Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey

Abstract

Following their exit from the thymus, T cells are endowed with potent effector functions but must spare host tissue from harm. The fate of these cells is dictated by a series of checkpoints that regulate the quality and magnitude of T cell-mediated immunity, known as tolerance checkpoints. In this Perspective, we discuss the mediators and networks that control the six main peripheral tolerance checkpoints throughout the life of a T cell: quiescence, ignorance, anergy, exhaustion, senescence and death. At the naive T cell stage, two intrinsic checkpoints that actively maintain tolerance are quiescence and ignorance. In the presence of co-stimulation-deficient T cell activation, anergy is a dominant hallmark that mandates T cell unresponsiveness. When T cells are successfully stimulated and reach the effector stage, exhaustion and senescence can limit excessive inflammation and prevent immunopathology. At every stage of the T cell’s journey, cell death exists as a checkpoint to limit clonal expansion and to terminate unrestrained responses. Here, we compare and contrast the T cell tolerance checkpoints and discuss their specific roles, with the aim of providing an integrated view of T cell peripheral tolerance and fate regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated road map for T cell tolerance checkpoints.

Similar content being viewed by others

References

  1. Rouse, B. T. & Sehrawat, S. Immunity and immunopathology to viruses: what decides the outcome? Nat. Rev. Immunol. 10, 514–526 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Skapenko, A., Leipe, J., Lipsky, P. E. & Schulze-Koops, H. The role of the T cell in autoimmune inflammation. Arthritis Res. Ther. 7, S4–S14 (2005).

    PubMed  PubMed Central  Google Scholar 

  3. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    CAS  PubMed  Google Scholar 

  4. Gallegos, A. M. & Bevan, M. J. Central tolerance: good but imperfect. Immunol. Rev. 209, 290–296 (2006).

    PubMed  Google Scholar 

  5. Liu, G. Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3, 407–415 (1995).

    CAS  PubMed  Google Scholar 

  6. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    CAS  PubMed  Google Scholar 

  7. Saligrama, N. et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 572, 481–487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hasegawa, H. & Matsumoto, T. Mechanisms of tolerance induction by dendritic cells in vivo. Front. Immunol. 9, 350 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Zhang, S. et al. Newly generated CD4+ T cells acquire metabolic quiescence after thymic egress. J. Immunol. 200, 1064–1077 (2018).

    CAS  PubMed  Google Scholar 

  10. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    CAS  PubMed  Google Scholar 

  11. Hamilton, S. E. & Jameson, S. C. CD8 T cell quiescence revisited. Trends Immunol. 33, 224–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wildey, G. M. & Howe, P. H. Runx1 is a co-activator with FOXO3 to mediate transforming growth factor beta (TGFbeta)-induced Bim transcription in hepatic cells. J. Biol. Chem. 284, 20227–20239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tu, E. et al. T cell receptor-regulated TGF-beta type I receptor expression determines T cell quiescence and activation. Immunity 48, 745–759 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tzachanis, D. & Boussiotis, V. A. Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle 8, 1019–1025 (2009).

    CAS  PubMed  Google Scholar 

  15. Tzachanis, D. et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat. Immunol. 2, 1174–1182 (2001).

    CAS  PubMed  Google Scholar 

  16. Matsuda, S., Rouault, J., Magaud, J. & Berthet, C. In search of a function for the TIS21/PC3/BTG1/TOB family. FEBS Lett. 497, 67–72 (2001).

    CAS  PubMed  Google Scholar 

  17. ElTanbouly, M. A. et al. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance. Science https://doi.org/10.1126/science.aay0524 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hwang, S. S. et al. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science 367, 1255–1260 (2020).

    CAS  PubMed  Google Scholar 

  19. Howden, A. J. M. et al. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nat. Immunol. 20, 1542–1554 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Buckley, A. F., Kuo, C. T. & Leiden, J. M. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nat. Immunol. 2, 698–704 (2001).

    CAS  PubMed  Google Scholar 

  21. Haaland, R. E., Yu, W. & Rice, A. P. Identification of LKLF-regulated genes in quiescent CD4+ T lymphocytes. Mol. Immunol. 42, 627–641 (2005).

    CAS  PubMed  Google Scholar 

  22. Kuo, C. T., Veselits, M. L. & Leiden, J. M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    CAS  PubMed  Google Scholar 

  23. Wu, J. & Lingrel, J. B. KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene 23, 8088–8096 (2004).

    CAS  PubMed  Google Scholar 

  24. Bai, A., Hu, H., Yeung, M. & Chen, J. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178, 7632–7639 (2007).

    CAS  PubMed  Google Scholar 

  25. Carlson, C. M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    CAS  PubMed  Google Scholar 

  26. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ouyang, W. & Li, M. O. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol. 32, 26–33 (2011).

    CAS  PubMed  Google Scholar 

  29. Wong, W. F. et al. The artificial loss of Runx1 reduces the expression of quiescence-associated transcription factors in CD4+ T lymphocytes. Mol. Immunol. 68, 223–233 (2015).

    CAS  PubMed  Google Scholar 

  30. Wong, W. F. et al. Runx1 deficiency in CD4+ T cells causes fatal autoimmune inflammatory lung disease due to spontaneous hyperactivation of cells. J. Immunol. 188, 5408–5420 (2012).

    CAS  PubMed  Google Scholar 

  31. Wu, Q. et al. The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J. Immunol. 187, 1106–1112 (2011).

    CAS  PubMed  Google Scholar 

  32. Yang, K., Neale, G., Green, D. R., He, W. & Chi, H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat. Immunol. 12, 888–897 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Neama, A. F., Looi, C. Y. & Wong, W. F. in Lymphocyte Updates - Cancer, Autoimmunity and Infection (ed Isvoranu, G.) (InTechOpen, 2017).

  34. Chang, M. et al. The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat. Immunol. 12, 1002–1009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gorelik, L. & Flavell, R. A. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    CAS  PubMed  Google Scholar 

  36. Rubtsov, Y. P. & Rudensky, A. Y. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol. 7, 443–453 (2007).

    CAS  PubMed  Google Scholar 

  37. ElTanbouly, M. A., Schaafsma, E., Noelle, R. J. & Lines, J. L. VISTA: coming of age as a multi-lineage immune checkpoint. Clin. Exp. Immunol. https://doi.org/10.1111/cei.13415 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. ElTanbouly, M. A., Croteau, W., Noelle, R. J. & Lines, J. L. VISTA: a novel immunotherapy target for normalizing innate and adaptive immunity. Semin. Immunol. 42, 101308 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. ElTanbouly, M. A. et al. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science 367, eaay0524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, L. et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl Acad. Sci. USA 111, 14846–14851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18, 363–373 (2018).

    PubMed  Google Scholar 

  42. Baranzini, S. E. The role of antiproliferative gene Tob1 in the immune system. Clin. Exp. Neuroimmunol. 5, 132–136 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bista, P., Mele, D. A., Baez, D. V. & Huber, B. T. Lymphocyte quiescence factor Dpp2 is transcriptionally activated by KLF2 and TOB1. Mol. Immunol. 45, 3618–3623 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wolf, T. et al. Dynamics in protein translation sustaining T cell preparedness. Nat. Immunol. https://doi.org/10.1038/s41590-020-0714-5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Parish, I. A. & Heath, W. R. Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells. Immunol. Cell Biol. 86, 146–152 (2008).

    CAS  PubMed  Google Scholar 

  46. Janeway C. A. Jr., Travers, P., Walport, M. & Shlomchik, M. J. Immunobiology. the immune system in health and disease 5th edn (Garland Science, 2001).

  47. Legoux, F. P. et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43, 896–908 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurts, C. et al. CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl Acad. Sci. USA 96, 12703–12707 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ohashi, P. S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  51. Oldstone, M. B., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    CAS  PubMed  Google Scholar 

  52. Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl Med. 7, 287ra274 (2015).

    Google Scholar 

  53. Danke, N. A., Koelle, D. M., Yee, C., Beheray, S. & Kwok, W. W. Autoreactive T cells in healthy individuals. J. Immunol. 172, 5967–5972 (2004).

    CAS  PubMed  Google Scholar 

  54. Snir, O. et al. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheum. 63, 2873–2883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heath, W. R. et al. Autoimmune diabetes as a consequence of locally produced interleukin-2. Nature 359, 547–549 (1992).

    CAS  PubMed  Google Scholar 

  56. Ramanathan, S. et al. Exposure to IL-15 and IL-21 enables autoreactive CD8 T cells to respond to weak antigens and cause disease in a mouse model of autoimmune diabetes. J. Immunol. 186, 5131–5141 (2011).

    CAS  PubMed  Google Scholar 

  57. Miller, S. D. et al. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat. Med. 3, 1133–1136 (1997).

    CAS  PubMed  Google Scholar 

  58. Vezys, V. & Lefrancois, L. Cutting edge: inflammatory signals drive organ-specific autoimmunity to normally cross-tolerizing endogenous antigen. J. Immunol. 169, 6677–6680 (2002).

    CAS  PubMed  Google Scholar 

  59. DeSilva, D. R., Feeser, W. S., Tancula, E. J. & Scherle, P. A. Anergic T cells are defective in both jun NH2-terminal kinase and mitogen-activated protein kinase signaling pathways. J. Exp. Med. 183, 2017–2023 (1996).

    CAS  PubMed  Google Scholar 

  60. Fields, P. E., Gajewski, T. F. & Fitch, F. W. Blocked Ras activation in anergic CD4+ T cells. Science 271, 1276–1278 (1996).

    CAS  PubMed  Google Scholar 

  61. Li, W., Whaley, C. D., Mondino, A. & Mueller, D. L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).

    CAS  PubMed  Google Scholar 

  62. Zha, Y. et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat. Immunol. 7, 1166–1173 (2006).

    CAS  PubMed  Google Scholar 

  63. Kang, S. M. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257, 1134–1138 (1992).

    CAS  PubMed  Google Scholar 

  64. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    CAS  PubMed  Google Scholar 

  65. Olenchock, B. A. et al. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat. Immunol. 7, 1174–1181 (2006).

    CAS  PubMed  Google Scholar 

  66. Harris, J. E. et al. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. J. Immunol. 173, 7331–7338 (2004).

    CAS  PubMed  Google Scholar 

  67. Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6, 472–480 (2005).

    CAS  PubMed  Google Scholar 

  68. Zheng, Y., Zha, Y., Driessens, G., Locke, F. & Gajewski, T. F. Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. J. Exp. Med. 209, 2157–2163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bandyopadhyay, S. et al. Interleukin 2 gene transcription is regulated by Ikaros-induced changes in histone acetylation in anergic T cells. Blood 109, 2878–2886 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Thomas, R. M., Saouaf, S. J. & Wells, A. D. Superantigen-induced CD4+ T cell tolerance is associated with DNA methylation and histone hypo-acetylation at cytokine gene loci. Genes. Immun. 8, 613–618 (2007).

    CAS  PubMed  Google Scholar 

  71. Villarino, A. V. et al. Posttranscriptional silencing of effector cytokine mRNA underlies the anergic phenotype of self-reactive T cells. Immunity 34, 50–60 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pape, K. A., Merica, R., Mondino, A., Khoruts, A. & Jenkins, M. K. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160, 4719–4729 (1998).

    CAS  PubMed  Google Scholar 

  74. Rocha, B., Grandien, A. & Freitas, A. A. Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance. J. Exp. Med. 181, 993–1003 (1995).

    CAS  PubMed  Google Scholar 

  75. Rocha, B., Tanchot, C. & Von Boehmer, H. Clonal anergy blocks in vivo growth of mature T cells and can be reversed in the absence of antigen. J. Exp. Med. 177, 1517–1521 (1993).

    CAS  PubMed  Google Scholar 

  76. Brown, I. E., Blank, C., Kline, J., Kacha, A. K. & Gajewski, T. F. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J. Immunol. 177, 4521–4529 (2006).

    CAS  PubMed  Google Scholar 

  77. Martinez, R. J. et al. Arthritogenic self-reactive CD4+ T cells acquire an FR4hiCD73hi anergic state in the presence of Foxp3+ regulatory T cells. J. Immunol. 188, 170–181 (2012).

    CAS  PubMed  Google Scholar 

  78. Kalekar, L. A. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kalekar, L. A. & Mueller, D. L. Relationship between CD4 regulatory T cells and anergy in vivo. J. Immunol. 198, 2527–2533 (2017).

    CAS  PubMed  Google Scholar 

  80. Wells, A. D. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J. Immunol. 182, 7331–7341 (2009).

    CAS  PubMed  Google Scholar 

  81. Delgoffe, G. M. & Powell, J. D. Feeding an army: the metabolism of T cells in activation, anergy, and exhaustion. Mol. Immunol. 68, 492–496 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. & Powell, J. D. Anergic T cells are metabolically anergic. J. Immunol. 183, 6095–6101 (2009).

    CAS  PubMed  Google Scholar 

  83. Powell, J. D. & Delgoffe, G. M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33, 301–311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, L., Iwamoto, Y., Berezovskaya, A. & Boussiotis, V. A. A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat. Immunol. 7, 1157–1165 (2006).

    CAS  PubMed  Google Scholar 

  85. Williams, J. B. et al. The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J. Exp. Med. 214, 381–400 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Maeda, Y. et al. Detection of self-reactive CD8+ T cells with an anergic phenotype in healthy individuals. Science 346, 1536–1540 (2014).

    CAS  PubMed  Google Scholar 

  87. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fuller, M. J. et al. Cutting edge: emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J. Immunol. 174, 5926–5930 (2005).

    CAS  PubMed  Google Scholar 

  90. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    CAS  PubMed  Google Scholar 

  91. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    CAS  PubMed  Google Scholar 

  93. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  PubMed  Google Scholar 

  94. Fuertes Marraco, S. A., Neubert, N. J., Verdeil, G. & Speiser, D. E. Inhibitory receptors beyond T cell exhaustion. Front. Immunol. 6, 310 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Legat, A., Speiser, D. E., Pircher, H., Zehn, D. & Fuertes Marraco, S. A. Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells. Front. Immunol. 4, 455 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610 (2013).

    CAS  PubMed  Google Scholar 

  97. Baitsch, L. et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PLoS ONE 7, e30852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Duraiswamy, J. et al. Phenotype, function, and gene expression profiles of programmed death-1hi CD8 T cells in healthy human adults. J. Immunol. 186, 4200–4212 (2011).

    CAS  PubMed  Google Scholar 

  99. Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Collins, M. H. & Henderson, A. J. Transcriptional regulation and T cell exhaustion. Curr. Opin. HIV. AIDS 9, 459–463 (2014).

    CAS  PubMed  Google Scholar 

  102. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147–1151 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    CAS  PubMed  Google Scholar 

  105. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature https://doi.org/10.1038/s41586-019-1325-x (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature https://doi.org/10.1038/s41586-019-1324-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

    CAS  PubMed  Google Scholar 

  108. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    CAS  PubMed  Google Scholar 

  110. Kratchmarov, R., Magun, A. M. & Reiner, S. L. TCF1 expression marks self-renewing human CD8+ T cells. Blood Adv. 2, 1685–1690 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zielinski, M. et al. Impact of donor and recipient human cytomegalovirus status on kidney transplantation. Int. Immunol. 29, 541–549 (2017).

    CAS  PubMed  Google Scholar 

  113. Shahbazi, M., Soltanzadeh-Yamchi, M. & Mohammadnia-Afrouzi, M. T cell exhaustion implications during transplantation. Immunol. Lett. 202, 52–58 (2018).

    CAS  PubMed  Google Scholar 

  114. Steger, U. et al. Exhaustive differentiation of alloreactive CD8+ T cells: critical for determination of graft acceptance or rejection. Transplantation 85, 1339–1347 (2008).

    PubMed  Google Scholar 

  115. Wang, H. et al. Prevention of allograft rejection in heart transplantation through concurrent gene silencing of TLR and kinase signaling pathways. Sci. Rep. 6, 33869 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Frebel, H. et al. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med. 209, 2485–2499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zinselmeyer, B. H. et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med. 210, 757–774 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gil, J. Cellular senescence causes ageing. Nat. Rev. Mol. Cell Biol. 20, 388 (2019).

    CAS  PubMed  Google Scholar 

  119. Reed, J. R. et al. Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J. Exp. Med. 199, 1433–1443 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    CAS  PubMed  Google Scholar 

  121. Hildeman, D. A., Mitchell, T., Kappler, J. & Marrack, P. T cell apoptosis and reactive oxygen species. J. Clin. Invest. 111, 575–581 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).

    CAS  PubMed  Google Scholar 

  123. Yarosz, E. L. & Chang, C. H. The role of reactive oxygen species in regulating T cell-mediated immunity and disease. Immune Netw. 18, e14 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Akbar, A. N., Henson, S. M. & Lanna, A. Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol. 37, 866–876 (2016).

    CAS  PubMed  Google Scholar 

  125. Libri, V. et al. Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+CD45RA+CD27+ T cells: the potential involvement of interleukin-7 in this process. Immunology 132, 326–339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Plunkett, F. J. et al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J. Immunol. 178, 7710–7719 (2007).

    CAS  PubMed  Google Scholar 

  127. Henson, S. M., Macaulay, R., Riddell, N. E., Nunn, C. J. & Akbar, A. N. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8+ T-cell proliferation by distinct pathways. Eur. J. Immunol. 45, 1441–1451 (2015).

    CAS  PubMed  Google Scholar 

  128. Di Mitri, D. et al. Reversible senescence in human CD4+CD45RA+CD27- memory T cells. J. Immunol. 187, 2093–2100 (2011).

    PubMed  Google Scholar 

  129. Lanna, A., Henson, S. M., Escors, D. & Akbar, A. N. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat. Immunol. 15, 965–972 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chou, J. P. & Effros, R. B. T cell replicative senescence in human aging. Curr. Pharm. Des. 19, 1680–1698 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Goronzy, J. J. & Weyand, C. M. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity - catalysts of autoimmunity and chronic inflammation. Arthritis Res. Ther. 5, 225–234 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhao, Y., Shao, Q. & Peng, G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol. Immunol. 17, 27–35 (2020).

    CAS  PubMed  Google Scholar 

  133. Pereira, B. I. et al. Sestrins induce natural killer function in senescent-like CD8+ T cells. Nat. Immunol. https://doi.org/10.1038/s41590-020-0643-3 (2020).

    Article  PubMed  Google Scholar 

  134. Akbar, A. N., Beverley, P. C. & Salmon, M. Will telomere erosion lead to a loss of T-cell memory? Nat. Rev. Immunol. 4, 737–743 (2004).

    CAS  PubMed  Google Scholar 

  135. Aspinall, R., Del Giudice, G., Effros, R. B., Grubeck-Loebenstein, B. & Sambhara, S. Challenges for vaccination in the elderly. Immun. Ageing 4, 9 (2007).

    PubMed  PubMed Central  Google Scholar 

  136. Grubeck-Loebenstein, B. et al. Immunosenescence and vaccine failure in the elderly. Aging Clin. Exp. Res. 21, 201–209 (2009).

    CAS  PubMed  Google Scholar 

  137. Beltran-Sanchez, H., Soneji, S. & Crimmins, E. M. Past, present, and future of healthy life expectancy. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a025957 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yoshikawa, T. T. Perspective: aging and infectious diseases: past, present, and future. J. Infect. Dis. 176, 1053–1057 (1997).

    CAS  PubMed  Google Scholar 

  139. Berger, R., Florent, G. & Just, M. Decrease of the lymphoproliferative response to varicella-zoster virus antigen in the aged. Infect. Immun. 32, 24–27 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Fulop, T., Larbi, A. & Pawelec, G. Human T cell aging and the impact of persistent viral infections. Front. Immunol. 4, 271 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ouyang, Q. et al. An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein-Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech. Ageing Dev. 124, 477–485 (2003).

    CAS  PubMed  Google Scholar 

  142. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kyburz, D. et al. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur. J. Immunol. 23, 1956–1962 (1993).

    CAS  PubMed  Google Scholar 

  144. Liblau, R. S. et al. Intravenous injection of soluble antigen induces thymic and peripheral T-cells apoptosis. Proc. Natl Acad. Sci. USA 93, 3031–3036 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Davey, G. M. et al. Peripheral deletion of autoreactive CD8 T cells by cross presentation of self-antigen occurs by a Bcl-2-inhibitable pathway mediated by Bim. J. Exp. Med. 196, 947–955 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hildeman, D. A., Zhu, Y., Mitchell, T. C., Kappler, J. & Marrack, P. Molecular mechanisms of activated T cell death in vivo. Curr. Opin. Immunol. 14, 354–359 (2002).

    CAS  PubMed  Google Scholar 

  147. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3, 87–98 (1995).

    CAS  PubMed  Google Scholar 

  148. Burr, J. S. et al. Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL. J. Immunol. 166, 5331–5335 (2001).

    CAS  PubMed  Google Scholar 

  149. Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat. Immunol. 2, 325–332 (2001).

    CAS  PubMed  Google Scholar 

  150. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    CAS  PubMed  Google Scholar 

  151. Silva-Filho, J. L., Caruso-Neves, C. & Pinheiro, A. A. S. IL-4: an important cytokine in determining the fate of T cells. Biophys. Rev. 6, 111–118 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Parish, I. A. et al. The molecular signature of CD8+ T cells undergoing deletional tolerance. Blood 113, 4575–4585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hochweller, K. & Anderton, S. M. Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo. Eur. J. Immunol. 35, 1086–1096 (2005).

    CAS  PubMed  Google Scholar 

  154. Rajpal, A. et al. Transcriptional activation of known and novel apoptotic pathways by Nur77 orphan steroid receptor. EMBO J. 22, 6526–6536 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Barron, L., Knoechel, B., Lohr, J. & Abbas, A. K. Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. J. Immunol. 180, 2762–2766 (2008).

    CAS  PubMed  Google Scholar 

  156. Green, D. R., Droin, N. & Pinkoski, M. Activation-induced cell death in T cells. Immunol. Rev. 193, 70–81 (2003).

    CAS  PubMed  Google Scholar 

  157. Kawabe, Y. & Ochi, A. Programmed cell death and extrathymic reduction of Vbeta8+ CD4+ T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature 349, 245–248 (1991).

    CAS  PubMed  Google Scholar 

  158. Snow, A. L., Pandiyan, P., Zheng, L., Krummey, S. M. & Lenardo, M. J. The power and the promise of restimulation-induced cell death in human immune diseases. Immunol. Rev. 236, 68–82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Dhein, J., Walczak, H., Baumler, C., Debatin, K. M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995).

    CAS  PubMed  Google Scholar 

  160. Krammer, P. H. CD95’s deadly mission in the immune system. Nature 407, 789–795 (2000).

    CAS  PubMed  Google Scholar 

  161. Krammer, P. H., Arnold, R. & Lavrik, I. N. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532–542 (2007).

    CAS  PubMed  Google Scholar 

  162. Suzuki, I. & Fink, P. J. The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc. Natl Acad. Sci. USA 97, 1707–1712 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Tham, E. L. & Mescher, M. F. The poststimulation program of CD4 versus CD8 T cells (death versus activation-induced nonresponsiveness). J. Immunol. 169, 1822–1828 (2002).

    CAS  PubMed  Google Scholar 

  164. Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351 (1995).

    CAS  PubMed  Google Scholar 

  165. Kirchhoff, S., Muller, W. W., Krueger, A., Schmitz, I. & Krammer, P. H. TCR-mediated up-regulation of c-FLIPshort correlates with resistance toward CD95-mediated apoptosis by blocking death-inducing signaling complex activity. J. Immunol. 165, 6293–6300 (2000).

    CAS  PubMed  Google Scholar 

  166. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    CAS  PubMed  Google Scholar 

  167. Kalia, V. et al. Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).

    CAS  PubMed  Google Scholar 

  168. Lenardo, M. J. Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    CAS  PubMed  Google Scholar 

  169. Refaeli, Y., Parijs, L. V., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    CAS  PubMed  Google Scholar 

  170. Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    CAS  PubMed  Google Scholar 

  171. Ch’en, I. L., Tsau, J. S., Molkentin, J. D., Komatsu, M. & Hedrick, S. M. Mechanisms of necroptosis in T cells. J. Exp. Med. 208, 633–641 (2011).

    PubMed  PubMed Central  Google Scholar 

  172. Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Faliti, C. E. et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J. Exp. Med. 216, 317–336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kunzli, M. et al. Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aay5552 (2020).

    Article  PubMed  Google Scholar 

  175. Andreas Linder, S. B. et al. CARD8 inflammasome activation triggers pyroptosis in human T cells. EMBO J. https://doi.org/10.15252/embj.2020105071 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Johnson, D. C. et al. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 11, 628 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  178. Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26, 923–937 (2014).

    CAS  PubMed  Google Scholar 

  179. Yang, Z. Z. et al. Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget 8, 61425–61439 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Otano, I. et al. Human CD8 T cells are susceptible to TNF-mediated activation-induced cell death. Theranostics 10, 4481–4489 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    CAS  PubMed  Google Scholar 

  183. Martinez-Lorenzo, M. J. et al. Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur. J. Immunol. 28, 2714–2725 (1998).

    CAS  PubMed  Google Scholar 

  184. Whiting, C. C., Su, L. L., Lin, J. T. & Fathman, C. G. GRAIL: a unique mediator of CD4 T-lymphocyte unresponsiveness. FEBS J. 278, 47–58 (2011).

    CAS  PubMed  Google Scholar 

  185. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    CAS  PubMed  Google Scholar 

  186. Venuprasad, K. Cbl-b and itch: key regulators of peripheral T-cell tolerance. Cancer Res. 70, 3009–3012 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    CAS  PubMed  Google Scholar 

  188. Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209, 1201–1217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Masson, F., Kupresanin, F., Mount, A., Strasser, A. & Belz, G. T. Bid and Bim collaborate during induction of T cell death in persistent infection. J. Immunol. 186, 4059–4066 (2011).

    CAS  PubMed  Google Scholar 

  191. Garaud, S. et al. FOXP1 is a regulator of quiescence in healthy human CD4+ T cells and is constitutively repressed in T cells from patients with lymphoproliferative disorders. Eur. J. Immunol. 47, 168–179 (2017).

    CAS  PubMed  Google Scholar 

  192. Wei, H. et al. Cutting edge: Foxp1 controls naive CD8+ T cell quiescence by simultaneously repressing key pathways in cellular metabolism and cell cycle progression. J. Immunol. 196, 3537–3541 (2016).

    CAS  PubMed  Google Scholar 

  193. Man, K. et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141 (2017).

    CAS  PubMed  Google Scholar 

  194. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Li, J., He, Y., Hao, J., Ni, L. & Dong, C. High levels of Eomes promote exhaustion of anti-tumor CD8+ T cells. Front. Immunol. 9, 2981 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Sprent, J. & Surh, C. D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol. 12, 478–484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Allam, A. et al. The CD8+ memory T-cell state of readiness is actively maintained and reversible. Blood 114, 2121–2130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Latner, D. R., Kaech, S. M. & Ahmed, R. Enhanced expression of cell cycle regulatory genes in virus-specific memory CD8+ T cells. J. Virol. 78, 10953–10959 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    CAS  PubMed  Google Scholar 

  202. Milner, J. J. et al. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity 52, 808–824 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Carbone, F. R. Immovable memories: the journey to permanent residency. Nat. Immunol. 21, 698–699 (2020).

    CAS  PubMed  Google Scholar 

  204. Driessens, G., Kline, J. & Gajewski, T. F. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol. Rev. 229, 126–144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Tirapu, I. et al. Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 66, 2442–2450 (2006).

    CAS  PubMed  Google Scholar 

  206. Wu, T. C., Huang, A. Y., Jaffee, E. M., Levitsky, H. I. & Pardoll, D. M. A reassessment of the role of B7-1 expression in tumor rejection. J. Exp. Med. 182, 1415–1421 (1995).

    CAS  PubMed  Google Scholar 

  207. Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008).

    CAS  PubMed  Google Scholar 

  208. Cuenca, A. et al. Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res. 63, 9007–9015 (2003).

    CAS  PubMed  Google Scholar 

  209. Mescher, M. F., Popescu, F. E., Gerner, M., Hammerbeck, C. D. & Curtsinger, J. M. Activation-induced non-responsiveness (anergy) limits CD8 T cell responses to tumors. Semin. Cancer Biol. 17, 299–308 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Staveley-O’Carroll, K. et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc. Natl Acad. Sci. USA 95, 1178–1183 (1998).

    PubMed  PubMed Central  Google Scholar 

  211. Abe, B. T., Shin, D. S., Mocholi, E. & Macian, F. NFAT1 supports tumor-induced anergy of CD4+ T cells. Cancer Res. 72, 4642–4651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  214. Liu, Y. & Zheng, P. How does an anti-CTLA-4 antibody promote cancer immunity? Trends Immunol. 39, 953–956 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Redmond, W. L., Gough, M. J. & Weinberg, A. D. Ligation of the OX40 co-stimulatory receptor reverses self-Ag and tumor-induced CD8 T-cell anergy in vivo. Eur. J. Immunol. 39, 2184–2194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Alonso, R. et al. Induction of anergic or regulatory tumor-specific CD4+ T cells in the tumor-draining lymph node. Nat. Commun. 9, 2113 (2018).

    PubMed  PubMed Central  Google Scholar 

  217. Magen, A. et al. Single-cell profiling defines transcriptomic signatures specific to tumor-reactive versus virus-responsive CD4+ T cells. Cell Rep. 29, 3019–3032 e3016 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–611 (2016).

    CAS  PubMed  Google Scholar 

  219. Kahan, S. M., Wherry, E. J. & Zajac, A. J. T cell exhaustion during persistent viral infections. Virology 479–480, 180–193 (2015).

    PubMed  Google Scholar 

  220. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005).

    CAS  PubMed  Google Scholar 

  222. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Hedrick and C. Burns for their valuable suggestions and discussion.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Randolph J. Noelle.

Ethics declarations

Competing interests

R.J.N. is an inventor on patent applications (10035857, 9631018, 9217035, 8501915, 8465740, 8236304 and 8231872) submitted by Dartmouth College, and patent applications (9890215 and 9381244) submitted by Kings College London and Dartmouth College and is a co-founder of ImmuNext, a company involved in the development of VISTA-related assets. These applications cover the use of VISTA targeting for modulation of the immune response. M.A.E. declares no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks Daniel Utzschneider, Vassiliki Boussiotis and Pamela Ohashi for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElTanbouly, M.A., Noelle, R.J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat Rev Immunol 21, 257–267 (2021). https://doi.org/10.1038/s41577-020-00454-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-00454-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing