OPINION

Precursor exhausted T cells: key to successful immunotherapy?

Abstract

Cytotoxic T cell immunity in response to chronic infections and tumours is maintained by a specialized population of CD8+ T cells that exhibit hallmarks of both exhausted and memory cells and give rise to terminally differentiated exhausted effector cells that contribute to viral or tumour control. Importantly, recent work suggests these cells, which we refer to as ‘precursor exhausted’ T (TPEX) cells, are responsible for the proliferative burst that generates effector T cells in response to immune checkpoint blockade targeting programmed cell death 1 (PD1), and increased TPEX cell frequencies have recently been linked to increased patient survival. We believe the recent discovery of TPEX cells not only represents a paradigm shift in our understanding of the mechanisms that maintain CD8+ T cell responses in chronic infections and tumours but also opens up unexpected avenues for the development of new and innovative therapeutic approaches. In this Opinion article, we discuss the differentiation and function of TPEX cells and suggest that targeting these cells may be key for successful immunotherapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Transcriptional regulation of TPEX and TEX cells.
Fig. 2: TPEX cells maintain T cell responses in chronic infections and respond to checkpoint blockade.

References

  1. 1.

    McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

  2. 2.

    Kuchroo, V. K., Anderson, A. C. & Petrovas, C. Coinhibitory receptors and CD8 T cell exhaustion in chronic infections. Curr. Opin. HIV AIDS 9, 439–445 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Klebanoff, C. A., Gattinoni, L. & Restifo, N. P. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Speiser, D. E. et al. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat. Rev. Immunol. 14, 768–774 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science 342, 1432–1433 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    He, R. et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Wieland, D. et al. TCF1+ hepatitis C virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation. Nat. Commun. 8, 15050 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Utzschneider, D. T. et al. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. Cell Rep. 22, 3454–3467 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Snell, L. M. et al. CD8+ T cell priming in established chronic viral infection preferentially directs differentiation of memory-like cells for sustained immunity. Immunity 49, 678–694.e5 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Hofmann, M., Wieland, D., Pircher, H. & Thimme, R. Memory vs memory-like: the different facets of CD8+ T-cell memory in HCV infection. Immunol. Rev. 283, 232–237 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Yu, D. & Ye, L. A portrait of CXCR5+ follicular cytotoxic CD8+ T cells. Trends Immunol. 39, 965–979 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    Man, K. et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141.e5 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Philip, M. & Schietinger, A. Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections. Curr. Opin. Immunol. 58, 98–103 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Blackburn, S. D. et al. Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol. 84, 2078–2089 (2010).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Price, D. A. et al. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity 21, 793–803 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harb. Perspect. Med. 2, a007054 (2012).

  38. 38.

    Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Freel, S. A., Saunders, K. O. & Tomaras, G. D. CD8+ T-cell-mediated control of HIV-1 and SIV infection. Immunol. Res. 49, 135–146 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. 42.

    Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    Frebel, H. et al. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med. 209, 2485–2499 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Hasan Ali, O. et al. Characterization of nivolumab-associated skin reactions in patients with metastatic non-small cell lung cancer. Oncoimmunology 5, e1231292 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Zehn, D., Utzschneider, D. T. & Thimme, R. Immune-surveillance through exhausted effector T-cells. Curr. Opin. Virol. 16, 49–54 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Miller, N. E., Bonczyk, J. R., Nakayama, Y. & Suresh, M. Role of thymic output in regulating CD8 T-cell homeostasis during acute and chronic viral infection. J. Virol. 79, 9419–9429 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Wang, X. et al. TOX promotes the exhaustion of antitumor CD8+ T cells by preventing PD1 degradation in hepatocellular carcinoma. J. Hepatol. https://doi.org/10.1016/j.jhep.2019.05.015 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    CAS  Article  Google Scholar 

  52. 52.

    Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    CAS  Article  Google Scholar 

  53. 53.

    Delpoux, A. et al. Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8+ T cells. J. Exp. Med. 215, 575–594 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Martin, M. D. & Badovinac, V. P. Defining memory CD8 T cell. Front. Immunol. 9, 2692 (2018).

    Article  CAS  Google Scholar 

  55. 55.

    Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Lin, W. W. et al. CD8+ T lymphocyte self-renewal during effector cell determination. Cell Rep. 17, 1773–1782 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Delpoux, A., Lai, C. Y., Hedrick, S. M. & Doedens, A. L. FOXO1 opposition of CD8+ T cell effector programming confers early memory properties and phenotypic diversity. Proc. Natl Acad. Sci. USA 114, E8865–E8874 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    CAS  Article  Google Scholar 

  60. 60.

    Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  Article  Google Scholar 

  61. 61.

    Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science 302, 1041–1043 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Xin, A. et al. A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422–432 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Kao, C. et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat. Immunol. 12, 663–671 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Kallies, A. & Nutt, S. L. Terminal differentiation of lymphocytes depends on Blimp-1. Curr. Opin. Immunol. 19, 156–162 (2007).

    CAS  Article  Google Scholar 

  66. 66.

    Kallies, A., Xin, A., Belz, G. T. & Nutt, S. L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    CAS  Article  Google Scholar 

  67. 67.

    Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    CAS  Article  Google Scholar 

  68. 68.

    Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006).

    CAS  Article  Google Scholar 

  69. 69.

    Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    CAS  Article  Google Scholar 

  71. 71.

    Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 12, 1221–1229 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    Cannarile, M. A. et al. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat. Immunol. 7, 1317–1325 (2006).

    CAS  Article  Google Scholar 

  73. 73.

    Masson, F. et al. Id2-mediated inhibition of E2A represses memory CD8+ T cell differentiation. J. Immunol. 190, 4585–4594 (2013).

    CAS  Article  Google Scholar 

  74. 74.

    Menner, A. J. et al. Id3 controls cell death of 2B4+ virus-specific CD8+ T cells in chronic viral infection. J. Immunol. 195, 2103–2114 (2015).

    CAS  Article  Google Scholar 

  75. 75.

    Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Hedrick, S. M. Differentiation of CD8 memory T cells depends on Foxo1. J. Exp. Med. 210, 1189–1200 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  76. 76.

    Kim, M. V., Ouyang, W., Liao, W., Zhang, M. Q. & Li, M. O. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39, 286–297 (2013).

    CAS  Article  Google Scholar 

  77. 77.

    Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity 41, 802–814 (2014).

    CAS  Article  Google Scholar 

  78. 78.

    Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nat. Rev. Immunol. 12, 649–661 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    CAS  Article  Google Scholar 

  80. 80.

    Scott-Browne, J. P. et al. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. Immunity 45, 1327–1340 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Lu, P. et al. Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J. Exp. Med. 211, 515–527 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Oestreich, K. J., Yoon, H., Ahmed, R. & Boss, J. M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181, 4832–4839 (2008).

    CAS  Article  Google Scholar 

  83. 83.

    Agnellini, P. et al. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc. Natl Acad. Sci. USA 104, 4565–4570 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Heim, L. et al. NFATc1 Promotes antitumoral effector functions and memory CD8+ T-cell differentiation during non-small cell lung cancer development. Cancer Res. 78, 3619–3633 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    CAS  Article  Google Scholar 

  86. 86.

    Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

    CAS  Article  Google Scholar 

  87. 87.

    Klein-Hessling, S. et al. NFATc1 controls the cytotoxicity of CD8+ T cells. Nat. Commun. 8, 511 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    CAS  Article  Google Scholar 

  89. 89.

    Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    CAS  Article  Google Scholar 

  91. 91.

    Man, K. & Kallies, A. Synchronizing transcriptional control of T cell metabolism and function. Nat. Rev. Immunol. 15, 574–584 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    CAS  Article  Google Scholar 

  93. 93.

    Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    CAS  Article  Google Scholar 

  95. 95.

    Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    CAS  Article  Google Scholar 

  97. 97.

    Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  Article  Google Scholar 

  101. 101.

    Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

  103. 103.

    Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    CAS  Article  Google Scholar 

  106. 106.

    Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Ahn, E. et al. Demethylation of the PD-1 promoter is imprinted during the effector phase of CD8 T cell exhaustion. J. Virol. 90, 8934–8946 (2016).

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91–104 (2018).

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 107, 14733–14738 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    McMahan, R. H. et al. Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J. Clin. Invest. 120, 4546–4557 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Nebbia, G. et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLOS ONE 7, e47648 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Ngiow, S. F. et al. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res. 71, 3540–3551 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Borsa, M. et al. Modulation of asymmetric cell division as a mechanism to boost CD8+ T cell memory. Sci. Immunol. 4, eaav1730 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, (2017).

  119. 119.

    Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Shwetank et al. Maintenance of PD-1 on brain-resident memory CD8 T cells is antigen independent. Immunol. Cell Biol. 95, 953–959 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 8, 16073 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    CAS  Article  Google Scholar 

  123. 123.

    Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124.

    Smazynski, J. & Webb, J. R. Resident memory-like tumor-infiltrating lymphocytes (TILRM): latest players in the immuno-oncology repertoire. Front. Immunol. 9, 1741 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. 125.

    Park, S. L. et al. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).

    CAS  Article  Google Scholar 

  126. 126.

    Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Kallies and Zehn laboratories, in particular S. Gabriel, A. Vasanthakumar and P. Gubser for discussions. A.K. is a fellow of the Australian National Health and Medical Research Council. D.T.U. is a special fellow of The Leukemia and Lymphoma Society.

Reviewer information

Nature Reviews Immunology thanks N. Restifo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

D.T.U. and A.K. researched data and wrote the article, and D.Z. contributed to scientific discussion.

Corresponding authors

Correspondence to Axel Kallies or Daniel T. Utzschneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Nobel Prize in Physiology or Medicine 2018: https://www.nobelprize.org/prizes/medicine/2018/summary/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kallies, A., Zehn, D. & Utzschneider, D.T. Precursor exhausted T cells: key to successful immunotherapy?. Nat Rev Immunol 20, 128–136 (2020). https://doi.org/10.1038/s41577-019-0223-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing