Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic models of human and mouse dendritic cell development and function

Abstract

Dendritic cells (DCs) develop in the bone marrow from haematopoietic progenitors that have numerous shared characteristics between mice and humans. Human counterparts of mouse DC progenitors have been identified by their shared transcriptional signatures and developmental potential. New findings continue to revise models of DC ontogeny but it is well accepted that DCs can be divided into two main functional groups. Classical DCs include type 1 and type 2 subsets, which can detect different pathogens, produce specific cytokines and present antigens to polarize mainly naive CD8+ or CD4+ T cells, respectively. By contrast, the function of plasmacytoid DCs is largely innate and restricted to the detection of viral infections and the production of type I interferon. Here, we discuss genetic models of mouse DC development and function that have aided in correlating ontogeny with function, as well as how these findings can be translated to human DCs and their progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic models of mouse dendritic cell development and lineage restriction.
Fig. 2: Stage-specific enhancer activation regulates Irf8-dependent specification of dendritic cell and monocyte progenitors.
Fig. 3: Specialized functions of mouse classical dendritic cell subsets.

Similar content being viewed by others

References

  1. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vu Manh, T. P., Bertho, N., Hosmalin, A., Schwartz-Cornil, I. & Dalod, M. Investigating evolutionary conservation of dendritic cell subset identity and functions. Front. Immunol. 6, 260 (2015).

    Google Scholar 

  3. Reizis, B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50, 37–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dress, R. J. et al. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 20, 852–864 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Grajales-Reyes, G. E. et al. Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor. Nat. Immunol. 16, 708–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodrigues, P. F. et al. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19, 711–722 (2018). Together with Dress et al. (2019), this study defines mouse pre-pDCs as a progenitor population within the lymphoid compartment on the basis of IL-7Rα and Ly6D expression.

    Article  CAS  PubMed  Google Scholar 

  8. Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015). Together with Grajales-Reyes et al. (2015), this study defines mouse pre-cDC1s and pre-cDC2s as bone marrow progenitors found within the previously defined, but heterogeneous, pre-cDC population.

    Article  CAS  PubMed  Google Scholar 

  9. Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. Lee, J. et al. Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. Nat. Immunol. 18, 877–888 (2017). This work suggests that DC specification occurs as early as HSCs through an unknown mechanism of lineage priming that correlates with IRF8 expression levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Naik, S. H., Schumacher, T. N. & Perie, L. Cellular barcoding: a technical appraisal. Exp. Hematol. 42, 598–608 (2014).

    Article  PubMed  Google Scholar 

  14. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kurotaki, D. et al. Epigenetic control of early dendritic cell lineage specification by the transcription factor IRF8 in mice. Blood 133, 1803–1813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goode, D. K. et al. Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev. Cell 36, 572–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rothenberg, E. V. Transcriptional control of early T and B cell developmental choices. Annu. Rev. Immunol. 32, 283–321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367, eaaw3381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000). This work provides the first description of the mouse CMP as the precursor of all myeloid populations.

    Article  CAS  PubMed  Google Scholar 

  20. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997). This work provides the first description of the mouse CLP as the precursor of all lymphoid populations.

    Article  CAS  PubMed  Google Scholar 

  21. Iwasaki, H. & Akashi, K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26, 726–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C. & Maki, R. A. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61, 113–124 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Hoppe, P. S. et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 535, 299–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Kueh, H. Y., Champhekar, A., Nutt, S. L., Elowitz, M. B. & Rothenberg, E. V. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341, 670–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006). This work defines the mouse MDP as a bone marrow progenitor with monocyte, macrophage and DC potential.

    Article  CAS  PubMed  Google Scholar 

  29. Hettinger, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 14, 821–830 (2013). This work defines the mouse cMoP as a bone marrow-resident clonogenic progenitor of mouse monocytes.

    Article  CAS  PubMed  Google Scholar 

  30. Sathe, P. et al. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage–dendritic cell-restricted progenitor. Immunity 41, 104–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525 (2019). This work describes populations that are derived from the GMP in mice on the basis of lineage tracing driven by Ms4a3 expression.

    Article  CAS  PubMed  Google Scholar 

  32. Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yanez, A. et al. Granulocyte–monocyte progenitors and monocyte–dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47, 890–902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, X. et al. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J. Exp. Med. 213, 2553–2565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Satpathy, A. T. et al. Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood 123, 2968–2977 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Becker, A. M. et al. IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 119, 2003–2012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurotaki, D. et al. IRF8 inhibits C/EBPα activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nat. Commun. 5, 4978 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Kurotaki, D. et al. Transcription factor IRF8 governs enhancer landscape dynamics in mononuclear phagocyte progenitors. Cell Rep. 22, 2628–2641 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Onai, N. et al. Identification of clonogenic common Flt3+ M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007). This work describes the CDP as a population giving rise to pDCs, cDC1s and cDC2s in vivo.

    Article  CAS  PubMed  Google Scholar 

  42. Sichien, D. et al. IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively. Immunity 45, 626–640 (2016). This work defines the role of IRF8 in the function and development of terminally differentiated populations of DCs and shows that pDC development is not dependent on IRF8, as was suggested by earlier studies.

    Article  CAS  PubMed  Google Scholar 

  43. Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Schraml, B. U. et al. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154, 843–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cabeza-Cabrerizo, M. et al. Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci. Immunol. 4, eaaw1941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4, 380–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008). This work reports the first genetic model in mice that specifically ablates cDC1 development in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kashiwada, M., Pham, N. L., Pewe, L. L., Harty, J. T. & Rothman, P. B. NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood 117, 6193–6197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seillet, C. et al. CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood 121, 1574–1583 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Theisen, D. J. et al. Batf3-dependent genes control tumor rejection induced by dendritic cells independently of cross-presentation. Cancer Immunol. Res. 7, 29–39 (2019).

    CAS  PubMed  Google Scholar 

  53. Durai, V. et al. Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat. Immunol. 20, 1161–1173 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bagadia, P. et al. An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nat. Immunol. 20, 1174–1185 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scott, C. L. et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J. Exp. Med. 213, 897–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, X. et al. Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proc. Natl Acad. Sci. USA 113, 14775–14780 (2016). Together with Scott et al. (2016), this work demonstrates a role for ZEB2 in mouse pDC development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cisse, B. et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development 1. Cell 135, 37–48 (2008). This work reports the dependence of pDC development on the transcription factor TCF4 in mice and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grajkowska, L. T. et al. Isoform-specific expression and feedback regulation of E protein TCF4 control dendritic cell lineage specification. Immunity 46, 65–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Sun, X. H., Copeland, N. G., Jenkins, N. A. & Baltimore, D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix–loop–helix proteins. Mol. Cell Biol. 11, 5603–5611 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dickinson, R. E. et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118, 2656–2658 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Cytlak, U. et al. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nat. Commun. 9, 1239 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bigley, V., Cytlak, U. & Collin, M. Human dendritic cell immunodeficiencies. Semin. Cell Dev. Biol. 86, 50–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Bigley, V. et al. Biallelic interferon regulatory factor 8 mutation: a complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. J. Allergy Clin. Immunol. 141, 2234–2248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salem, S. et al. Functional characterization of the human dendritic cell immunodeficiency associated with the IRF8(K108E) mutation. Blood 124, 1894–1904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. 11, 585–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Chicha, L., Jarrossay, D. & Manz, M. G. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations. J. Exp. Med. 200, 1519–1524 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Galy, A., Travis, M., Cen, D. & Chen, B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Ishikawa, F. et al. The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. Blood 110, 3591–3660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Helft, J. et al. Dendritic cell lineage potential in human early hematopoietic progenitors. Cell Rep. 20, 529–537 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, J. et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J. Exp. Med. 212, 385–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawamura, S. et al. Identification of a human clonogenic progenitor with strict monocyte differentiation potential: a counterpart of mouse cMoPs. Immunity 46, 835–848 (2017). This work identifies a human counterpart to the mouse cMoP.

    Article  CAS  PubMed  Google Scholar 

  74. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu, Y. P. et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24, 2329–2341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Breton, G. et al. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 212, 401–413 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, J. et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J. Immunol. Methods 425, 21–26 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ghosh, H. S., Cisse, B., Bunin, A., Lewis, K. L. & Reizis, B. Continuous expression of the transcription factor E2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33, 905–916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, X. et al. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE 8, e64800 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Inaba, K., Young, J. W. & Steinman, R. M. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J. Exp. Med. 166, 182–194 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Kronin, V. et al. A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production. J. Immunol. 157, 3819–3827 (1996).

    CAS  PubMed  Google Scholar 

  82. Bevan, M. J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143, 1283–1288 (1976).

    Article  CAS  PubMed  Google Scholar 

  83. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    Article  Google Scholar 

  84. Pooley, J. L., Heath, W. R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166, 5327–5330 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Atif, S. M. et al. Cutting edge: roles for Batf3-dependent APCs in the rejection of minor histocompatibility antigen-mismatched grafts. J. Immunol. 195, 46–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Bachem, A. et al. Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front. Immunol. 3, 214 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Martinez-Lopez, M., Iborra, S., Conde-Garrosa, R. & Sancho, D. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local TH1 immunity against Leishmania major infection in mice. Eur. J. Immunol. 45, 119–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Sanchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Becker, M. et al. Ontogenic, phenotypic, and functional characterization of XCR1+ dendritic cells leads to a consistent classification of intestinal dendritic cells based on the expression of XCR1 and SIRPα. Front. Immunol. 5, 326 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumour antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tussiwand, R. et al. Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature 490, 502–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schonheit, J. et al. PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment. Cell Rep. 3, 1617–1628 (2013).

    Article  PubMed  CAS  Google Scholar 

  94. Mashayekhi, M. et al. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011). This work uses the model of Batf3 deficiency to confirm early reports of cDC1s as a source of IL-12 during innate immune responses in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Askenase, M. H. et al. Bone-marrow-resident NK cells prime monocytes for regulatory function during infection. Immunity 42, 1130–1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diebold, S. S. et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Mattiuz, R. et al. Novel Cre-expressing mouse strains permitting to selectively track and edit type 1 conventional dendritic cells facilitate disentangling their complexity in vivo. Front. Immunol. 9, 2805 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ohta, T. et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1–XCL1 chemokine axis in intestinal immune homeostasis. Sci. Rep. 6, 23505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crozat, K. et al. Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. J. Immunol. 187, 4411–4415 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Dorner, B. G. et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Janela, B. et al. A subset of type I conventional dendritic cells controls cutaneous bacterial infections through VEGFα-mediated recruitment of neutrophils. Immunity 50, 1069–1083 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. del Fresno, C. et al. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science 362, 351–356 (2018).

    Article  PubMed  CAS  Google Scholar 

  105. Brewitz, A. et al. CD8+ T cells orchestrate pDC–XCR1+ dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46, 205–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lahoud, M. H. et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc. Natl Acad. Sci. USA 109, 16270–16275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bozzacco, L. et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl Acad. Sci. USA 104, 1289–1294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Caminschi, I. et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, J. et al. Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur. J. Immunol. 45, 854–864 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Tullett, K. M. et al. Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+ T cell recognition. JCI Insight 1, e87102 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fossum, E. et al. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus. Eur. J. Immunol. 45, 624–635 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Hartung, E. et al. Induction of potent CD8 T cell cytotoxicity by specific targeting of antigen to cross-presenting dendritic cells in vivo via murine or human XCR1. J. Immunol. 194, 1069–1079 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014). This work shows that cDC1s are required for therapeutic effects of checkpoint blockade and antigen-specific tumour rejection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aznar, M. A. et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J. Immunother. Cancer 7, 116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wculek, S. K. et al. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J. Immunother. Cancer 7, 100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang, H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Breton, G., Lee, J., Liu, K. & Nussenzweig, M. C. Defining human dendritic cell progenitors by multiparametric flow cytometry. Nat. Protoc. 10, 1407–1422 (2015). This work describes a protocol to isolate human DC progenitors from human bone marrow and cord blood samples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guermonprez, P. et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat. Med. 19, 730–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanchez-Paulete, A. R. et al. Intratumoral immunotherapy with XCL1 and sFlt3L encoded in recombinant Semliki Forest virus-derived vectors fosters dendritic cell-mediated T-cell cross-priming. Cancer Res. 78, 6643–6654 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Theisen, D. & Murphy, K. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Res 6, 98 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Theisen, D. J. et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362, 694–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kretzer, N. M. et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8α+ dendritic cells. J. Exp. Med. 213, 2871–2883 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cebrian, I. et al. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147, 1355–1368 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Alloatti, A. et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J. Exp. Med. 214, 2231–2241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu, S. J. et al. A critical analysis of the role of SNARE protein SEC22B in antigen cross-presentation. Cell Rep. 19, 2645–2656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016). This work provides a comprehensive analysis and description of all known human and mouse DC subsets so far defined.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. De Silva, N. S., Simonetti, G., Heise, N. & Klein, U. The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol. Rev. 247, 73–92 (2012).

    Article  PubMed  CAS  Google Scholar 

  132. Huber, M. & Lohoff, M. IRF4 at the crossroads of effector T-cell fate decision. Eur. J. Immunol. 44, 1886–1895 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Calabro, S. et al. Bridging channel dendritic cells induce immunity to transfused red blood cells. J. Exp. Med. 213, 887–896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kumamoto, Y. et al. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39, 733–743 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Linehan, J. L. et al. Generation of TH17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells. Proc. Natl Acad. Sci. USA 112, 12782–12787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Persson, E. K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958–969 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013). This work provides a genetic model to establish a role for cDC2 subsets in type III immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature 529, 221–225 (2016).

    Article  CAS  Google Scholar 

  143. Briseno, C. G. et al. Notch2-dependent DC2s mediate splenic germinal center responses. Proc. Natl Acad. Sci. USA 115, 10726–10731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tussiwand, R. et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42, 916–928 (2015). This work provides a genetic model to establish a role for cDC2 subsets in type II immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186, 65–70 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556–571 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Sousa, C. R. E. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Sasai, M., Linehan, M. M. & Iwasaki, A. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329, 1530–1534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cervantes-Barragan, L. et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc. Natl Acad. Sci. USA 109, 3012–3017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Swiecki, M., Gilfillan, S., Vermi, W., Wang, Y. & Colonna, M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8+ T cell accrual. Immunity 33, 955–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Swiecki, M., Wang, Y., Gilfillan, S. & Colonna, M. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog. 9, e1003728 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ah, K. et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 10, eaam8458 (2018).

    Article  CAS  Google Scholar 

  155. Davison, L. M. & Jorgensen, T. N. Sialic acid-binding immunoglobulin-type lectin H-positive plasmacytoid dendritic cells drive spontaneous lupus-like disease development in B6.Nba2 mice. Arthritis Rheumatol. 67, 1012–1022 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Rowland, S. L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211, 1977–1991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sisirak, V. et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211, 1969–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chopin, M. et al. RUNX2 mediates plasmacytoid dendritic cell egress from the bone marrow and controls viral immunity. Cell Rep. 15, 866–878 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Sawai, C. M. et al. Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells. J. Exp. Med. 210, 2151–2159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Villadangos, J. A. & Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Di Pucchio, T. et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat. Immunol. 9, 551–557 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Mouries, J. et al. Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood 112, 3713–3722 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Segura, E., Durand, M. & Amigorena, S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210, 1035–1047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mittag, D. et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J. Immunol. 186, 6207–6217 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Aspord, C., Leloup, C., Reche, S. & Plumas, J. pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur. J. Immunol. 44, 2880–2892 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Hoeffel, G. et al. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27, 481–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Lui, G. et al. Plasmacytoid dendritic cells capture and cross-present viral antigens from influenza-virus exposed cells. PLoS ONE 4, e7111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Perez, C. R. & De Palma, M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun. 10, 5408 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Alcantara-Hernandez, M. et al. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity 47, 1037–1050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, 283 (2017).

    Article  CAS  Google Scholar 

  174. See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, 1044 (2017).

    Article  CAS  Google Scholar 

  175. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Leylek, R. et al. Integrated cross-species analysis identifies a conserved transitional dendritic cell population. Cell Rep. 29, 3736–3750 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Breton, G. et al. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med. 213, 2861–2870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Carpentier, S. et al. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells. J. Immunol. Methods 432, 35–49 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Robbins, S. H. et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 9, R17 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Rosa, F. F. et al. Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Sci. Immunol. 3, eaau4292 (2018).

    Article  PubMed  Google Scholar 

  182. Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nizzoli, G. et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood 122, 932–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Kong, X. F. et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat. Immunol. 19, 973–985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Crozat, K. et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1283–1292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kroczek, R. A. & Henn, V. The role of XCR1 and its ligand XCL1 in antigen cross-presentation by murine and human dendritic cells. Front. Immunol. 3, 14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Meyer, M. A. et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat. Commun. 9, 1250 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Silvin, A. et al. Constitutive resistance to viral infection in human CD141+ dendritic cells. Sci. Immunol 2, eaai8071 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Dutertre, C. A. et al. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 51, 573–589 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Granot, T. et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46, 504–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Richter, L. et al. Transcriptional profiling reveals monocyte-related macrophages phenotypically resembling DC in human intestine. Mucosal Immunol. 11, 1512–1523 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Calzetti, F. et al. Human dendritic cell subset 4 (DC4) correlates to a subset of CD14dim/–CD16++ monocytes. J. Allergy Clin. Immunol. 141, 2276–2279 (2018).

    Article  PubMed  Google Scholar 

  195. Collin, M. & Bigley, V. Human dendritic cell subsets: an update. Immunology 154, 3–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Durand, M. et al. Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses. J. Exp. Med. 216, 1561–1581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Brown, C. C. et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179, 846–863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Caton, M. L., Smith-Raska, M. R. & Reizis, B. Notch–RBP-J signaling controls the homeostasis of CD8 dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Griffin, M. D. et al. Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 6800–6805 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Griffin, M. D., Dong, X. & Kumar, R. Vitamin D receptor-mediated suppression of RelB in antigen presenting cells: a paradigm for ligand-augmented negative transcriptional regulation. Arch. Biochem. Biophys. 460, 218–226 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hochweller, K., Striegler, J., Hammerling, G. J. & Garbi, N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur. J. Immunol. 38, 2776–2783 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002). This work provides a widely used model of Cre-mediated gene deletion driven by CD11C (also known as Itgax) expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Stranges, P. B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Piva, L. et al. Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J. Immunol. 189, 1128–1132 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Bennett, C. L. et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169, 569–576 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kaplan, D. H., Jenison, M. C., Saeland, S., Shlomchik, W. D. & Shlomchik, M. J. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Zahner, S. P. et al. Conditional deletion of TGF-βR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. J. Immunol. 187, 5069–5076 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Puttur, F. et al. Absence of Siglec-H in MCMV infection elevates interferon α production but does not enhance viral clearance. PLoS Pathog. 9, e1003648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Takagi, H. et al. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity. 35, 958–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Yamazaki, C. et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J. Immunol. 190, 6071–6082 (2013).

    Article  CAS  PubMed  Google Scholar 

  212. Alexandre, Y. O. et al. XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses. J. Exp. Med. 213, 75–92 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Muzaki, A. R. et al. Intestinal CD103+CD11b dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells. Mucosal Immunol. 9, 336–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schlenner, S. M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  217. Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Dai, X. M., Zong, X. H., Sylvestre, V. & Stanley, E. R. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood 103, 1114–1123 (2004).

    Article  CAS  PubMed  Google Scholar 

  219. Loschko, J. et al. Inducible targeting of cDCs and their subsets in vivo. J. Immunol. Methods 434, 32–38 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Loschko, J. et al. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. J. Exp. Med. 213, 517–534 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7, 773–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jackson, J. T. et al. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. EMBO J. 30, 2690–2704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rawlins, E. L., Clark, C. P., Xue, Y. & Hogan, B. L. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136, 3741–3745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Katz, J. P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628 (2002).

    Article  CAS  PubMed  Google Scholar 

  227. Higashi, Y. et al. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis 32, 82–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  228. Aliberti, J. et al. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101, 305–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  229. Schiavoni, G. et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells. J. Exp. Med. 196, 1415–1425 (2002). This work is an early report on the dependence of cDC1 development on IRF8, and the since-corrected observation that pDCs also require IRF8 for development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333–3341 (2001).

    Article  CAS  PubMed  Google Scholar 

  231. Sathe, P., Vremec, D., Wu, L., Corcoran, L. & Shortman, K. Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121, 11–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  232. D’Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt31. J. Exp. Med. 198, 293–303 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Wu, L. et al. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98, 3376–3382 (2001).

    Article  CAS  PubMed  Google Scholar 

  234. Onai, N. et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38, 943–957 (2013).

    Article  CAS  PubMed  Google Scholar 

  235. Shigematsu, H. et al. Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  236. Herman, J. S., Sagar & Grun, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379–386 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Inlay, M. A. et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 23, 2376–2381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Huang, J. et al. Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev. Cell 36, 9–23 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Okuno, Y. et al. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol. Cell Biol. 25, 2832–2845 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Steidl, U. et al. A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J. Clin. Invest. 117, 2611–2620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360, 258–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  242. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  243. Jakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differentiation and antigen-presenting functions. Nat. Rev. Immunol. 17, 349–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  245. Helft, J. et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42, 1197–1211 (2015). This work presents a contemporary analysis that reveals heterogeneity within GMDC populations.

    Article  CAS  PubMed  Google Scholar 

  246. Goudot, C. et al. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 47, 582–596 (2017). This work reveals a genetic requirement for Ahr in GMDC development.

    Article  CAS  PubMed  Google Scholar 

  247. Briseno, C. G. et al. Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep. 15, 2462–2474 (2016). This work reveals a genetic requirement for Irf4 but not Batf3 in GMDC development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Lutz, M. B., Inaba, K., Schuler, G. & Romani, N. Still alive and kicking: in-vitro-generated GM-CSF dendritic cells! Immunity 44, 1–2 (2016).

    Article  CAS  PubMed  Google Scholar 

  249. Lutz, M. B., Strobl, H., Schuler, G. & Romani, N. GM-CSF monocyte-derived cells and Langerhans cells as part of the dendritic cell family. Front. Immunol. 8, 1388 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Huang, M. N. et al. Antigen-loaded monocyte administration induces potent therapeutic antitumor T cell responses. J. Clin. Invest. 130, 774–788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kenneth M. Murphy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks S. Naik, C. Reis e Sousa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lineage tracing

A method to identify cells that are expressing or have expressed a gene of interest at any point during their development, which enables the study of progenitor–progeny relationships.

E protein

A member of a family of transcription factors, including TCF3 (also known as E2A), TCF4 (also known as E2-2) and TCF12 (also known as HEB), that are essential for the development of several haematopoietic lineages and that bind conserved DNA motifs known as E-boxes.

Checkpoint blockade

A type of immunotherapy that inhibits immune signalling cascades that are normally engaged to prevent autoimmunity and uncontrolled inflammation but that can also prevent effective immune responses to cancer, for example.

Type II immune responses

On recognition of parasites or activation by allergens, cytokines such as IL-4, IL-5, IL-13 and IL-10 are produced, and naive CD4+ T cells are polarized to T helper 2 cells.

Type III immune responses

On recognition of extracellular bacterial pathogens, cytokines such as IL-6, IL-17, IL-21, IL-22, IL-23 and transforming growth factor-β are produced, and naive T cells are polarized to T helper 17 cells.

Type I immune responses

On recognition of viral or intracellular bacterial pathogens, cytokines such as IL-2, IL-12 and interferon-γ are produced, and naive CD8+ and CD4+ T cells are polarized to cytotoxic T lymphocytes and T helper 1 cells, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, D.A., Dutertre, CA., Ginhoux, F. et al. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 21, 101–115 (2021). https://doi.org/10.1038/s41577-020-00413-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-00413-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing