Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Redox regulation of immunometabolism

Abstract

Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation–reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The redox metabolism of T cells.
Fig. 2: The redox metabolism of B cells.
Fig. 3: The redox metabolism of inflammatory M1 macrophages.

Similar content being viewed by others

References

  1. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Wang, R. & Green, D. R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).

    CAS  PubMed  Google Scholar 

  3. Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    CAS  PubMed  Google Scholar 

  7. Arner, E. S. Focus on mammalian thioredoxin reductases — important selenoproteins with versatile functions. Biochim. Biophys. Acta 1790, 495–526 (2009).

    CAS  PubMed  Google Scholar 

  8. Brigelius-Flohe, R. & Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303 (2013).

    CAS  PubMed  Google Scholar 

  9. Kalinina, E. V., Chernov, N. N. & Novichkova, M. D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry 79, 1562–1583 (2014).

    CAS  PubMed  Google Scholar 

  10. Ceriello, A. & Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 24, 816–823 (2004).

    CAS  PubMed  Google Scholar 

  11. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    CAS  PubMed  Google Scholar 

  12. Toyokuni, S., Okamoto, K., Yodoi, J. & Hiai, H. Persistent oxidative stress in cancer. FEBS Lett. 358, 1–3 (1995).

    CAS  PubMed  Google Scholar 

  13. Andreadis, A. A., Hazen, S. L., Comhair, S. A. & Erzurum, S. C. Oxidative and nitrosative events in asthma. Free Radic. Biol. Med. 35, 213–225 (2003).

    CAS  PubMed  Google Scholar 

  14. Jenner, P. Oxidative stress in Parkinson’s disease. Ann. Neurol. 53, S26–S38 (2003).

    CAS  PubMed  Google Scholar 

  15. Lyras, L., Cairns, N. J., Jenner, A., Jenner, P. & Halliwell, B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J. Neurochem. 68, 2061–2069 (1997).

    CAS  PubMed  Google Scholar 

  16. Meischl, C. & Roos, D. The molecular basis of chronic granulomatous disease. Springer Semin. Immunopathol. 19, 417–434 (1998).

    CAS  PubMed  Google Scholar 

  17. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    CAS  PubMed  Google Scholar 

  18. Panday, A., Sahoo, M. K., Osorio, D. & Batra, S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol. Immunol. 12, 5–23 (2015).

    CAS  PubMed  Google Scholar 

  19. Barua, S., Kim, J. Y., Yenari, M. A. & Lee, J. E. The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep. 7, 59–69 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    CAS  PubMed  Google Scholar 

  22. van der Windt, G. J. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    CAS  PubMed  Google Scholar 

  25. Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Macintyre, A. N. & Rathmell, J. C. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab. 1, 5 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  30. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011). This paper demonstrates that activated T cells reprogramme their metabolism towards enhanced glycolytic, pentose phosphate and glutaminolytic pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).

    CAS  PubMed  Google Scholar 

  33. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Hukelmann, J. L. et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17, 104–112 (2016).

    CAS  PubMed  Google Scholar 

  35. Macintyre, A. N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Endo, Y. et al. Obesity drives TH17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 12, 1042–1055 (2015).

    CAS  PubMed  Google Scholar 

  38. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    CAS  PubMed  Google Scholar 

  39. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    PubMed  Google Scholar 

  40. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Ma, R. et al. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells. Nat. Cell Biol. 20, 21–27 (2018).

    CAS  PubMed  Google Scholar 

  43. Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661–665 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Holmgren, A. & Sengupta, R. The use of thiols by ribonucleotide reductase. Free Radic. Biol. Med. 49, 1617–1628 (2010).

    CAS  PubMed  Google Scholar 

  46. Muri, J. et al. The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat. Commun. 9, 1851 (2018). This study demonstrates a key role for the TRX1 system in dNTP biosynthesis in the last step of the PPP during rapid T cell proliferation.

    PubMed  PubMed Central  Google Scholar 

  47. Muri, J. et al. The thioredoxin-1 and glutathione/glutaredoxin-1 systems redundantly fuel murine B-cell development and responses. Eur. J. Immunol. 49, 709–723 (2019).

    CAS  PubMed  Google Scholar 

  48. Tagaya, Y. et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 8, 757–764 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tagaya, Y. et al. IL-2 receptor(p55)/Tac-inducing factor. Purification and characterization of adult T cell leukemia-derived factor. J. Immunol. 140, 2614–2620 (1988).

    CAS  PubMed  Google Scholar 

  50. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chakraborty, P. et al. Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. J. Biol. Chem. 294, 9198–9212 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Levring, T. B. et al. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis. Oncotarget 6, 21853–21864 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Geisberger, R. et al. B- and T-cell-specific inactivation of thioredoxin reductase 2 does not impair lymphocyte development and maintenance. Biol. Chem. 388, 1083–1090 (2007).

    CAS  PubMed  Google Scholar 

  54. Conrad, M. et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell Biol. 24, 9414–9423 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hwang, J. et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat. Commun. 5, 2958 (2014).

    PubMed  Google Scholar 

  56. Muri, J., Thut, H. & Kopf, M. The thioredoxin-1 inhibitor Txnip restrains effector T-cell and germinal center B-cell expansion. Eur. J. Immunol. https://doi.org/10.1002/eji.202048851 (2020).

  57. Wilde, B. R. & Ayer, D. E. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br. J. Cancer 113, 1529–1533 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167–1175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaadige, M. R., Looper, R. E., Kamalanaadhan, S. & Ayer, D. E. Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc. Natl Acad. Sci. USA 106, 14878–14883 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Oka, S. et al. Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 150, 1225–1234 (2009).

    CAS  PubMed  Google Scholar 

  61. Cha-Molstad, H., Saxena, G., Chen, J. & Shalev, A. Glucose-stimulated expression of Txnip is mediated by carbohydrate response element-binding protein, p300, and histone H4 acetylation in pancreatic β cells. J. Biol. Chem. 284, 16898–16905 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stoltzman, C. A. et al. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc. Natl Acad. Sci. USA 105, 6912–6917 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Patwari, P. et al. Thioredoxin-independent regulation of metabolism by the α-arrestin proteins. J. Biol. Chem. 284, 24996–25003 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu, F. X., Chai, T. F., He, H., Hagen, T. & Luo, Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J. Biol. Chem. 285, 25822–25830 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 (2017). This paper shows that TXNIP downregulation ensures mitochondrial priming and future protective memory T cell responses.

    Google Scholar 

  66. Saetre, R. & Rabenstein, D. L. Determination of cysteine in plasma and urine and homocysteine in plasma by high-pressure liquid chromatography. Anal. Biochem. 90, 684–692 (1978).

    CAS  PubMed  Google Scholar 

  67. Lo, M., Wang, Y. Z. & Gout, P. W. The Xc cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J. Cell Physiol. 215, 593–602 (2008).

    CAS  PubMed  Google Scholar 

  68. Garg, S. K., Yan, Z., Vitvitsky, V. & Banerjee, R. Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid. Redox Signal. 15, 39–47 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Angelini, G. et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA 99, 1491–1496 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yan, Z. & Banerjee, R. Redox remodeling as an immunoregulatory strategy. Biochemistry 49, 1059–1066 (2010).

    CAS  PubMed  Google Scholar 

  71. Castellani, P., Angelini, G., Delfino, L., Matucci, A. & Rubartelli, A. The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur. J. Immunol. 38, 2419–2425 (2008).

    CAS  PubMed  Google Scholar 

  72. Arensman, M. D. et al. Cystine–glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc. Natl Acad. Sci. USA 116, 9533–9542 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pollizzi, K. N. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nat. Immunol. 17, 704–711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Verbist, K. C. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532, 389–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    CAS  PubMed  Google Scholar 

  78. Araujo, L., Khim, P., Mkhikian, H., Mortales, C. L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    CAS  PubMed  Google Scholar 

  80. Tompkins, S. C. et al. Disrupting mitochondrial pyruvate uptake directs glutamine into the TCA cycle away from glutathione synthesis and impairs hepatocellular tumorigenesis. Cell Rep. 28, 2608–2619.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013). This pioneering study shows that mitochondrial ROS are required for T cell-mediated immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yi, J. S., Holbrook, B. C., Michalek, R. D., Laniewski, N. G. & Grayson, J. M. Electron transport complex I is required for CD8+ T cell function. J. Immunol. 177, 852–862 (2006).

    CAS  PubMed  Google Scholar 

  83. Mak, T. W. et al. Glutathione primes T cell metabolism for inflammation. Immunity 46, 675–689 (2017). This paper dissects the mechanisms whereby glutathione buffers ROS to allow metabolic rewiring during inflammatory T cell responses.

    CAS  PubMed  Google Scholar 

  84. Lian, G. et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 7, e36158 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    CAS  PubMed  Google Scholar 

  87. Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Klein-Hessling, S. et al. NFATc1 controls the cytotoxicity of CD8+ T cells. Nat. Commun. 8, 511 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Vaeth, M. et al. Store-operated Ca2+ entry controls clonal expansion of T cells through metabolic reprogramming. Immunity 47, 664–679.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Namgaladze, D., Hofer, H. W. & Ullrich, V. Redox control of calcineurin by targeting the binuclear Fe2+–Zn2+ center at the enzyme active site. J. Biol. Chem. 277, 5962–5969 (2002).

    CAS  PubMed  Google Scholar 

  91. Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31, 920–936.e7 (2020). This works describes the role of GSH in restricting serine availability to preserve the functionality of regulatory T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pollizzi, K. N. & Powell, J. D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14, 435–446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rolf, J. et al. AMPKα1: a glucose sensor that controls CD8 T-cell memory. Eur. J. Immunol. 43, 889–896 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Case, A. J. et al. Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune responses to an influenza challenge. Free Radic. Biol. Med. 50, 448–458 (2011).

    CAS  PubMed  Google Scholar 

  95. Tse, H. M. et al. NADPH oxidase deficiency regulates TH lineage commitment and modulates autoimmunity. J. Immunol. 185, 5247–5258 (2010).

    CAS  PubMed  Google Scholar 

  96. Jackson, S. H., Devadas, S., Kwon, J., Pinto, L. A. & Williams, M. S. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat. Immunol. 5, 818–827 (2004). This study reports that mature T cells express a NADPH oxidase that generates ROS and thus regulates elements of TCR signalling.

    CAS  PubMed  Google Scholar 

  97. Kaminski, M. M. et al. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep. 2, 1300–1315 (2012).

    CAS  PubMed  Google Scholar 

  98. Kaminski, M. M. et al. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. J. Immunol. 184, 4827–4841 (2010).

    CAS  PubMed  Google Scholar 

  99. Laniewski, N. G. & Grayson, J. M. Antioxidant treatment reduces expansion and contraction of antigen-specific CD8+ T cells during primary but not secondary viral infection. J. Virol. 78, 11246–11257 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schreck, R., Rieber, P. & Baeuerle, P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10, 2247–2258 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Quintana, A. et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl Acad. Sci. USA 104, 14418–14423 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Phan, A. T. & Goldrath, A. W. Hypoxia-inducible factors regulate T cell metabolism and function. Mol. Immunol. 68, 527–535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Previte, D. M. et al. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS ONE 12, e0175549 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Franchina, D. G., Dostert, C. & Brenner, D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 39, 489–502 (2018).

    CAS  PubMed  Google Scholar 

  105. Lillig, C. H., Berndt, C. & Holmgren, A. Glutaredoxin systems. Biochim. Biophys. Acta 1780, 1304–1317 (2008).

    CAS  PubMed  Google Scholar 

  106. Lillig, C. H. & Holmgren, A. Thioredoxin and related molecules — from biology to health and disease. Antioxid. Redox Signal. 9, 25–47 (2007).

    CAS  PubMed  Google Scholar 

  107. Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015). This work provides evidence that GPX4 prevents lipid peroxidation-driven ferroptosis in activated T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    CAS  PubMed  Google Scholar 

  109. Cronin, S. J. F. et al. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 563, 564–568 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, D. H. et al. Glutathione peroxidase 1 deficiency attenuates concanavalin A-induced hepatic injury by modulation of T-cell activation. Cell Death Dis. 7, e2208 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Won, H. Y. et al. Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing TH2 and TH17 cell development. Antioxid. Redox Signal. 13, 575–587 (2010).

    CAS  PubMed  Google Scholar 

  113. Taguchi, K., Motohashi, H. & Yamamoto, M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cell 16, 123–140 (2011).

    CAS  Google Scholar 

  114. Morzadec, C. et al. Nrf2 expression and activity in human T lymphocytes: stimulation by T cell receptor activation and priming by inorganic arsenic and tert-butylhydroquinone. Free Radic. Biol. Med. 71, 133–145 (2014).

    CAS  PubMed  Google Scholar 

  115. Turley, A. E., Zagorski, J. W. & Rockwell, C. E. The Nrf2 activator tBHQ inhibits T cell activation of primary human CD4 T cells. Cytokine 71, 289–295 (2015).

    CAS  PubMed  Google Scholar 

  116. Zagorski, J. W. et al. The Nrf2 activator, tBHQ, differentially affects early events following stimulation of Jurkat cells. Toxicol. Sci. 136, 63–71 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rangasamy, T. et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J. Exp. Med. 202, 47–59 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rockwell, C. E., Zhang, M., Fields, P. E. & Klaassen, C. D. TH2 skewing by activation of Nrf2 in CD4+ T cells. J. Immunol. 188, 1630–1637 (2012).

    CAS  PubMed  Google Scholar 

  119. Suzuki, T. et al. Systemic activation of NRF2 alleviates lethal autoimmune inflammation in scurfy mice. Mol. Cell Biol. 37 (2017).

  120. Noel, S. et al. T lymphocyte-specific activation of Nrf2 protects from AKI. J. Am. Soc. Nephrol. 26, 2989–3000 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66–79 (2012).

    CAS  PubMed  Google Scholar 

  123. Hayes, J. D. & Dinkova-Kostova, A. T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218 (2014).

    CAS  PubMed  Google Scholar 

  124. Jellusova, J. Cross-talk between signal transduction and metabolism in B cells. Immunol. Lett. 201, 1–13 (2018).

    CAS  PubMed  Google Scholar 

  125. Jellusova, J. The role of metabolic checkpoint regulators in B cell survival and transformation. Immunol. Rev. 295, 39–53 (2020).

    CAS  PubMed  Google Scholar 

  126. Akkaya, M. & Pierce, S. K. From zero to sixty and back to zero again: the metabolic life of B cells. Curr. Opin. Immunol. 57, 1–7 (2019).

    CAS  PubMed  Google Scholar 

  127. Li, C. et al. Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 3, 314–326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fiskus, W. et al. Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res. 74, 2520–2532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, J. et al. Repurposing auranofin to treat TP53-mutated or PTEN-deleted refractory B-cell lymphoma. Blood Cancer J. 9, 95 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. Fidyt, K. et al. Targeting the thioredoxin system as a novel strategy against B-cell acute lymphoblastic leukemia. Mol. Oncol. 13, 1180–1195 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).

    CAS  PubMed  Google Scholar 

  132. Kiebala, M. et al. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach. Exp. Hematol. 43, 89–99 (2015).

    CAS  PubMed  Google Scholar 

  133. Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542, 479–483 (2017). This report highlights the key role of TXNIP in performing metabolic gatekeeper functions by suppression of glucose uptake.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).

    CAS  PubMed  Google Scholar 

  135. Bertolotti, M., Sitia, R. & Rubartelli, A. On the redox control of B lymphocyte differentiation and function. Antioxid. Redox Signal. 16, 1139–1149 (2012).

    CAS  PubMed  Google Scholar 

  136. Vene, R. et al. Redox remodeling allows and controls B-cell activation and differentiation. Antioxid. Redox Signal. 13, 1145–1155 (2010).

    CAS  PubMed  Google Scholar 

  137. Waters, L. R., Ahsan, F. M., Wolf, D. M., Shirihai, O. & Teitell, M. A. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5, 99–109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Muri, J., Thut, H., Bornkamm, G. W. & Kopf, M. B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep. 29, 2731–2744 e2734 (2019). This study shows that GPX4 detoxifies lipid peroxides and prevents ferroptosis in B1 cells and marginal zone B cells but not in follicular B cells.

    CAS  PubMed  Google Scholar 

  139. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    CAS  PubMed  Google Scholar 

  140. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    CAS  PubMed  Google Scholar 

  141. Bertolotti, M. et al. B- to plasma-cell terminal differentiation entails oxidative stress and profound reshaping of the antioxidant responses. Antioxid. Redox Signal. 13, 1133–1144 (2010).

    CAS  PubMed  Google Scholar 

  142. Aronov, M. & Tirosh, B. Metabolic control of plasma cell differentiation — what we know and what we don’t know. J. Clin. Immunol. 36, 12–17 (2016).

    CAS  PubMed  Google Scholar 

  143. Dufort, F. J. et al. Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for ATP–citrate lyase in lipopolysaccharide-induced differentiation. J. Biol. Chem. 289, 7011–7024 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lam, W. Y. et al. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45, 60–73 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jang, K. J. et al. Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat. Commun. 6, 6750 (2015).

    CAS  PubMed  Google Scholar 

  146. Singh, D. K. et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121, 281–293 (2005).

    CAS  PubMed  Google Scholar 

  147. Wheeler, M. L. & Defranco, A. L. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J. Immunol. 189, 4405–4416 (2012).

    CAS  PubMed  Google Scholar 

  148. Capasso, M. et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat. Immunol. 11, 265–272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jellusova, J. et al. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18, 303–312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Diaz-Munoz, M. D. et al. The RNA-binding protein HuR is essential for the B cell antibody response. Nat. Immunol. 16, 415–425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen, M. et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20, 503–510 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).

    CAS  PubMed  Google Scholar 

  153. Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).

    CAS  PubMed  Google Scholar 

  154. Clarke, A. J., Riffelmacher, T., Braas, D., Cornall, R. J. & Simon, A. K. B1a B cells require autophagy for metabolic homeostasis and self-renewal. J. Exp. Med. 215, 399–413 (2018). This study demonstrates that B1 cells are bioenergetically more active than B2 cells, and that they acquire exogeneous fatty acids and store them in lipid droplets.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hauck, A. K. & Bernlohr, D. A. Oxidative stress and lipotoxicity. J. Lipid Res. 57, 1976–1986 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Diskin, C. & Palsson-McDermott, E. M. Metabolic modulation in macrophage effector function. Front. Immunol. 9, 270 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Geeraerts, X., Bolli, E., Fendt, S. M. & Van Ginderachter, J. A. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front. Immunol. 8, 289 (2017).

    PubMed  PubMed Central  Google Scholar 

  158. Rodriguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    CAS  PubMed  Google Scholar 

  159. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Michl, J., Ohlbaum, D. J. & Silverstein, S. C. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages II. Dissociation of the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation. J. Exp. Med. 144, 1484–1493 (1976).

    CAS  PubMed  Google Scholar 

  161. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016). This work demonstrates that M1 macrophages repurpose their mitochondria from ATP production to ROS generation in order to sustain IL-1β responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Melillo, G. et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med. 182, 1683–1693 (1995).

    CAS  PubMed  Google Scholar 

  167. Melillo, G., Taylor, L. S., Brooks, A., Cox, G. W. & Varesio, L. Regulation of inducible nitric oxide synthase expression in IFN-γ-treated murine macrophages cultured under hypoxic conditions. J. Immunol. 157, 2638–2644 (1996).

    CAS  PubMed  Google Scholar 

  168. Everts, B. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431 (2012). This work shows that NO inhibits OXPHOS in inflammatory dendritic cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Galvan-Pena, S. et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat. Commun. 10, 338 (2019).

    PubMed  PubMed Central  Google Scholar 

  170. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    CAS  PubMed  Google Scholar 

  172. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    CAS  PubMed  Google Scholar 

  173. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Muri, J., Thut, H., Feng, Q. & Kopf, M. Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip. eLife 9, e53627 (2020). This work provides genetic evidence that TRX1 regulates NF-κB-mediated and NLRP3-mediated inflammatory responses in dendritic cells and macrophages.

    PubMed  PubMed Central  Google Scholar 

  176. Ghesquiere, B., Wong, B. W., Kuchnio, A. & Carmeliet, P. Metabolism of stromal and immune cells in health and disease. Nature 511, 167–176 (2014).

    CAS  PubMed  Google Scholar 

  177. Cameron, A. M. et al. Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat. Immunol. 20, 420–432 (2019).

    CAS  PubMed  Google Scholar 

  178. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1–IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011.e4 (2019). This paper reveals the role of serine-dependent GSH biosynthesis in supporting IL-1β production.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kapralov, A. A. et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Billingham, L. K. & Chandel, N. S. NAD–biosynthetic pathways regulate innate immunity. Nat. Immunol. 20, 380–382 (2019).

    CAS  PubMed  Google Scholar 

  187. Di Gioia, M. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat. Immunol. 21, 42–53 (2020).

    PubMed  Google Scholar 

  188. Infantino, V. et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 438, 433–436 (2011).

    CAS  PubMed  Google Scholar 

  189. Bailey, J. D. et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 28, 218–230.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Qin, W. et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15, 983–991 (2019).

    CAS  PubMed  Google Scholar 

  193. Hooftman, A. et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 32, 468–478 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis. Nature 556, 501–504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). This study shows that the metabolite itaconate activates NRF2 and induces an anti-inflammatory programme in M1 macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Muri, J., Wolleb, H., Broz, P., Carreira, E. M. & Kopf, M. Electrophilic Nrf2 activators and itaconate inhibit inflammation at low dose and promote IL-1β production and inflammatory apoptosis at high dose. Redox Biol. 36, 101647 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Thimmulappa, R. K. et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984–995 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Liu, M. et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 76, 277–285 (2009).

    CAS  PubMed  Google Scholar 

  199. Khor, T. O. et al. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 66, 11580–11584 (2006).

    CAS  PubMed  Google Scholar 

  200. Osburn, W. O. et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int. J. Cancer 121, 1883–1891 (2007).

    CAS  PubMed  Google Scholar 

  201. Lamle, J. et al. Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134, 1159–1168 (2008).

    CAS  PubMed  Google Scholar 

  202. Chen, P. C. et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc. Natl Acad. Sci. USA 106, 2933–2938 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Johnson, D. A., Amirahmadi, S., Ward, C., Fabry, Z. & Johnson, J. A. The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol. Sci. 114, 237–246 (2010).

    CAS  PubMed  Google Scholar 

  204. Cho, H. Y. & Kleeberger, S. R. Nrf2 protects against airway disorders. Toxicol. Appl. Pharmacol. 244, 43–56 (2010).

    CAS  PubMed  Google Scholar 

  205. Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016). This work shows that NRF2 binds to the proximity of pro-inflammatory genes and thus inhibits RNA polymerase II recruitment in macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Muri, J. et al. Cyclopentenone prostaglandins and structurally related oxidized lipid species instigate and share distinct pro- and anti-inflammatory pathways. Cell Rep. 30, 4399–4417.e7 (2020). This study shows that whereas electrophilic lipid mediators inhibit transcription of pro-inflammatory cytokines at low concentrations, they induce inflammatory apoptosis and IL-1β processing at high doses.

    CAS  PubMed  Google Scholar 

  207. Bretscher, P. et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol. Med. 7, 593–607 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Chartoumpekis, D. V. et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes 60, 2465–2473 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Pi, J. et al. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J. Biol. Chem. 285, 9292–9300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Freigang, S. et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 41, 2040–2051 (2011).

    CAS  PubMed  Google Scholar 

  211. Okada, K. et al. Deletion of Nrf2 leads to rapid progression of steatohepatitis in mice fed atherogenic plus high-fat diet. J. Gastroenterol. 48, 620–632 (2013).

    CAS  PubMed  Google Scholar 

  212. Ruotsalainen, A. K. et al. The absence of macrophage Nrf2 promotes early atherogenesis. Cardiovasc. Res. 98, 107–115 (2013).

    CAS  PubMed  Google Scholar 

  213. Zhao, C., Gillette, D. D., Li, X., Zhang, Z. & Wen, H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J. Biol. Chem. 289, 17020–17029 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Heiss, E. H., Schachner, D., Zimmermann, K. & Dirsch, V. M. Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol. 1, 359–365 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Baardman, J. et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 25, 2044–2052.e5 (2018).

    CAS  PubMed  Google Scholar 

  216. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    CAS  PubMed  Google Scholar 

  217. Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  219. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    CAS  PubMed  Google Scholar 

  220. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). This paper shows that mitochondrial ROS can activate the NLRP3 inflammasome.

    CAS  PubMed  Google Scholar 

  221. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012). This paper demonstrates that mitochondrial DNA released during cell death causes activation of the NLRP3 inflammasome.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. van Bruggen, R. et al. Human NLRP3 inflammasome activation is Nox1–4 independent. Blood 115, 5398–5400 (2010).

    PubMed  Google Scholar 

  224. Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Chauhan, D. et al. BAX/BAK-induced apoptosis results in caspase-8-dependent IL-1β maturation in macrophages. Cell Rep. 25, 2354–2368.e5 (2018).

    CAS  PubMed  Google Scholar 

  226. Vince, J. E. et al. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1β activation. Cell Rep. 25, 2339–2353.e4 (2018).

    CAS  PubMed  Google Scholar 

  227. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    CAS  PubMed  Google Scholar 

  228. Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 16, 265–273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Meissner, F., Molawi, K. & Zychlinsky, A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol. 9, 866–872 (2008).

    CAS  PubMed  Google Scholar 

  231. Kim, Y. M., Talanian, R. V., Li, J. & Billiar, T. R. Nitric oxide prevents IL-1β and IFN-γ-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1β-converting enzyme). J. Immunol. 161, 4122–4128 (1998).

    CAS  PubMed  Google Scholar 

  232. Mishra, B. B. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14, 52–60 (2013).

    CAS  PubMed  Google Scholar 

  233. Matthews, J. R., Wakasugi, N., Virelizier, J. L., Yodoi, J. & Hay, R. T. Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20, 3821–3830 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Lee, K. N. et al. VDUP1 is required for the development of natural killer cells. Immunity 22, 195–208 (2005).

    CAS  PubMed  Google Scholar 

  235. Cheng, F. et al. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: implications for atherogenesis. PLoS ONE 8, e72063 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Blankenberg, S. et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 349, 1605–1613 (2003).

    CAS  PubMed  Google Scholar 

  237. Torzewski, M. et al. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 850–857 (2007).

    CAS  PubMed  Google Scholar 

  238. Weinberg, E. O. et al. IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages. PLoS ONE 14, e0210827 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Aesif, S. W. et al. Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am. J. Respir. Cell Mol. Biol. 44, 491–499 (2011).

    CAS  PubMed  Google Scholar 

  240. Schulze-Topphoff, U. et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc. Natl Acad. Sci. USA 113, 4777–4782 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science (2020).

  243. Xiao, W., Wang, R. S., Handy, D. E. & Loscalzo, J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid. Redox Signal. 28, 251–272 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Rhee, S. G. & Kil, I. S. Multiple functions and regulation of mammalian peroxiredoxins. Annu. Rev. Biochem. 86, 749–775 (2017).

    CAS  PubMed  Google Scholar 

  245. Lu, S. C. Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153 (2013).

    CAS  PubMed  Google Scholar 

  246. Suzuki, T., Motohashi, H. & Yamamoto, M. Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol. Sci. 34, 340–346 (2013).

    CAS  PubMed  Google Scholar 

  247. Arner, E. S. & Holmgren, A. The thioredoxin system in cancer. Semin. Cancer Biol. 16, 420–426 (2006).

    CAS  PubMed  Google Scholar 

  248. Urig, S. & Becker, K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 16, 452–465 (2006).

    CAS  PubMed  Google Scholar 

  249. Mandal, P. K. et al. Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation. Cancer Res. 70, 9505–9514 (2010).

    CAS  PubMed  Google Scholar 

  250. Kinowaki, Y. et al. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab. Invest. 98, 609–619 (2018).

    CAS  PubMed  Google Scholar 

  251. Dai, L. et al. Genomic analysis of xCT-mediated regulatory network: identification of novel targets against AIDS-associated lymphoma. Oncotarget 6, 12710–12722 (2015).

    PubMed  PubMed Central  Google Scholar 

  252. Trzeciecka, A. et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget 7, 1717–1731 (2016).

    PubMed  Google Scholar 

  253. Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 291–301 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl. Med. 8, 331ra338 (2016).

    Google Scholar 

  256. Weyand, C. M., Shen, Y. & Goronzy, J. J. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic. Biol. Med. 125, 36–43 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    CAS  PubMed  Google Scholar 

  258. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).

    CAS  PubMed  Google Scholar 

  261. Pilipow, K. et al. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 3(2018).

  262. Scheffel, M. J. et al. Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Cancer Res. 76, 6006–6016 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Scheffel, M. J. et al. N-Acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol. Immunother. 67, 691–702 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Apostolova, N. & Victor, V. M. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid. Redox Signal. 22, 686–729 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Gioscia-Ryan, R. A. et al. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J. Physiol. 592, 2549–2561 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Chouchani, E. T. et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Wani, W. Y. et al. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain. Neuropharmacology 61, 1193–1201 (2011).

    CAS  PubMed  Google Scholar 

  268. Chacko, B. K. et al. Prevention of diabetic nephropathy in Ins2+/–AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochem. J. 432, 9–19 (2010).

    CAS  PubMed  Google Scholar 

  269. Mercer, J. R. et al. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/–/ApoE–/– mice. Free Radic. Biol. Med. 52, 841–849 (2012).

    CAS  PubMed  Google Scholar 

  270. Dashdorj, A. et al. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Med. 11, 178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Zang, Q. S. et al. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. Am. J. Physiol. Heart Circ. Physiol 302, H1847–H1859 (2012).

    CAS  PubMed  Google Scholar 

  272. Sova, M. & Saso, L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. Drug Des. Devel Ther. 12, 3181–3197 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).

    CAS  PubMed  Google Scholar 

  274. Mitsuishi, Y., Motohashi, H. & Yamamoto, M. The Keap1–Nrf2 system in cancers: stress response and anabolic metabolism. Front. Oncol. 2, 200 (2012).

    PubMed  PubMed Central  Google Scholar 

  275. Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Nielsen for comments and advice on the manuscript. This work was supported by research grants from ETH Zurich (ETH-23-16-2) and SNF (310030B_182829).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jonathan Muri or Manfred Kopf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks Luke O’Neill, Navdeep Chandel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Redox homeostasis

(Also known as redox balance). The condition by which cellular antioxidants balance reactive oxygen species (ROS) generation and elimination.

Anaplerotic conversion

(Also known as anaplerosis). The act of diversion of metabolites to the tricarboxylic acid (TCA) cycle aimed at replenishing TCA intermediates that have been extracted for biosynthesis.

Ferroptosis

An iron-dependent and reactive oxygen species (ROS)-mediated form of cell death induced by the accumulation of lipid peroxides. It is morphologically and biochemically distinct from apoptosis, necroptosis and pyroptosis.

M1 macrophages

(Classically activated macrophages). Pro-inflammatory macrophages induced by stimulation with lipopolysaccharide (LPS) and interferon-γ (IFNγ). They are known to play a positive role in immune responses against microbial pathogens and tumours through the phagocytosis of microbes, the production of pro-inflammatory cytokines and the initiation of the immune response.

M2 macrophages

(Alternatively activated macrophages). Anti-inflammatory macrophages induced by IL-4 and/or IL-13. They are involved in tissue repair upon damage and homeostasis of adipose tissue.

Inflammasomes

Cytosolic multiprotein complexes that activate the inflammatory caspase 1 in response to pathogenic microorganisms and sterile stressors, leading to the proteolytic maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18, as well as to the cleavage of the pyroptosis executer gasdermin-D (GSDMD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muri, J., Kopf, M. Redox regulation of immunometabolism. Nat Rev Immunol 21, 363–381 (2021). https://doi.org/10.1038/s41577-020-00478-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-00478-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing