Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

γδ T cells in tissue physiology and surveillance

Abstract

γδ T cells are a unique T cell subpopulation that are rare in secondary lymphoid organs but enriched in many peripheral tissues, such as the skin, intestines and lungs. By rapidly producing large amounts of cytokines, γδ T cells make key contributions to immune responses in these tissues. In addition to their immune surveillance activities, recent reports have unravelled exciting new roles for γδ T cells in steady-state tissue physiology, with functions ranging from the regulation of thermogenesis in adipose tissue to the control of neuronal synaptic plasticity in the central nervous system. Here, we review the roles of γδ T cells in tissue homeostasis and in surveillance of infection, aiming to illustrate their major impact on tissue integrity, tissue repair and immune protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thymic developmental waves and tissue homing of γδ T cell subsets.
Fig. 2: γδ T cell homeostasis in tissues.
Fig. 3: Roles of γδ T cells in tissue physiology.
Fig. 4: γδ T cell functions in infected tissues.

Similar content being viewed by others

References

  1. Flajnik, M. F. A cold-blooded view of adaptive immunity. Nat. Rev. Immunol. 18, 438–453 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayday, A. C. gammadelta T cell update: adaptate orchestrators of immune surveillance. J. Immunol. 203, 311–320 (2019).

    CAS  PubMed  Google Scholar 

  3. Haas, J. D. et al. Development of interleukin-17-producing gammadelta T cells is restricted to a functional embryonic wave. Immunity 37, 48–59 (2012).

    CAS  PubMed  Google Scholar 

  4. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Munoz-Ruiz, M., Sumaria, N., Pennington, D. J. & Silva-Santos, B. Thymic determinants of gammadelta T cell differentiation. Trends Immunol. 38, 336–344 (2017).

    CAS  PubMed  Google Scholar 

  6. Sumaria, N., Martin, S. & Pennington, D. J. Developmental origins of murine gammadelta T-cell subsets. Immunology 156, 299–304 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayday, A. C. & Vantourout, P. The innate biologies of adaptive antigen receptors. Annu. Rev. Immunol. 38, 487–510 (2020).

    CAS  PubMed  Google Scholar 

  8. Afrache, H., Gouret, P., Ainouche, S., Pontarotti, P. & Olive, D. The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response. Immunogenetics 64, 781–794 (2012).

    CAS  PubMed  Google Scholar 

  9. Boyden, L. M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat. Genet. 40, 656–662 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis, J. M. et al. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 7, 843–850 (2006). Pioneering work, together with Boyden et al. (2008), on the SKINT1/BTNL family, which identifies SKINT1 as a key stromal determinant of the thymic selection and epidermal homeostasis of Vγ5+ DETCs.

    CAS  PubMed  Google Scholar 

  11. Turchinovich, G. & Hayday, A. C. Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17-secreting gammadelta T cells. Immunity 35, 59–68 (2011).

    CAS  PubMed  Google Scholar 

  12. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218.e17 (2016). Demonstration that the BTNL paradigm also applies to the selection of intestinal γδ T cell repertoires in both mice and humans.

    PubMed  PubMed Central  Google Scholar 

  13. Melandri, D. et al. The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19, 1352–1365 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 120, 2269–2279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity 40, 490–500 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 367, eaay5516 (2020).

    CAS  PubMed  Google Scholar 

  17. Karunakaran, M. M. et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing. Immunity 52, 487–498.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vantourout, P. et al. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing gammadelta T cell biology. Proc. Natl Acad. Sci. USA 115, 1039–1044 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Willcox, C. R. et al. Butyrophilin-like 3 directly binds a human Vγ4+ T cell receptor using a modality distinct from clonally-restricted antigen. Immunity 51, 813–825.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chodaczek, G., Papanna, V., Zal, M. A. & Zal, T. Body-barrier surveillance by epidermal gammadelta TCRs. Nat. Immunol. 13, 272–282 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002). Seminal article establishing a key role for Vγ5+ DETCs in epidermal wound healing through production of keratinocyte growth factors.

    CAS  PubMed  Google Scholar 

  22. Nielsen, M. M., Witherden, D. A. & Havran, W. L. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733–745 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson, M. D., Witherden, D. A. & Havran, W. L. The role of tissue-resident T cells in stress surveillance and tissue maintenance. Cells 9, 686 (2020).

    CAS  PubMed Central  Google Scholar 

  24. Jameson, J. M., Cauvi, G., Sharp, L. L., Witherden, D. A. & Havran, W. L. Gammadelta T cell-induced hyaluronan production by epithelial cells regulates inflammation. J. Exp. Med. 201, 1269–1279 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. MacLeod, A. S. et al. Dendritic epidermal T cells regulate skin antimicrobial barrier function. J. Clin. Invest. 123, 4364–4374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. MacLeod, A. S. et al. Skin-resident T cells sense ultraviolet radiation-induced injury and contribute to DNA repair. J. Immunol. 192, 5695–5702 (2014).

    CAS  PubMed  Google Scholar 

  27. Pantelyushin, S. et al. Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai, Y. et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35, 596–610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gray, E. E. et al. Deficiency in IL-17-committed Vgamma4+ gammadelta T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14, 584–592 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai, Y. et al. Differential developmental requirement and peripheral regulation for dermal Vgamma4 and Vgamma6T17 cells in health and inflammation. Nat. Commun. 5, 3986 (2014).

    CAS  PubMed  Google Scholar 

  31. Papotto, P. H., Ribot, J. C. & Silva-Santos, B. IL-17+ gammadelta T cells as kick-starters of inflammation. Nat. Immunol. 18, 604–611 (2017).

    CAS  PubMed  Google Scholar 

  32. Spidale, N. A. et al. Neonatal-derived IL-17 producing dermal γδ T cells are required to prevent spontaneous atopic dermatitis. eLife 9, e51188 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, P. et al. Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γδT-cells. eLife 6, e2887 (2017).

    Google Scholar 

  34. Gay, D. et al. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding. Nat. Med. 19, 916–923 (2013). Demonstration that dermal γδ T cells produce FGF9, which activates WNT signalling in fibroblasts, in a self-amplifying loop that promotes hair follicle regeneration on wounding.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Edelblum, K. L. et al. Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc. Natl Acad. Sci. USA 109, 7097–7102 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science 266, 1253–1255 (1994).

    CAS  PubMed  Google Scholar 

  37. Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc. Natl Acad. Sci. USA 92, 6147–6151 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dalton, J. E. et al. Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology 131, 818–829 (2006).

    CAS  PubMed  Google Scholar 

  39. Inagaki-Ohara, K. et al. Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J. Immunol. 173, 1390–1398 (2004).

    CAS  PubMed  Google Scholar 

  40. Ahlfors, H. et al. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J. Immunol. 193, 4602–4613 (2014).

    CAS  PubMed  Google Scholar 

  41. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  42. McMenamin, C., Pimm, C., McKersey, M. & Holt, P. G. Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science 265, 1869–1871 (1994).

    CAS  PubMed  Google Scholar 

  43. Lahn, M. et al. Negative regulation of airway responsiveness that is dependent on gammadelta T cells and independent of alphabeta T cells. Nat. Med. 5, 1150–1156 (1999).

    CAS  PubMed  Google Scholar 

  44. Zuany-Amorim, C. et al. Requirement for gammadelta T cells in allergic airway inflammation. Science 280, 1265–1267 (1998).

    CAS  PubMed  Google Scholar 

  45. Seymour, B. W., Gershwin, L. J. & Coffman, R. L. Aerosol-induced immunoglobulin (Ig)-E unresponsiveness to ovalbumin does not require CD8+ or T cell receptor (TCR)-gamma/delta+ T cells or interferon (IFN)-gamma in a murine model of allergen sensitization. J. Exp. Med. 187, 721–731 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin, C. et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176, 998–1013.e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Simonian, P. L. et al. gammadelta T cells protect against lung fibrosis via IL-22. J. Exp. Med. 207, 2239–2253 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gollwitzer, E. S. et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20, 642–647 (2014).

    CAS  PubMed  Google Scholar 

  49. de Kleer, I. M. et al. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45, 1285–1298 (2016).

    PubMed  Google Scholar 

  50. Wilharm, A. et al. Mutual interplay between IL-17-producing gammadeltaT cells and microbiota orchestrates oral mucosal homeostasis. Proc. Natl Acad. Sci. USA 116, 2652–2661 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dutzan, N. et al. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46, 133–147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Eskan, M. A. et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat. Immunol. 13, 465–473 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moutsopoulos, N. M. et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci. Transl. Med. 6, 229ra240 (2014).

    Google Scholar 

  54. Yu, J. J. et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood 109, 3794–3802 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Krishnan, S. et al. Amphiregulin-producing gammadelta T cells are vital for safeguarding oral barrier immune homeostasis. Proc. Natl Acad. Sci. USA 115, 10738–10743 (2018). An article showing that γδ T cells produce the wound healing-associated cytokine amphiregulin, which prevents spontaneous development of oral inflammatory diseases such as periodontitis.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Itohara, S. et al. Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343, 754–757 (1990).

    CAS  PubMed  Google Scholar 

  58. Carding, S. R. & Egan, P. J. Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    CAS  PubMed  Google Scholar 

  59. Pinget, G. V. et al. The majority of murine gammadelta T cells at the maternal-fetal interface in pregnancy produce IL-17. Immunol. Cell Biol. 94, 623–630 (2016).

    CAS  PubMed  Google Scholar 

  60. Song, Z. H. et al. Seminal plasma induces inflammation in the uterus through the gammadelta T/IL-17 pathway. Sci. Rep. 6, 25118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Monin, L. et al. gammadelta T cells compose a developmentally regulated intrauterine population and protect against vaginal candidiasis. Mucosal Immunol. (2020).

  62. Polese, B. et al. Accumulation of IL-17+ Vgamma6+ gammadelta T cells in pregnant mice is not associated with spontaneous abortion. Clin. Transl. Immunol. 7, e1008 (2018).

    Google Scholar 

  63. Gomez-Lopez, N., StLouis, D., Lehr, M. A., Sanchez-Rodriguez, E. N. & Arenas-Hernandez, M. Immune cells in term and preterm labor. Cell Mol. Immunol. 11, 571–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilharm, A. et al. Microbiota-dependent expansion of testicular IL-17-producing Vgamma6+ gammadelta T cells upon puberty promotes local tissue immune surveillance. Mucosal Immunol. https://doi.org/10.1038/s41385-020-0330-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mukasa, A. et al. Bacterial infection of the testis leading to autoaggressive immunity triggers apparently opposed responses of alpha beta and gamma delta T cells. J. Immunol. 155, 2047–2056 (1995).

    CAS  PubMed  Google Scholar 

  66. Mukasa, A., Born, W. K. & O’Brien, R. L. Inflammation alone evokes the response of a TCR-invariant mouse gamma delta T cell subset. J. Immunol. 162, 4910–4913 (1999).

    CAS  PubMed  Google Scholar 

  67. Munoz, G., Posnett, D. N. & Witkin, S. S. Enrichment of gamma delta T lymphocytes in human semen: relation between gamma delta T cell concentration and antisperm antibody status. J. Reprod. Immunol. 22, 47–57 (1992).

    CAS  PubMed  Google Scholar 

  68. Fraczek, M. & Kurpisz, M. Cytokines in the male reproductive tract and their role in infertility disorders. J. Reprod. Immunol. 108, 98–104 (2015).

    CAS  PubMed  Google Scholar 

  69. Colburn, N. T., Zaal, K. J., Wang, F. & Tuan, R. S. A role for gamma/delta T cells in a mouse model of fracture healing. Arthritis Rheum. 60, 1694–1703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ono, T. et al. IL-17-producing gammadelta T cells enhance bone regeneration. Nat. Commun. 7, 10928 (2016). Identification of a key role for γδ17 T cells in skeletal tissue regeneration, namely by enhancing the differentiation of mesenchymal progenitors into osteoblasts during bone formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mehta, P., Nuotio-Antar, A. M. & Smith, C. W. gammadelta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J. Leukoc. Biol. 97, 121–134 (2015).

    PubMed  Google Scholar 

  73. Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    CAS  PubMed  Google Scholar 

  74. Kohlgruber, A. C. et al. gammadelta T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018). Characterization of a population of PLZF+ γδ Tcells that reside in the adipose tissue and produce IL-17 and TNF, which stimulate IL-33 production by stromal cells and activate UCP1 in adipocytes, thus regulating thermogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, B. et al. gammadelta T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020). Demonstration that thermogenesis regulation by γδ T cells requires production of IL-17F, which induces IL-17RC-expressing adipocytes to produce transforming growth factor-β, which promotes sympathetic innervation of the adipose tissue.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019). Identification of meningeal-resident γδ T cells making IL-17 that promotes glial BDNF production and neuronal synaptic plasticity in the hippocampus during short-term learning.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Reisel, D. et al. Spatial memory dissociations in mice lacking GluR1. Nat. Neurosci. 5, 868–873 (2002).

    CAS  PubMed  Google Scholar 

  81. Pikor, N. B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    CAS  PubMed  Google Scholar 

  82. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sheridan, B. S. et al. gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39, 184–195 (2013). Demonstration of a memory-like protective response of intestinal γδ T cells to oral Listeria infection in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Romagnoli, P. A., Sheridan, B. S., Pham, Q. M., Lefrancois, L. & Khanna, K. M. IL-17A-producing resident memory gammadelta T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc. Natl Acad. Sci. USA 113, 8502–8507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hayday, A. C. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    CAS  PubMed  Google Scholar 

  86. Ramsburg, E., Tigelaar, R., Craft, J. & Hayday, A. Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J. Exp. Med. 198, 1403–1414 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gibbons, D. L. et al. Neonates harbour highly active gammadelta T cells with selective impairments in preterm infants. Eur. J. Immunol. 39, 1794–1806 (2009).

    CAS  PubMed  Google Scholar 

  88. Dimova, T. et al. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc. Natl Acad. Sci. USA 112, E556–E565 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Molne, L., Corthay, A., Holmdahl, R. & Tarkowski, A. Role of gamma/delta T cell receptor-expressing lymphocytes in cutaneous infection caused by Staphylococcus aureus. Clin. Exp. Immunol. 132, 209–215 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cho, J. S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Murphy, A. G. et al. Staphylococcus aureus infection of mice expands a population of memory gammadelta T cells that are protective against subsequent infection. J. Immunol. 192, 3697–3708 (2014).

    CAS  PubMed  Google Scholar 

  92. Dillen, C. A. et al. Clonally expanded gammadelta T cells protect against Staphylococcus aureus skin reinfection. J. Clin. Invest. 128, 1026–1042 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Lefrancois, L. & Goodman, T. In vivo modulation of cytolytic activity and Thy-1 expression in TCR-gamma delta+ intraepithelial lymphocytes. Science 243, 1716–1718 (1989).

    CAS  PubMed  Google Scholar 

  94. Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRgammadelta+ and TCRalphabeta+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    CAS  PubMed  Google Scholar 

  95. Fahrer, A. M. et al. Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl Acad. Sci. USA 98, 10261–10266 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ismail, A. S. et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA 108, 8743–8748 (2011). Characterization of a rapid production of innate antimicrobial factors on activation of γδ IELs by resident bacteria that penetrate the intestinal epithelium.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Swamy, M. et al. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat. Commun. 6, 7090 (2015).

    CAS  PubMed  Google Scholar 

  98. Hatano, S., Murakami, T., Noguchi, N., Yamada, H. & Yoshikai, Y. CD5 NK1.1+ gammadelta T cells that develop in a Bcl11b-independent manner participate in early protection against infection. Cell Rep. 21, 1191–1202 (2017).

    CAS  PubMed  Google Scholar 

  99. Schmolka, N. et al. microRNA-146a controls functional plasticity in γδ T cells by targeting NOD1. Sci. Immunol. 3, eaao1392 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Xu, S. et al. IL-17A-producing gammadeltaT cells promote CTL responses against Listeria monocytogenes infection by enhancing dendritic cell cross-presentation. J. Immunol. 185, 5879–5887 (2010).

    CAS  PubMed  Google Scholar 

  101. Chen, Y. S. et al. IL-17-producing γδ T cells protect against Clostridium difficile infection. J. Clin. Invest. 130, 2377–2390 (2020). Establishment of a key role for γδ17 T cells in neonatal defence against C. difficile infection, providing a mechanistic explanation for the clinical resistance of infants to C. difficile-induced colitis.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Muzaki, A. et al. Long-lived innate IL-17-producing gamma/delta T cells modulate antimicrobial epithelial host defense in the colon. J. Immunol. 199, 3691–3699 (2017).

    CAS  PubMed  Google Scholar 

  103. Nakasone, C. et al. Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection. Microbes Infect. 9, 251–258 (2007).

    CAS  PubMed  Google Scholar 

  104. Kirby, A. C., Newton, D. J., Carding, S. R. & Kaye, P. M. Evidence for the involvement of lung-specific gammadelta T cell subsets in local responses to Streptococcus pneumoniae infection. Eur. J. Immunol. 37, 3404–3413 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hassane, M. et al. Interleukin-7 protects against bacterial respiratory infection by promoting IL-17A-producing innate T-cell response. Mucosal Immunol. 13, 128–139 (2020).

    CAS  PubMed  Google Scholar 

  106. Kirby, A. C., Newton, D. J., Carding, S. R. & Kaye, P. M. Pulmonary dendritic cells and alveolar macrophages are regulated by gammadelta T cells during the resolution of S. pneumoniae-induced inflammation. J. Pathol. 212, 29–37 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lockhart, E., Green, A. M. & Flynn, J. L. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 177, 4662–4669 (2006).

    CAS  PubMed  Google Scholar 

  108. Umemura, M. et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J. Immunol. 178, 3786–3796 (2007).

    CAS  PubMed  Google Scholar 

  109. Peng, M. Y. et al. Interleukin 17-producing gamma delta T cells increased in patients with active pulmonary tuberculosis. Cell Mol. Immunol. 5, 203–208 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. Shen, H. et al. Th17-related cytokines contribute to recall-like expansion/effector function of HMBPP-specific Vgamma2Vdelta2 T cells after Mycobacterium tuberculosis infection or vaccination. Eur. J. Immunol. 45, 442–451 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shen, Y. et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 295, 2255–2258 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shen, L. et al. Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. Proc. Natl Acad. Sci. USA 116, 6371–6378 (2019). Demonstration, together with Shen et al. (2002), of the major role and therapeutic potential of γδ T cells in non-human primate models of tuberculosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Misiak, A., Wilk, M. M., Raverdeau, M. & Mills, K. H. IL-17-producing innate and pathogen-specific tissue resident memory gammadelta T cells expand in the lungs of Bordetella pertussis-infected mice. J. Immunol. 198, 363–374 (2017).

    CAS  PubMed  Google Scholar 

  114. Guo, X. J. et al. Lung γδ T cells mediate protective responses during neonatal influenza infection that are associated with type 2 immununity. Immunity 49, 531–544.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Khairallah, C., Dechanet-Merville, J. & Capone, M. gammadelta T cell-mediated immunity to cytomegalovirus infection. Front. Immunol. 8, 105 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Pamplona, A. & Silva-Santos, B. gammadelta T cells in malaria: a double-edged sword. FEBS J. https://doi.org/10.1111/febs.15494 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dechanet, J. et al. Major expansion of gammadelta T lymphocytes following cytomegalovirus infection in kidney allograft recipients. J. Infect. Dis. 179, 1–8 (1999).

    CAS  PubMed  Google Scholar 

  118. Ravens, S. et al. Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017).

    CAS  PubMed  Google Scholar 

  119. Prinz, I. et al. Donor Vdelta1+ gammadelta T cells expand after allogeneic hematopoietic stem cell transplantation and show reactivity against CMV-infected cells but not against progressing B-CLL. Exp. Hematol. Oncol. 2, 14 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Knight, A. et al. The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 116, 2164–2172 (2010).

    CAS  PubMed  Google Scholar 

  121. Vermijlen, D. et al. Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J. Exp. Med. 207, 807–821 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lafarge, X. et al. Cytomegalovirus infection in transplant recipients resolves when circulating gammadelta T lymphocytes expand, suggesting a protective antiviral role. J. Infect. Dis. 184, 533–541 (2001).

    CAS  PubMed  Google Scholar 

  123. Couzi, L. et al. Common features of gammadelta T cells and CD8+ alphabeta T cells responding to human cytomegalovirus infection in kidney transplant recipients. J. Infect. Dis. 200, 1415–1424 (2009).

    CAS  PubMed  Google Scholar 

  124. Dechanet, J. et al. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J. Clin. Invest. 103, 1437–1449 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Halary, F. et al. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ninomiya, T. et al. Vgamma1+gammadelta T cells play protective roles at an early phase of murine cytomegalovirus infection through production of interferon-gamma. Immunology 99, 187–194 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Khairallah, C. et al. gammadelta T cells confer protection against murine cytomegalovirus (MCMV). PLoS Pathog. 11, e1004702 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Sell, S. et al. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 11, e1004481 (2015). Together with the article by Khairallah et al. (2015), this article provides mechanistic evidence in mouse models for the implication of γδ T cells in CMV infection, as documented in the previous references from studies in humans.

    PubMed  PubMed Central  Google Scholar 

  129. Tsuji, M. et al. Gamma delta T cells contribute to immunity against the liver stages of malaria in alpha beta T-cell-deficient mice. Proc. Natl Acad. Sci. USA 91, 345–349 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. McKenna, K. C. et al. gammadelta T cells are a component of early immunity against preerythrocytic malaria parasites. Infect. Immun. 68, 2224–2230 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mamedov, M. R. et al. A macrophage colony-stimulating-factor-producing γδ T cell subset prevents malarial parasitemic recurrence. Immunity 48, 350–363.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Teirlinck, A. C. et al. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathog. 7, e1002389 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ho, M. et al. Polyclonal expansion of peripheral gamma delta T cells in human Plasmodium falciparum malaria. Infect. Immun. 62, 855–862 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ribot, J. C. et al. gammadelta-T cells promote IFN-gamma-dependent Plasmodium pathogenesis upon liver-stage infection. Proc. Natl Acad. Sci. USA 116, 9979–9988 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jagannathan, P. et al. Loss and dysfunction of Vdelta2+ gammadelta T cells are associated with clinical tolerance to malaria. Sci. Transl. Med. 6, 251ra117 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Willcox, B. E. & Willcox, C. R. Publisher correction: gammadelta TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 516 (2019).

    CAS  PubMed  Google Scholar 

  137. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    CAS  PubMed  Google Scholar 

  138. Mielke, L. A. et al. Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ridaura, V. K. et al. Contextual control of skin immunity and inflammation by Corynebacterium. J. Exp. Med. 215, 785–799 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. St Leger, A. J. et al. An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ T cells. Immunity 47, 148–158.e5 (2017).

    PubMed Central  Google Scholar 

  141. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Duan, J., Chung, H., Troy, E. & Kasper, D. L. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe 7, 140–150 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Jouan, Y. et al. Thymic program directing the functional development of gammadeltaT17 cells. Front. Immunol. 9, 981 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Hunter, S. et al. Human liver infiltrating gammadelta T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 69, 654–665 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Davey, M. S. et al. The human Vdelta2+ T-cell compartment comprises distinct innate-like Vgamma9+ and adaptive Vgamma9- subsets. Nat. Commun. 9, 1760 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Mikulak, J. et al. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight 4, e125884 (2019).

    PubMed Central  Google Scholar 

  147. Silva-Santos, B., Mensurado, S. & Coffelt, S. B. gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

    CAS  PubMed  Google Scholar 

  148. Sebestyen, Z., Prinz, I., Dechanet-Merville, J., Silva-Santos, B. & Kuball, J. Translating gammadelta (gammadelta) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2020).

    CAS  PubMed  Google Scholar 

  149. Seder, R. A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).

    CAS  PubMed  Google Scholar 

  150. Zaidi, I. et al. gammadelta T cells are required for the induction of sterile immunity during irradiated sporozoite vaccinations. J. Immunol. 199, 3781–3788 (2017).

    CAS  PubMed  Google Scholar 

  151. Reuling, I. J. et al. An open-label phase 1/2a trial of a genetically modified rodent malaria parasite for immunization against Plasmodium falciparum malaria. Sci. Transl Med. 12, eaay2578 (2020).

    CAS  PubMed  Google Scholar 

  152. Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).

    CAS  PubMed  Google Scholar 

  153. Komori, H. K. et al. Cutting edge: dendritic epidermal gammadelta T cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding. J. Immunol. 188, 2972–2976 (2012).

    CAS  PubMed  Google Scholar 

  154. Bandeira, A. et al. Localization of gamma/delta T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

    CAS  PubMed  Google Scholar 

  155. Li, F. et al. The microbiota maintain homeostasis of liver-resident gammadeltaT-17 cells in a lipid antigen/CD1d-dependent manner. Nat. Commun. 7, 13839 (2017).

    PubMed  Google Scholar 

  156. Heilig, J. S. & Tonegawa, S. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322, 836–840 (1986).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to the loving memory of the authors’ colleague and γδ T cell pioneer, W. Havran (1955–2020). The authors thank A. Hayday for inspiring discussions on these topics. Their work is supported by La Caixa Banking Foundation (project HR18-00069). J.C.R received a junior investigator contract from Fundação para a Ciência e Tecnologia (IF/00013/2014) and N.L. received an EMBO long-term fellowship (ALTF 752-2018).

Author information

Authors and Affiliations

Authors

Contributions

J.C.R., N.L. and B.S.-S. conceived and wrote the article.

Corresponding authors

Correspondence to Julie C. Ribot or Bruno Silva-Santos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks P. Vantourout, T. Zal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dendritic epidermal T cells

(DETCs). A common designation for the monoclonal Vγ5+ γδ T cell subset that resides in the murine epidermis and contributes to environmental sensing, wound healing and antitumour immunity.

Adaptate

A term initially proposed by Adrian Hayday to describe the blend of innate and adaptive immune features show by γδ T cells.

Ketogenic diet

A low-carbohydrate, high-fat diet that induces a metabolic state called ‘ketosis’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribot, J.C., Lopes, N. & Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat Rev Immunol 21, 221–232 (2021). https://doi.org/10.1038/s41577-020-00452-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-00452-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing