Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Building a T cell compartment: how immune cell development shapes function


We are just beginning to understand the diversity of the peripheral T cell compartment, which arises from the specialization of different T cell subsets and the plasticity of individual naive T cells to adopt different fates. Although the progeny of a single T cell can differentiate into many phenotypes following infection, individual T cells are biased towards particular phenotypes. These biases are typically ascribed to random factors that occur during and after antigenic stimulation. However, the T cell compartment does not remain static with age, and shifting immune challenges during ontogeny give rise to T cells with distinct functional properties. Here, we argue that the developmental history of naive T cells creates a ‘hidden layer’ of diversity that persists into adulthood. Insight into this diversity can provide a new perspective on immunity and immunotherapy across the lifespan.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Immune challenges and solutions during development.
Fig. 2: Naive T cell subsets differ in their ability to respond to antigens and inflammation.
Fig. 3: Evolution and adaptation of the T cell compartment with progressing age.


  1. 1.

    van Hoeven, V. et al. Dynamics of recent thymic emigrants in young adult mice. Front. Immunol. 8, 933 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    den Braber, I. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012).

    Google Scholar 

  3. 3.

    Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  4. 4.

    Mackay, C. R. Homing of naive, memory and effector lymphocytes. Curr. Opin. Immunol. 5, 423–427 (1993).

    CAS  PubMed  Google Scholar 

  5. 5.

    Jameson, S. C. & Masopust, D. Understanding subset diversity in T cell memory. Immunity 48, 214–226 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Omilusik, K. D. & Goldrath, A. W. Remembering to remember: T cell memory maintenance and plasticity. Curr. Opin. Immunol. 58, 89–97 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Marshall, H. D. et al. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4+ cell properties during viral infection. Immunity 35, 633–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18, 363–373 (2018).

    PubMed  Google Scholar 

  11. 11.

    Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    CAS  PubMed  Google Scholar 

  12. 12.

    Plumlee, C. R., Sheridan, B. S., Cicek, B. B. & Lefrancois, L. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 39, 347–356 (2013).

    CAS  PubMed  Google Scholar 

  13. 13.

    Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    van Faassen, H. et al. Reducing the stimulation of CD8+ T cells during infection with intracellular bacteria promotes differentiation primarily into a central (CD62LhighCD44high) subset. J. Immunol. 174, 5341–5350 (2005).

    PubMed  Google Scholar 

  16. 16.

    Masson, F., Mount, A. M., Wilson, N. S. & Belz, G. T. Dendritic cells: driving the differentiation programme of T cells in viral infections. Immunol. Cell Biol. 86, 333–342 (2008).

    CAS  PubMed  Google Scholar 

  17. 17.

    Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    CAS  PubMed  Google Scholar 

  18. 18.

    Hendricks, D. W. & Fink, P. J. Recent thymic emigrants are biased against the T-helper type 1 and toward the T-helper type 2 effector lineage. Blood 117, 1239–1249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Makaroff, L. E., Hendricks, D. W., Niec, R. E. & Fink, P. J. Postthymic maturation influences the CD8 T cell response to antigen. Proc. Natl Acad. Sci. USA 106, 4799–4804 (2009).

    CAS  PubMed  Google Scholar 

  20. 20.

    Mold, J. E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Reynaldi, A. et al. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol. Cell Biol. 94, 838–848 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tabilas, C. et al. Cutting edge: elevated glycolytic metabolism limits the formation of memory CD8+ T cells in early life. J. Immunol. 203, 2571–2576 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Wang, J. et al. Fetal and adult progenitors give rise to unique populations of CD8+ T cells. Blood 128, 3073–3082 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Smith, N. L. et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J. Immunol. 193, 177–184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zens, K. D. et al. Reduced generation of lung tissue-resident memory T cells during infancy. J. Exp. Med. 214, 2915–2932 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Reynaldi, A. et al. Fate mapping reveals the age structure of the peripheral T cell compartment. Proc. Natl Acad. Sci. USA 116, 3974–3981 (2019).

    CAS  PubMed  Google Scholar 

  27. 27.

    Smith, N. L. et al. Developmental origin governs CD8(+) T cell fate decisions during infection. Cell 174, 117–130.e114 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pogorelyy, M. V. et al. Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires. PLoS Comput. Biol. 13, e1005572 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zhang, B. et al. Glimpse of natural selection of long-lived T-cell clones in healthy life. Proc. Natl Acad. Sci. USA 113, 9858–9863 (2016).

    CAS  PubMed  Google Scholar 

  31. 31.

    Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Burt, T. D. Fetal regulatory T cells and peripheral immune tolerance in utero: implications for development and disease. Am. J. Reprod. Immunol. 69, 346–358 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mold, J. E. & McCune, J. M. Immunological tolerance during fetal development: from mouse to man. Adv. Immunol. 115, 73–111 (2012).

    CAS  PubMed  Google Scholar 

  34. 34.

    Schonland, S. O. et al. Homeostatic control of T-cell generation in neonates. Blood 102, 1428–1434 (2003).

    PubMed  Google Scholar 

  35. 35.

    Le Campion, A. et al. Naive T cells proliferate strongly in neonatal mice in response to self-peptide/self-MHC complexes. Proc. Natl Acad. Sci. USA 99, 4538–4543 (2002).

    PubMed  Google Scholar 

  36. 36.

    Rudd, B. D. et al. Acute neonatal infections ‘lock-in’ a suboptimal CD8+ T cell repertoire with impaired recall responses. PLoS Pathog. 9, e1003572 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rudd, B. D., Venturi, V., Davenport, M. P. & Nikolich-Zugich, J. Evolution of the antigen-specific CD8+ TCR repertoire across the life span: evidence for clonal homogenization of the old TCR repertoire. J. Immunol. 186, 2056–2064 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Carey, A. J. et al. Public clonotypes and convergent recombination characterize the naive CD8+ T-cell receptor repertoire of extremely preterm neonates. Front. Immunol. 8, 1859 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Schelonka, R. L. et al. T cell receptor repertoire diversity and clonal expansion in human neonates. Pediatr. Res. 43, 396–402 (1998).

    CAS  PubMed  Google Scholar 

  40. 40.

    D’Arena, G. et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 83, 197–203 (1998).

    PubMed  Google Scholar 

  41. 41.

    Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    CAS  PubMed  Google Scholar 

  43. 43.

    Thome, J. J. et al. Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci. Immunol. 1, eaah6506 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).

    CAS  PubMed  Google Scholar 

  45. 45.

    Jotereau, F., Heuze, F., Salomon-Vie, V. & Gascan, H. Cell kinetics in the fetal mouse thymus: precursor cell input, proliferation, and emigration. J. Immunol. 138, 1026–1030 (1987).

    CAS  PubMed  Google Scholar 

  46. 46.

    Tavian, M. & Peault, B. The changing cellular environments of hematopoiesis in human development in utero. Exp. Hematol. 33, 1062–1069 (2005).

    PubMed  Google Scholar 

  47. 47.

    Herzenberg, L. A. & Herzenberg, L. A. Toward a layered immune system. Cell 59, 953–954 (1989).

    CAS  PubMed  Google Scholar 

  48. 48.

    Adkins, B. Developmental regulation of the intrathymic T cell precursor population. J. Immunol. 146, 1387–1393 (1991).

    CAS  PubMed  Google Scholar 

  49. 49.

    Ng, M. S. F., Roth, T. L., Mendoza, V. F., Marson, A. & Burt, T. D. Helios enhances the preferential differentiation of human fetal CD4(+) naive T cells into regulatory T cells. Sci. Immunol. 4, eaav5947 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Rudd, B. D. Neonatal T cells: a reinterpretation. Annu. Rev. Immunol. 38, 229–247 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Connors, T. J. et al. Developmental regulation of effector and resident memory T cell generation during pediatric viral respiratory tract infection. J. Immunol. 201, 432–439 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Siefker, D. T. & Adkins, B. Rapid CD8+ function is critical for protection of neonatal mice from an extracellular bacterial enteropathogen. Front. Pediatr. 4, 141 (2016).

    PubMed  Google Scholar 

  53. 53.

    Bogue, M., Candeias, S., Benoist, C. & Mathis, D. A special repertoire of alpha:beta T cells in neonatal mice. EMBO J. 10, 3647–3654 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Feeney, A. J. Junctional sequences of fetal T cell receptor beta chains have few N regions. J. Exp. Med. 174, 115–124 (1991).

    CAS  PubMed  Google Scholar 

  55. 55.

    Venturi, V. et al. The neonatal CD8+ T cell repertoire rapidly diversifies during persistent viral infection. J. Immunol. 196, 1604–1616 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Carey, A. J. et al. Rapid evolution of the CD8+ TCR repertoire in neonatal mice. J. Immunol. 196, 2602–2613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rechavi, E. & Somech, R. Survival of the fetus: fetal B and T cell receptor repertoire development. Semin. Immunopathol. 39, 577–583 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Gavin, M. A. & Bevan, M. J. Increased peptide promiscuity provides a rationale for the lack of N regions in the neonatal T cell repertoire. Immunity 3, 793–800 (1995).

    CAS  PubMed  Google Scholar 

  59. 59.

    Kedzierska, K. et al. Terminal deoxynucleotidyltransferase is required for the establishment of private virus-specific CD8+ TCR repertoires and facilitates optimal CTL responses. J. Immunol. 181, 2556–2562 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Fink, P. J. The biology of recent thymic emigrants. Annu. Rev. Immunol. 31, 31–50 (2013).

    CAS  PubMed  Google Scholar 

  61. 61.

    Friesen, T. J., Ji, Q. & Fink, P. J. Recent thymic emigrants are tolerized in the absence of inflammation. J. Exp. Med. 213, 913–920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    He, Q. et al. Thymic development of autoreactive T cells in NOD mice is regulated in an age-dependent manner. J. Immunol. 191, 5858–5866 (2013).

    CAS  PubMed  Google Scholar 

  63. 63.

    Das, A. et al. Adaptive from innate: human IFN-γ+CD4+ T cells can arise directly from CXCL8-producing recent thymic emigrants in babies and adults. J. Immunol. 199, 1696–1705 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Akue, A. D., Lee, J. Y. & Jameson, S. C. Derivation and maintenance of virtual memory CD8 T cells. J. Immunol. 188, 2516–2523 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    McCarron, M. & Reen, D. J. Activated human neonatal CD8+ T cells are subject to immunomodulation by direct TLR2 or TLR5 stimulation. J. Immunol. 182, 55–62 (2009).

    CAS  PubMed  Google Scholar 

  66. 66.

    Komai-Koma, M., Jones, L., Ogg, G. S., Xu, D. & Liew, F. Y. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc. Natl Acad. Sci. USA 101, 3029–3034 (2004).

    CAS  PubMed  Google Scholar 

  67. 67.

    Sinnott, B. D., Park, B., Boer, M. C., Lewinsohn, D. A. & Lancioni, C. L. Direct TLR-2 costimulation unmasks the proinflammatory potential of neonatal CD4+ T cells. J. Immunol. 197, 68–77 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    van den Broek, T. et al. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J. Clin. Invest. 126, 1126–1136 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Pekalski, M. L. et al. Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight 2, e93739 (2017).

    PubMed Central  Google Scholar 

  70. 70.

    Fulton, R. B. et al. The TCR’s sensitivity to self peptide-MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nat. Immunol. 16, 107–117 (2015).

    CAS  PubMed  Google Scholar 

  71. 71.

    White, J. T., Cross, E. W. & Kedl, R. M. Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. Nat. Rev. Immunol. 17, 391–400 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Lee, J. Y., Hamilton, S. E., Akue, A. D., Hogquist, K. A. & Jameson, S. C. Virtual memory CD8 T cells display unique functional properties. Proc. Natl Acad. Sci. USA 110, 13498–13503 (2013).

    CAS  PubMed  Google Scholar 

  73. 73.

    Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Min, B. et al. Neonates support lymphopenia-induced proliferation. Immunity 18, 131–140 (2003).

    CAS  PubMed  Google Scholar 

  75. 75.

    Schuler, T., Hammerling, G. J. & Arnold, B. Cutting edge: IL-7-dependent homeostatic proliferation of CD8+ T cells in neonatal mice allows the generation of long-lived natural memory T cells. J. Immunol. 172, 15–19 (2004).

    PubMed  Google Scholar 

  76. 76.

    Jameson, S. C., Lee, Y. J. & Hogquist, K. A. Innate memory T cells. Adv. Immunol. 126, 173–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Mold, J. E. et al. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLoS Biol. 17, e3000383 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Miller, R. A. The aging immune system: primer and prospectus. Science 273, 70–74 (1996).

    CAS  PubMed  Google Scholar 

  80. 80.

    Adkins, B., Guevara, P. & Rose, S. Thymic and extrathymic contributions to T helper cell function in murine neonates. Haematol. Rep. 2, 9–13 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    White, J. T. et al. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 7, 11291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Adkins, B. Peripheral CD4+ lymphocytes derived from fetal versus adult thymic precursors differ phenotypically and functionally. J. Immunol. 171, 5157–5164 (2003).

    CAS  PubMed  Google Scholar 

  83. 83.

    Adkins, B., Williamson, T., Guevara, P. & Bu, Y. Murine neonatal lymphocytes show rapid early cell cycle entry and cell division. J. Immunol. 170, 4548–4556 (2003).

    CAS  PubMed  Google Scholar 

  84. 84.

    Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Liston, A., Carr, E. J. & Linterman, M. A. Shaping variation in the human immune system. Trends Immunol. 37, 637–646 (2016).

    CAS  PubMed  Google Scholar 

  86. 86.

    Carr, E. J. et al. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 17, 461–468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Frisancho, A. R. Developmental functional adaptation to high altitude: review. Am. J. Hum. Biol. 25, 151–168 (2013).

    PubMed  Google Scholar 

  88. 88.

    Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292 e1214 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Hill, D. L. et al. Immune system development varies according to age, location, and anemia in African children. Sci. Transl Med. 12, eaaw9522 (2020).

    CAS  PubMed  Google Scholar 

  90. 90.

    Marchant, A. et al. Mature CD8+ T lymphocyte response to viral infection during fetal life. J. Clin. Invest. 111, 1747–1755 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Karrer, U. et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170, 2022–2029 (2003).

    CAS  PubMed  Google Scholar 

  92. 92.

    Munks, M. W. et al. Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J. Immunol. 177, 450–458 (2006).

    CAS  PubMed  Google Scholar 

  93. 93.

    Rolot, M. et al. Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. Nat. Commun. 9, 4516 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Lin, J. S. et al. Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol. 12, 258–264 (2019).

    CAS  PubMed  Google Scholar 

  95. 95.

    Reese, T. A. et al. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 19, 713–719 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Zanvit, P. et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat. Commun. 6, 8424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).

    CAS  PubMed  Google Scholar 

  99. 99.

    Bach, J. F. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat. Rev. Immunol. 18, 105–120 (2018).

    CAS  PubMed  Google Scholar 

  100. 100.

    Sureshchandra, S., Marshall, N. E. & Messaoudi, I. Impact of pregravid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J. Leukoc. Biol. 106, 1035–1050 (2019).

    CAS  PubMed  Google Scholar 

  101. 101.

    Kanneganti, T. D. & Dixit, V. D. Immunological complications of obesity. Nat. Immunol. 13, 707–712 (2012).

    CAS  PubMed  Google Scholar 

  102. 102.

    Iyer, S. S. et al. Protein energy malnutrition impairs homeostatic proliferation of memory CD8 T cells. J. Immunol. 188, 77–84 (2012).

    CAS  PubMed  Google Scholar 

  103. 103.

    Chatraw, J. H., Wherry, E. J., Ahmed, R. & Kapasi, Z. F. Diminished primary CD8 T cell response to viral infection during protein energy malnutrition in mice is due to changes in microenvironment and low numbers of viral-specific CD8 T cell precursors. J. Nutr. 138, 806–812 (2008).

    CAS  PubMed  Google Scholar 

  104. 104.

    van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Kongsbak, M., Levring, T. B., Geisler, C. & von Essen, M. R. The vitamin d receptor and T cell function. Front. Immunol. 4, 148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Vanhee, S. et al. Lin28b controls a neonatal to adult switch in B cell positive selection. Sci. Immunol. 4, (2019).

  107. 107.

    Hardy, R. R. & Hayakawa, K. A developmental switch in B lymphopoiesis. Proc. Natl Acad. Sci. USA 88, 11550–11554 (1991).

    CAS  PubMed  Google Scholar 

  108. 108.

    Kantor, A. B., Stall, A. M., Adams, S., Herzenberg, L. A. & Herzenberg, L. A. Differential development of progenitor activity for three B-cell lineages. Proc. Natl Acad. Sci. USA 89, 3320–3324 (1992).

    CAS  PubMed  Google Scholar 

  109. 109.

    McGrath, K. E., Frame, J. M. & Palis, J. Early hematopoiesis and macrophage development. Semin. Immunol. 27, 379–387 (2015).

    CAS  PubMed  Google Scholar 

  110. 110.

    Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Schneider, C. et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50, 1425–1438 e1425 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Tieppo, P. et al. The human fetal thymus generates invariant effector gammadelta T cells. J. Exp. Med. 217, 20190580 (2020).

    Google Scholar 

  113. 113.

    Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    CAS  PubMed  Google Scholar 

  114. 114.

    Boursalian, T. E., Golob, J., Soper, D. M., Cooper, C. J. & Fink, P. J. Continued maturation of thymic emigrants in the periphery. Nat. Immunol. 5, 418–425 (2004).

    CAS  PubMed  Google Scholar 

  115. 115.

    Priyadharshini, B., Welsh, R. M., Greiner, D. L., Gerstein, R. M. & Brehm, M. A. Maturation-dependent licensing of naive T cells for rapid TNF production. PLoS One 5, e15038 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Hussain, T. & Quinn, K. M. Similar but different: virtual memory CD8 T cells as a memory-like cell population. Immunol. Cell Biol. 97, 675–684 (2019).

    CAS  PubMed  Google Scholar 

  117. 117.

    Opiela, S. J., Koru-Sengul, T. & Adkins, B. Murine neonatal recent thymic emigrants are phenotypically and functionally distinct from adult recent thymic emigrants. Blood 113, 5635–5643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Yuan, J., Nguyen, C. K., Liu, X., Kanellopoulou, C. & Muljo, S. A. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 335, 1195–1200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130, 470–483 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Bonati, A. et al. T-cell receptor beta-chain gene rearrangement and expression during human thymic ontogenesis. Blood 79, 1472–1483 (1992).

    CAS  PubMed  Google Scholar 

  121. 121.

    Rufer, N. et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190, 157–167 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Hale, J. S., Boursalian, T. E., Turk, G. L. & Fink, P. J. Thymic output in aged mice. Proc. Natl Acad. Sci. USA 103, 8447–8452 (2006).

    CAS  PubMed  Google Scholar 

  123. 123.

    Elder, R. W. et al. Immunologic aging in adults with congenital heart disease: does infant sternotomy matter? Pediatr. Cardiol. 36, 1411–1416 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Steinmann, G. G., Klaus, B. & Muller-Hermelink, H. K. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand. J. Immunol. 22, 563–575 (1985).

    CAS  PubMed  Google Scholar 

  125. 125.

    Zhang, X. et al. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci. Transl Med. 6, 238ra272 (2014).

    Google Scholar 

Download references

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Miles P. Davenport.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks T. Burt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davenport, M.P., Smith, N.L. & Rudd, B.D. Building a T cell compartment: how immune cell development shapes function. Nat Rev Immunol 20, 499–506 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing