Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organoids in immunological research

Abstract

Much of our knowledge regarding the interactions between epithelial tissues and the immune system has been gathered from animal models and co-cultures with cell lines. However, unique features of human cells cannot be modelled in mice, and cell lines are often transformed or genetically immortalized. Organoid technology has emerged as a powerful tool to maintain epithelial cells in a near-native state. In this Review, we discuss how organoids are being used in immunological research to understand the role of epithelial cell–immune cell interactions in tissue development and homeostasis, as well as in diseases such as cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune cells at the intestinal epithelial border.
Fig. 2: Organoid–immune cell co-culture systems in basic research for the study of interactions between immune cells and the epithelium.
Fig. 3: Organoid–immune cell co-culture systems in immuno-oncology research.

Similar content being viewed by others

References

  1. Ganusov, V. V. & De Boer, R. J. Do most lymphocytes in humans really reside in the gut? Trends Immunol. 28, 514–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi, T., Naik, S. & Nagao, K. Choreographing immunity in the skin epithelial barrier. Immunity 50, 552–565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McNamara, H. A. & Cockburn, I. A. The three Rs: recruitment, retention and residence of leukocytes in the liver. Clin. Transl Immunology 5, e123 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rankin, L. C. & Artis, D. Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173, 554–567 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). This article describes the first robust, adult stem cell-derived organoid system to be developed.

    Article  CAS  PubMed  Google Scholar 

  8. Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chacon-Martinez, C. A., Klose, M., Niemann, C., Glauche, I. & Wickstrom, S. A. Hair follicle stem cell cultures reveal self-organizing plasticity of stem cells and their progeny. EMBO J. 36, 151–164 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Boonekamp, K. E. et al. Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc. Natl Acad. Sci. USA 116, 14630–14638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019). In this study, the authors report a triple co-culture of human airway organoids with respiratory syncytial virus and neutrophils.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lugli, N. et al. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep. 17, 769–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mullenders, J. et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc. Natl Acad. Sci. USA 116, 4567–4574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kretzschmar, K. & Clevers, H. Organoids: modeling development and the stem cell niche in a dish. Dev. Cell 38, 590–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Takasato, M. et al. Kidney organoids from human IPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Lehle, A. S. et al. Intestinal inflammation and dysregulated immunity in patients with inherited caspase-8 deficiency. Gastroenterology 156, 275–278 (2019).

    Article  PubMed  Google Scholar 

  29. Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Co, J. Y. et al. Controlling epithelial polarity: a human enteroid model for host–pathogen interactions. Cell Rep. 26, 2509–2520.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sachs, N., Tsukamoto, Y., Kujala, P., Peters, P. J. & Clevers, H. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development 144, 1107–1112 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Moon, C., VanDussen, K. L., Miyoshi, H. & Stappenbeck, T. S. Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis. Mucosal Immunol. 7, 818–828 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. VanDussen, K. L. et al. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64, 911–920 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ettayebi, K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387–1393 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mebius, R. E., Streeter, P. R., Michie, S., Butcher, E. C. & Weissman, I. L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3 cells to colonize lymph nodes. Proc. Natl Acad. Sci. USA 93, 11019–11024 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hashi, H. et al. Compartmentalization of Peyer’s patch anlagen before lymphocyte entry. J. Immunol. 166, 3702–3709 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Baptista, A. P. et al. Colonic patch and colonic silt development are independent and differentially regulated events. Mucosal Immunol. 6, 511–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Fordham, R. P. et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13, 734–744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schreurs, R. et al. Human fetal TNF-α-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity 50, 462–476.e8 (2019). In this study, the authors model the interaction between T cells and inflamed intestine using organoids derived from patients with inflammatory bowel disease.

    Article  CAS  PubMed  Google Scholar 

  40. Rothenberg, E. V., Moore, J. E. & Yui, M. A. Launching the T-cell-lineage developmental programme. Nat. Rev. Immunol. 8, 9–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alexandropoulos, K. & Danzl, N. M. Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol. Res. 54, 177–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Pinto, S. et al. An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. J. Immunol. 190, 1085–1093 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Chung, B. et al. Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cell 32, 2386–2396 (2014).

    Article  Google Scholar 

  44. Fan, Y. et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol. Ther. 23, 1262–1277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tajima, A. et al. Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clin. Immunol. 160, 82–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Parent, A. V. et al. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13, 219–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Sun, X. et al. Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13, 230–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Bonfanti, P. et al. Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 466, 978–982 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Wong, K. et al. Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus. Cell Rep. 8, 1198–1209 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Luan, R., Liang, Z., Zhang, Q., Sun, L. & Zhao, Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 107, 42–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Dudakov, J. A. et al. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood 130, 933–942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wertheimer, T. et al. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci. Immunol. 3, eaal2736 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. van den Brink, M. R., Alpdogan, O. & Boyd, R. L. Strategies to enhance T-cell reconstitution in immunocompromised patients. Nat. Rev. Immunol. 4, 856–867 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. Hanash, A. M. et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Price, A. E. et al. A map of Toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity 49, 560–575.e6 (2018). This study shows that organoids derived from different anatomical locations along the gut retain patterns of TLR expression according to their location of origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Farin, H. F. et al. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-gamma. J. Exp. Med. 211, 1393–1405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagashima, K. et al. Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat. Immunol. 18, 675–682 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Powell, N., Walker, M. M. & Talley, N. J. The mucosal immune system: master regulator of bidirectional gut–brain communications. Nat. Rev. Gastroenterol. Hepatol. 14, 143–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22 (2018). Using single-cell transcriptomics, the authors here show that intestinal stem cells can function as non-classical antigen-presenting cells and that activated T cell-derived cytokines influence the differentiation of the intestinal epithelium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Lau, W. et al. Peyer’s patch M cells derived from Lgr5+ stem cells require SpiB and are induced by RankL in cultured ‘miniguts’. Mol. Cell Biol. 32, 3639–3647 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Lo, D. D. Vigilance or subversion? Constitutive and inducible M cells in mucosal tissues. Trends Immunol. 39, 185–195 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rios, D. et al. Antigen sampling by intestinal m cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 9, 907–916 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Kanaya, T. et al. The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat. Immunol. 13, 729–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rouch, J. D. et al. Development of functional microfold (M) cells from intestinal stem cells in primary human enteroids. PLOS ONE 11, e0148216 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Basak, O. et al. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20, 177–190.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Beumer, J. et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20, 909–916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Howitt, M. R. et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

    Article  CAS  Google Scholar 

  72. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanaya, T. et al. Development of intestinal M cells and follicle-associated epithelium is regulated by TRAF6-mediated NF-κB signaling. J. Exp. Med. 215, 501–519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kimura, S. et al. Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J. Exp. Med. 216, 831–846 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jinnohara, T. et al. IL-22BP dictates characteristics of Peyer’s patch follicle-associated epithelium for antigen uptake. J. Exp. Med. 214, 1607–1618 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Waddell, A., Vallance, J. E., Hummel, A., Alenghat, T. & Rosen, M. J. IL-33 induces murine intestinal goblet cell differentiation indirectly via innate lymphoid cell IL-13 secretion. J. Immunol. 202, 598–607 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Gerbe, F., Legraverend, C. & Jay, P. The intestinal epithelium tuft cells: specification and function. Cell Mol. Life Sci. 69, 2907–2917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nadjsombati, M. S. et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49, 33–41e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider, C. et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–284.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015). The authors describe a co-culture of ILC3s with intestinal organoids, showing that IL-22 is necessary for intestinal regeneration following injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jung, K. B. et al. Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids. Nat. Commun. 9, 3039 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Delespine-Carmagnat, M., Bouvier, G. & Bertoglio, J. Association of STAT1, STAT3 and STAT5 proteins with the IL-2 receptor involves different subdomains of the IL-2 receptor beta chain. Eur. J. Immunol. 30, 59–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, R. et al. Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control Clostridium difficile colitis. Life Sci. Alliance 2, e201900296 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lefrancois, L. & Puddington, L. Intestinal and pulmonary mucosal T cells: local heroes fight to maintain the status quo. Annu. Rev. Immunol. 24, 681–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl Acad. Sci. USA 109, 19739–19744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ariotti, S. et al. T cell memory: skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ Trm cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hofmann, M. & Pircher, H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl Acad. Sci. USA 108, 16741–16746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nozaki, K. et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J. Gastroenterol. 51, 206–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rogoz, A., Reis, B. S., Karssemeijer, R. A. & Mucida, D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J. Immunol. Methods 421, 89–95 (2015). These authors present a method for co-culturing intestinal organoids with intraepithelial lymphocytes and also show that the organoids promote the differentiation of naive T cells into an intraepithelial lymphocyte-like phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Sujino, T. et al. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352, 1581–1586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, gems): a prospective, case-control study. Lancet 382, 209–222 (2013).

    Article  PubMed  Google Scholar 

  99. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Persson, B. D., Jaffe, A. B., Fearns, R. & Danahay, H. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLOS ONE 9, e102368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen, Y. W. et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19, 542–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Heo, I. et al. Modelling cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 3, 814–823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barrila, J. et al. Modeling host–pathogen interactions in the context of the microenvironment: three-dimensional cell culture comes of age. Infect. Immun. 86, e00282–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lukovac, S. et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio 5, e01438–14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tan, J. K., McKenzie, C., Marino, E., Macia, L. & Mackay, C. R. Metabolite-sensing G protein-coupled receptors—facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Goverse, G. et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J. Immunol. 198, 2172–2181 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang, Y., Chen, Y., Jiang, H., Robbins, G. T. & Nie, D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 128, 847–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor Gpr43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Lukasova, M., Malaval, C., Gille, A., Kero, J. & Offermanns, S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor Gpr109a expressed by immune cells. J. Clin. Invest. 121, 1163–1173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic–epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315 (1984).

    Article  CAS  PubMed  Google Scholar 

  116. Holokai, L. et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection. PLOS Pathog. 15, e1007468 (2019). In this study, the authors establish a co-culture of CTLs with Helicobacter pylori-infected gastric organoids, which is one of only a few examples of a triple co-culture to be published as of yet.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Mor, S. M. et al. Expectoration of cryptosporidium parasites in sputum of human immunodeficiency virus-positive and -negative adults. Am. J. Trop. Med. Hyg. 98, 1086–1090 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chen, P. et al. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 360, 664–669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saavedra, P. H. V. et al. Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nat. Commun. 9, 4846 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).

    Article  PubMed  Google Scholar 

  121. Hunter, P. R. & Nichols, G. Epidemiology and clinical features of cryptosporidium infection in immunocompromised patients. Clin. Microbiol. Rev. 15, 145–154 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Checkley, W. et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect. Dis. 15, 85–94 (2015).

    Article  PubMed  Google Scholar 

  123. Driehuis, E. et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 9, 852–871 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aparicio-Domingo, P. et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J. Exp. Med. 212, 1783–1791 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113 (2018). This study shows that intestinal injury results in the appearance of fetal-like characteristics in the intestinal epithelium during recovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Matsumoto, N. et al. C3a enhances the formation of intestinal organoids through C3aR1. Front. Immunol. 8, 1046 (2017). The authors show using organoids that complement factors have a role in intestinal regeneration following injury.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Mastellos, D., Papadimitriou, J. C., Franchini, S., Tsonis, P. A. & Lambris, J. D. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J. Immunol. 166, 2479–2486 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Strey, C. W. et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J. Exp. Med. 198, 913–923 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Haynes, T. et al. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration. Nat. Commun. 4, 2312 (2013).

    Article  PubMed  CAS  Google Scholar 

  133. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Sachs, N. & Clevers, H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24, 68–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015). van de Wetering et al. provide the first description of a biobank of tumour organoids derived from patients with colorectal cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zumwalde, N. A. et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals Vδ2+ T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate. Cancer Prev. Res. 9, 305–316 (2016). This study describes a holistic-approach-based co-culture for the outgrowth of tumour-reactive γδ T cells.

    Article  CAS  Google Scholar 

  143. Finnberg, N. K. et al. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget 8, 66747–66757 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2018). The authors show that organotypic tumour cultures provide a platform for assessing the response to PD1 blockade.

    Article  CAS  PubMed  Google Scholar 

  145. Deng, J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8, 216–233 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chakrabarti, J. et al. Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 9, 37439–37457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chakrabarti, J. et al. Mouse-derived gastric organoid and immune cell co-culture for the study of the tumor microenvironment. Methods Mol. Biol. 1817, 157–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Keenan, T. E., Burke, K. P. & Van Allen, E. M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25, 389–402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yarchoan, M., Johnson, B. A. 3rd, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 569 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Efremova, M., Finotello, F., Rieder, D. & Trajanoski, Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front. Immunol. 8, 1679 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Lennerz, V. et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc. Natl Acad. Sci. USA 102, 16013–16018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358, 234–238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018). This study shows that tumour-derived organoids can be used as a platform to expand tumour-specific T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kong, J. C. H. et al. Tumor-infiltrating lymphocyte function predicts response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00075 (2018).

  163. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schnalzger, T. E. et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38, e100928 (2019). This report describes a method to assess CAR-mediated antigen-specific killing of colorectal cancer organoids.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  166. Gan, H. K., Cvrljevic, A. N. & Johns, T. G. The epidermal growth factor receptor variant III (EGFRviii): where wild things are altered. FEBS J. 280, 5350–5370 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Article  PubMed  CAS  Google Scholar 

  168. Koo, B. K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Gurney, A. et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl Acad. Sci. USA 109, 11717–11722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kretzschmar, K. & Clevers, H. Wnt/beta-catenin signaling in adult mammalian epithelial stem cells. Dev. Biol. 428, 273–282 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sommer, F. & Backhed, F. The gut microbiota - masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Berkers, G. et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 26, 1701–1708.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e310 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bernink, R. Millen and T. Mizutani for comments and advice on the manuscript. This work was supported by the gravitation program CancerGenomiCs.nl from the Netherlands Organisation for Scientific Research (NWO) and the European Research Council (Advanced Grant ERC-AdG 67013-Organoid, to H.C.), and by a VENI grant from the Netherlands Organisation for Scientific Research (Grant NWO-ZonMW, 016.166.140, to K.K.). This work is part of the Oncode Institute, which is partly funded by the Dutch Cancer Society. K.K. is a long-term fellow of the Human Frontier Science Program Organization (HFSPO, LT771/2015).

Author information

Authors and Affiliations

Authors

Contributions

Y.E.B.-E. and K.K. researched data for the article and wrote the manuscript. All authors contributed equally to discussion of the content and to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Hans Clevers.

Ethics declarations

Competing interests

The authors are inventors on patent applications and/or patents for organoid culture and organoid–immune cell co-cultures.

Additional information

Peer review information

Nature Reviews Immunology thanks N. C. Zachos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Feeder cell

A cell line generated from isolated neonatal murine fibroblasts that have been selected for supporting optimal growth of epidermal keratinocytes in 2D culture.

Pluripotent stem cells

(PSCs). Cells with the potential to generate all embryonic tissues, such as embryonic stem cells.

Induced pluripotent stem cells

(iPSCs). Pluripotent cells generated in culture by the (over)expression of defined genetic factors in non-pluripotent cells such as somatic cells.

Intestinal stem cells

(ISCs). Rapidly dividing, LGR5+ columnar crypt bottom cells from which all cells in the intestinal epithelium arise.

Necrotizing enterocolitis

A condition that typically occurs in newborns, in which a part of the intestine dies.

Positive selection

The process leading to the proliferation and survival of thymocytes that have successfully recombined the T cell receptor locus to express a functional T cell receptor on their cell surface.

Negative selection

The process leading to clonal deletion of thymocytes that express a T cell receptor that binds to self-peptide–MHC complexes presented in the thymic medulla.

Nude mice

Mice that are athymic (lacking a thymus) and therefore lack mature, functional T cells and are severely immune deficient.

Tuft cells

A subset of chemosensory cells in the intestinal and airway epithelium.

Enteroendocrine cells

A group of specialized hormone-producing intestinal epithelial cells.

Goblet cells

A subset of mucus-producing cells found in the intestinal and airway epithelium.

Group 2 innate lymphoid cells

(ILC2s). A subset of innate lymphocytes (that is, lymphocytes that do not express an antigen receptor) that produce type 2 cytokines (such as IL-5 and IL-13) upon stimulation.

Peripherally induced regulatory T cells

Regulatory T cells that differentiate from naive T cells in the periphery, as opposed to naturally occurring regulatory T cells that develop in the thymus.

Group 3 innate lymphoid cells

(ILC3s). A subset of innate lymphocytes (that is, lymphocytes that do not express an antigen receptor) that produce TH17 cell-associated cytokines (such as IL-17A and IL-22) upon stimulation.

Air–liquid interphase

A culture method in which cells are grown in a monolayer on a transwell, allowing for contact both with air and with a culture medium in the bottom well.

Graft-versus-host disease

A condition occurring upon allogeneic bone marrow transplantation in which graft-derived immune cells mount an immune response against the host tissues.

Patient-derived xenograft

A system in which pieces of patient-derived tumour material (including the entire tumour microenvironment — in other words, immune cells, endothelial cells and fibroblasts, as well as the tumour epithelium) are transplanted into immunocompromised mice, which allows for the study of tumour behaviour in an in vivo system.

Organotypic tumour spheroids

A culture system in which pieces of tumour (including the entire tumour microenvironment — in other words, immune cells, endothelial cells and fibroblasts, as well as the tumour epithelium) are brought into culture, which allows for the study of tumour characteristics in vitro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bar-Ephraim, Y.E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat Rev Immunol 20, 279–293 (2020). https://doi.org/10.1038/s41577-019-0248-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0248-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer