCV infection. J. Neuroimmune Pharmacol. 6, 477–489 (2011).

    PubMed  PubMed Central  Google Scholar 

  208. 208.

    Lysle, D. T. & Ijames, S. G. Heroin-associated environmental stimuli modulate the expression of inducible nitric oxide synthase in the rat. Psychopharmacology 164, 416–422 (2002).

    CAS  PubMed  Google Scholar 

  209. 209.

    Goshen, I. et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32, 1106–1115 (2007).

    CAS  PubMed  Google Scholar 

  210. 210.

    Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

    CAS  PubMed  Google Scholar 

  211. 211.

    Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    CAS  PubMed  Google Scholar 

  212. 212.

    Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Kovács, K. J. Measurement of immediate-early gene activation- c-fos and beyond. J. Neuroendocrinol. 20, 665–672 (2008).

    PubMed  Google Scholar 

  214. 214.

    Nachman, M. & Ashe, J. H. Effects of basolateral amygdala lesions on neophobia, learned taste aversions, and sodium appetite in rats. J. Comp. Physiol. Psychol. 87, 622–643 (1974).

    CAS  PubMed  Google Scholar 

  215. 215.

    Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002). This article introduces the danger model suggesting that the immune system distinguishes between dangerous and benign stimuli.

    CAS  PubMed  Google Scholar 

  216. 216.

    Pinho-Ribeiro, F. A., Verri, W. A. & Chiu, I. M. Nociceptor sensory neuron–immune interactions in pain and inflammation. Trends Immunol. 38, 5–19 (2017).

    CAS  PubMed  Google Scholar 

  217. 217.

    Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Bushnell, M. C., Cˇeko, M. & Low, L. A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Dunckley, P. et al. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J. Neurosci. 25, 7333–7341 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Basbaum, A. I. & Fields, H. L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309–338 (1984).

    CAS  PubMed  Google Scholar 

  221. 221.

    Hoffman, K. E., Maslonek, K. A., Dykstra, L. A. & Lysle, D. T. Effects of central administration of morphine on immune status in Lewis and Wistar rats. Adv. Exp. Med. Biol. 373, 155–159 (1995).

    CAS  PubMed  Google Scholar 

  222. 222.

    Gomez-Flores, R. & Weber, R. J. Inhibition of interleukin-2 production and downregulation of IL-2 and transferrin receptors on rat splenic lymphocytes following PAG morphine administration: a role in natural killer and T cell suppression. J. Interf. Cytokine Res. 19, 625–630 (1999).

    CAS  Google Scholar 

  223. 223.

    Gomez-Flores, R., Suo, J. L. & Weber, R. J. Suppression of splenic macrophage functions following acute morphine action in the rat mesencephalon periaqueductal gray. Brain. Behav. Immun. 13, 212–224 (1999).

    CAS  PubMed  Google Scholar 

  224. 224.

    Demetrikopoulos, M. K., Siegel, A., Schleifer, S. J., Obedi, J. & Keller, S. E. Electrical stimulation of the dorsal midbrain periaqueductal gray suppresses peripheral blood natural killer cell activity. Brain. Behav. Immun. 8, 218–228 (1994).

    CAS  PubMed  Google Scholar 

  225. 225.

    Najjar, S., Pearlman, D. M., Devinsky, O., Najjar, A. & Zagzag, D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J. Neuroinflammation 10, (2013).

  226. 226.

    Owens, M. J. & Nemeroff, C. B. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin. Chem. 40, 288–295 (1994).

    CAS  PubMed  Google Scholar 

  227. 227.

    Albert, P. R. & Benkelfat, C. The neurobiology of depression-revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120535 (2013).

    Google Scholar 

  228. 228.

    Sharma, H. S., Winkler, T., Stålberg, E., Mohanty, S. & Westman, J. p-Chlorophenylalanine, an inhibitor of serotonin synthesis reduces blood-brain barrier permeability, cerebral blood flow, edema formation and cell injury following trauma to the rat brain. Acta Neurochir. Suppl. 76, 91–95 (2000).

    CAS  PubMed  Google Scholar 

  229. 229.

    Korin, B. et al. Short-term sleep deprivation in mice induces B cell migration to the brain compartment. Sleep 43, zsz222 (2020).

    PubMed  Google Scholar 

  230. 230.

    Kertser, A. et al. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. Sci. Adv. 5, eaav4111 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613 (2015).

    PubMed  PubMed Central  Google Scholar 

  232. 232.

    Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Gyoneva, S. & Traynelis, S. F. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J. Biol. Chem. 288, 15291–15302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. 234.

    Parada, E. et al. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid. Redox Signal. 19, 1135–1148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Krabbe, G. et al. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity. Brain. Behav. Immun. 26, 419–428 (2012).

    CAS  PubMed  Google Scholar 

  236. 236.

    Noda, M., Nakanishi, H., Nabekura, J. & Akaike, N. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    Van Wagoner, N. J. & Benveniste, E. N. Interleukin-6 expression and regulation in astrocytes. J. Neuroimmunol. 100, 124–139 (1999).

    PubMed  Google Scholar 

  240. 240.

    Farina, C. et al. Preferential expression and function of Toll-like receptor 3 in human astrocytes. J. Neuroimmunol. 159, 12–19 (2005).

    CAS  PubMed  Google Scholar 

  241. 241.

    Cannella, B. & Raine, C. S. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation. Ann. Neurol. 55, 46–57 (2004).

    CAS  PubMed  Google Scholar 

  242. 242.

    Vezzani, A. & Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96, 70–82 (2015).

    CAS  PubMed  Google Scholar 

  243. 243.

    Rolls, A. et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 9, 1081–1088 (2007).

    CAS  PubMed  Google Scholar 

  244. 244.

    Tang, S. C. et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl Acad. Sci. USA 104, 13798–13803 (2007).

    CAS  PubMed  Google Scholar 

  245. 245.

    Walach, H. Placebo controls: Historical, methodological and general aspects. Philos. Trans. R. Soc. B Biol. Sci. 366, 1870–1878 (2011).

    Google Scholar 

  246. 246.

    Ben-Shaanan, T., Schiller, M. & Rolls, A. Studying brain-regulation of immunity with optogenetics and chemogenetics; a new experimental platform. Brain, Behavior, Immun. 65, 1–8 (2017).

    CAS  Google Scholar 

  247. 247.

    Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. 248.

    Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Viswanathan, K. & Dhabhar, F. S. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation. Proc. Natl Acad. Sci. USA 102, 5808–5813 (2005).

    CAS  PubMed  Google Scholar 

  250. 250.

    Rinner, I., Schauenstein, K., Mangge, H., Porta, S. & Kvetnansky, R. Opposite effects of mild and severe stress on in vitro activation of rat peripheral blood lymphocytes. Brain Behav. Immun. 6, 130–140 (1992).

    CAS  PubMed  Google Scholar 

  251. 251.

    Naliboff, B. D. et al. Immunological changes in young and old adults during brief laboratory stress. Psychosom. Med. 53, 121–132 (1991).

    CAS  PubMed  Google Scholar 

  252. 252.

    Naliboff, B. D. et al. Rapid changes in cellular immunity following a confrontational role-play stressor. Brain. Behav. Immun. 9, 207–219 (1995).

    CAS  PubMed  Google Scholar 

  253. 253.

    Dhabhar, F. S. & McEwen, B. S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain. Behav. Immun. 11, 286–306 (1997). This study demonstrates the distinct effects of acute versus chronic stress on immune cells.

    CAS  PubMed  Google Scholar 

  254. 254.

    Dhabhar, F. S. Acute stress enhances while chronic stress suppresses skin immunity. The role of stress hormones and leukocyte trafficking. Ann. N. Y. Acad. Sci. 917, 876–893 (2000).

    CAS  PubMed  Google Scholar 

  255. 255.

    Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., Malarkey, W. B. & Sheridan, J. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc. Natl Acad. Sci. USA 93, 3043–3047 (1996).

    CAS  PubMed  Google Scholar 

  256. 256.

    Miller, G. E. et al. Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain. Behav. Immun. 41, 191–199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. 257.

    O’Donovan, A. et al. Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Dis. Markers 30, 123–132 (2011).

    PubMed  PubMed Central  Google Scholar 

  258. 258.

    Antoni, M. H. et al. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol. Psychiatry 71, 366–372 (2012).

    CAS  PubMed  Google Scholar 

  259. 259.

    Black, D. S. et al. Yogic meditation reverses NF-κB and IRF-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocrinology 38, 348–355 (2013).

    CAS  PubMed  Google Scholar 

  260. 260.

    Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014). This study demonstrates that stress, via sympathetic signalling, increases proliferation of haematopoietic progenitors, leading to increased output of neutrophils and inflammatory monocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. 261.

    McEwen, B. S. & Stellar, E. Stress and the individual: mechanisms leading to disease. Arch. Intern. Med. 153, 2093–2101 (1993).

    CAS  PubMed  Google Scholar 

  262. 262.

    Marshall, G. D. et al. Cytokine dysregulation associated with exam stress in healthy medical students. Brain. Behav. Immun. 12, 297–307 (1998).

    CAS  PubMed  Google Scholar 

  263. 263.

    Le, C. P. et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat. Commun. 7, 10634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. 264.

    Haldar, R. et al. Perioperative inhibition of β-adrenergic and COX2 signaling in a clinical trial in breast cancer patients improves tumor Ki-67 expression, serum cytokine levels, and PBMCs transcriptome. Brain. Behav. Immun. 73, 294–309 (2018).

    CAS  PubMed  Google Scholar 

  265. 265.

    Hiller, J. G. et al. Pre-operative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 26, 1803–1811 (2020).

    PubMed  Google Scholar 

  266. 266.

    Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 335, 2–13 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. 267.

    Peitzman, E. R., Zaidman, N. A., Maniak, P. J. & O’Grady, S. M. Agonist binding to β-adrenergic receptors on human airway epithelial cells inhibits migration and wound repair. Am. J. Physiol. Cell Physiol. 309, C847–C855 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. 268.

    Salathe, M. Effects of β-agonists on airway epithelial cells. J. Allergy Clin. Immunol. 110, S275–S281 (2002).

    CAS  PubMed  Google Scholar 

  269. 269.

    Bruno, R. M. et al. Sympathetic regulation of vascular function in health and disease. Front. Physiol. 3, 284 (2012).

    PubMed  PubMed Central  Google Scholar 

  270. 270.

    Dhabhar, F. S. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res. 58, 193–210 (2014).

    CAS  PubMed  Google Scholar 

  271. 271.

    Hong, J. Y. et al. Long-term programming of CD8 T cell immunity by perinatal exposure to glucocorticoids. Cell 180, 847–861.e15 (2020). This study shows that perinatal glucocorticoid exposure had long term effects on the hypothalamic–pituitary–adrenal axis, resulting in diminished CD8 + T cell response in adulthood.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. 272.

    Sparta, D. R., Jennings, J. H., Ung, R. L. & Stuber, G. D. Optogenetic strategies to investigate neural circuitry engaged by stress. Behav. Brain Res. 255, 19–25 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Schwartz, E. Sloan, D. Derdikman, D. Melamed, A. Kepecs, B. Mensh, O. Barak, H. Azulay-Debby, B. Korin, M. Amer, T. Koren, E. Avishai and D. Farfara for helpful discussions. They thank S. Schwarzbaum for editing the manuscript. A.R is an international Howard Hughes Medical Institute–Wellcome Trust scholar, and the authors are grateful for funding by the Howard Hughes Medical Institute and the Wellcome Trust. The authors are also grateful to the Israel Science Foundation, the Adelis Foundation, and European Research Council (NEIMO STG), the Allen and Jewel Prince Center for Neurodegenerative Processes of the Brain and Colleck Research Fund for their financial support.

Author information

Affiliations

Authors

Contributions

M.S., T.L.B.-S. and A.R. discussed the concepts and wrote the manuscript.

Corresponding author

Correspondence to Asya Rolls.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks M. Heneka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tissue tolerance

The mitigation of tissue damage following exposure to an adverse stimulus.

Vagus nerve

The longest cranial nerve connecting the brainstem to the periphery via afferent and efferent projections. The vagus nerve delivers sensory information to the brain and regulates parasympathetic activity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schiller, M., Ben-Shaanan, T.L. & Rolls, A. Neuronal regulation of immunity: why, how and where?. Nat Rev Immunol (2020). https://doi.org/10.1038/s41577-020-0387-1

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing