Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DAMP-sensing receptors in sterile inflammation and inflammatory diseases

Abstract

The innate immune system has the capacity to detect ‘non-self’ molecules derived from pathogens, known as pathogen-associated molecular patterns, via pattern recognition receptors. In addition, an increasing number of endogenous host-derived molecules, termed damage-associated molecular patterns (DAMPs), have been found to be sensed by various innate immune receptors. The recognition of DAMPs, which are produced or released by damaged and dying cells, promotes sterile inflammation, which is important for tissue repair and regeneration, but can also lead to the development of numerous inflammatory diseases, such as metabolic disorders, neurodegenerative diseases, autoimmune diseases and cancer. Here we examine recent discoveries concerning the roles of DAMP-sensing receptors in sterile inflammation and in diseases resulting from dysregulated sterile inflammation, and then discuss insights into the cross-regulation of these receptors and their ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different types of cells involved in DAMP-sensing and sterile inflammation.
Fig. 2: DAMP sensing and signalling transduction cascades of PRRs.
Fig. 3: DAMP sensing and signal transduction cascades of multiple transmembrane receptors.
Fig. 4: Crosstalk between different DAMP-sensing receptors.

Similar content being viewed by others

References

  1. Burnet, F. M. S. The Clonal Selection Theory of Acquired Immunity (Vanderbilt University Press, 1959).

  2. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54(Pt 1), 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Land, W. Allograft injury mediated by reactive oxygen species: from conserved proteins of Drosophila to acute and chronic rejection of human transplants. Part III: interaction of (oxidative) stress-induced heat shock proteins with Toll-like receptor-bearing cells of innate immunity and its consequences for the development of acute and chronic allograft rejection. Transplant. Rev. 17, 67–86 (2003).

    Article  Google Scholar 

  6. Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Hudson, B. I. & Lippman, M. E. Targeting RAGE signaling in inflammatory disease. Annu. Rev. Med. 69, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Ford, J. W. & McVicar, D. W. TREM and TREM-like receptors in inflammation and disease. Curr. Opin. Immunol. 21, 38–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heng, B. C., Aubel, D. & Fussenegger, M. G protein-coupled receptors revisited: therapeutic applications inspired by synthetic biology. Annu. Rev. Pharmacol. Toxicol. 54, 227–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Weiss, E. & Kretschmer, D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 39, 815–829 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Eisenhut, M. & Wallace, H. Ion channels in inflammation. Pflug. Arch. 461, 401–421 (2011).

    Article  CAS  Google Scholar 

  12. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin, C. et al. Critical role of P2Y12 receptor in regulation of TH17 differentiation and experimental autoimmune encephalomyelitis pathogenesis. J. Immunol. 199, 72–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Roh, J. S. & Sohn, D. H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 18, e27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Li, T. & Chen, Z. J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yu, L., Wang, L. & Chen, S. Endogenous Toll-like receptor ligands and their biological significance. J. Cell Mol. Med. 14, 2592–2603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Erridge, C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J. Leukoc. Biol. 87, 989–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, H. et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J. Exp. Med. 212, 5–14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, K. M. & Seong, S. Y. Partial role of TLR4 as a receptor responding to damage-associated molecular pattern. Immunol. Lett. 125, 31–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, Q., Li, M., Fang, D., Fang, J. & Su, S. B. The essential roles of Toll-like receptor signaling pathways in sterile inflammatory diseases. Int. Immunopharmacol. 11, 1422–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bell, M. T. et al. Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia–reperfusion injury. Circulation 128, S152–S156 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, H. et al. HMGB1 contributes to kidney ischemia reperfusion injury. J. Am. Soc. Nephrol. 21, 1878–1890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsung, A. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia–reperfusion. J. Exp. Med. 201, 1135–1143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leemans, J. C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115, 2894–2903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bamboat, Z. M. et al. Toll-like receptor 9 inhibition confers protection from liver ischemia–reperfusion injury. Hepatology 51, 621–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Pope, M. R. & Fleming, S. D. TLR2 modulates antibodies required for intestinal ischemia/reperfusion-induced damage and inflammation. J. Immunol. 194, 1190–1198 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Viglianti, G. A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity 19, 837–847 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, X. & Peng, S. L. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum. 54, 336–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Bekeredjian-Ding, I. B. et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol. 174, 4043–4050 (2005).

    Article  PubMed  Google Scholar 

  38. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, B. et al. SNAPIN: an endogenous Toll-like receptor ligand in rheumatoid arthritis. Ann. Rheum. Dis. 71, 1411–1417 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Roelofs, M. F. et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol. 176, 7021–7027 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, S. J. et al. Identification of a novel Toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol. 68, 1099–1110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Patidar, A. et al. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine 104, 114–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Hardison, S. E. & Brown, G. D. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 13, 817–822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tullett, K. M. et al. Targeting CLEC9A delivers antigen to human CD141(+) DC for CD4(+) and CD8(+)T cell recognition. JCI Insight 1, e87102 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Haddad, Y. et al. The dendritic cell receptor DNGR-1 promotes the development of atherosclerosis in mice. Circ. Res. 121, 234–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Del Fresno, C. & Saz-Leal, P. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science 362, 351–356 (2018).

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki, Y. et al. Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke. Sci. Rep. 3, 3177 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. De Rivero Vaccari, J. C. et al. Mincle signaling in the innate immune response after traumatic brain injury. J. Neurotrauma 32, 228–236 (2015).

    Article  PubMed  Google Scholar 

  51. Nagata, M. et al. Intracellular metabolite beta-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc. Natl Acad. Sci. USA 114, E3285–e3294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chiba, S. et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 3, e04177 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gong, T., Jiang, W. & Zhou, R. Control of inflammasome activation by phosphorylation. Trends Biochem. Sci. 43, 685–699 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). Zhou et al. provide the first study to show the crucial role of mitochondria in NLRP3 inflammasome activation.

    Article  CAS  PubMed  Google Scholar 

  58. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71–76 (2018). This study suggests that Golgi dispersion acts as an upstream event to initiate NLRP3 inflammasome assembly.

    Article  CAS  PubMed  Google Scholar 

  60. Gong, T., Yang, Y., Jin, T., Jiang, W. & Zhou, R. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 39, 393–406 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Youm, Y. H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18, 519–532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kerur, N. et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24, 50–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Schuberth-Wagner, C. et al. A conserved histidine in the RNA Sensor RIG-I controls immune tolerance to N1-2’O-methylated self RNA. Immunity 43, 41–51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Devarkar, S. C. et al. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl Acad. Sci. USA 113, 596–601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boelens, M. C. et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nabet, B. Y. et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170, 352–366.e13 (2017). Boelens et al. and Nabet et al. demonstrate that endogenous 5′ppp RNA promotes breast cancer cells growth and therapy resistance via RIG-I signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015). Roulois et al. and Chiappinelli et al. suggest that endogenous retroviral RNA activates MDA5-signalling in tumour cells to reduce cancer cell proliferation and facilitate tumour immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Li, X. D. et al. Pivotal roles of cGAS–cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Komada, T. et al. Macrophage uptake of necrotic cell DNA activates The Aim2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol. 29, 1165–1181 (2018). This study shows that self-DNA released from necrotic cells activates the AIM2 inflammasome, contributing to chronic kidney injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pokatayev, V. et al. RNase H2 catalytic core Aicardi–Goutieres syndrome-related mutant invokes cGAS–STING innate immune-sensing pathway in mice. J. Exp. Med. 213, 329–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mackenzie, K. J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J. 35, 831–844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gao, D. et al. Activation of cyclic GMP–AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl Acad. Sci. USA 112, E5699–E5705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maelfait, J., Bridgeman, A., Benlahrech, A., Cursi, C. & Rehwinkel, J. Restriction by SAMHD1 limits cGAS/STING-dependent innate and adaptive immune responses to HIV-1. Cell Rep. 16, 1492–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hartlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015). Pokatayev et al., Mackenzie et al., Gao et al., Maelfait et al. and Hartlova et al. demonstrate that aberrant activation of the cGAS–STING pathway can lead to the development of autoimmune diseases in mouse models, such as AGS and AT.

    Article  PubMed  CAS  Google Scholar 

  81. Rodero, M. P., Tesser, A. & Bartok, E. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8, 2176 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu, M. M. et al. Dendritic cells but not macrophages sense tumor mitochondrial dna for cross-priming through signal regulatory protein alpha signaling. Immunity 47, 363–373.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, T. et al. Antitumor activity of cGAMP via stimulation of cGAS–cGAMP–STING–IRF3 mediated innate immune response. Sci. Rep. 6, 19049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunology 199, 397–402 (2017).

    Article  CAS  Google Scholar 

  90. Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. d’Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–e4620 (2017). Dou et al., Gluck et al. and Yang et al. demonstrate that cGAS is essential for cellular senescence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lian, Q. et al. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 27, 784–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feng, L. et al. Chronic vascular inflammation in patients with type 2 diabetes: endothelial biopsy and RT-PCR analysis. Diabetes Care 28, 379–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Tanaka, N. et al. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J. Biol. Chem. 275, 25781–25790 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, Y. et al. HMGB1 contributes to the expression of p-glycoprotein in mouse epileptic brain through toll-like receptor 4 and receptor for advanced glycation end products. PLOS ONE 10, e0140918 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wautier, J. L. et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J. Clin. Invest. 97, 238–243 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Manigrasso, M. B., Juranek, J., Ramasamy, R. & Schmidt, A. M. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol. Metab. 25, 15–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kraakman, M. J. et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J. Clin. Invest. 127, 2133–2147 (2017). Nagareddy et al. and Kraakman et al. demonstrate that S100A8/A9 bind to RAGE on common myeloid progenitor cells and Kupfer cells to facilitate myelopoiesis and thrombopoietin production, respectively, which promotes inflammatory cell recruitment and atherogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Roth, S. & Singh, V. Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Sci. Transl Med. 10, eaao1313 (2018).

    Article  PubMed  CAS  Google Scholar 

  105. Pickering, R. J. et al. Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis. J. Clin. Invest. 129, 406–421 (2019).

    Article  PubMed  Google Scholar 

  106. Kwak, T. et al. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis. Oncogene 36, 1559–1572 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Mendez, O. & Peg, V. Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer. Clin. Cancer Res. 24, 6367–6382 (2018).

    Article  PubMed  Google Scholar 

  108. Nasser, M. W. et al. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment. Cancer Res. 75, 974–985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, W. et al. Upregulation of PD-L1 via HMGB1-activated IRF3 and NF-κB contributes to UV radiation-induced immune suppression. Cancer Res. 79, 2909–2922 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. He, S. et al. HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis. 9, 648 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sinha, P. et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666–4675 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Wild, C. A. et al. HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. Int. Immunol. 24, 485–494 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, Z., Falo, L. D. Jr. & You, Z. Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity. J. Immunol. 187, 118–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Cheng, P. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235–2249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Deane, R. et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Takuma, K. et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc. Natl Acad. Sci. USA 106, 20021–20026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lue, L. F. et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Chuah, Y. K., Basir, R., Talib, H., Tie, T. H. & Nordin, N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int. J. Inflam. 2013, 403460 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tammaro, A. et al. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol. Ther. 177, 81–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Jay, T. R., von Saucken, V. E. & Landreth, G. E. TREM2 in neurodegenerative diseases. Mol. Neurodegener. 12, 56 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bouchon, A., Dietrich, J. & Colonna, M. Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Bouchon, A., Facchetti, F., Weigand, M. A. & Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Wu, J. et al. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res. 72, 3977–3986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. El Mezayen, R. et al. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol. Lett. 111, 36–44 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Read, C. B. et al. Identification of neutrophil PGLYRP1 as a ligand for TREM-1. J. Immunol. 194, 1417–1421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fu, L. et al. Identification of extracellular actin as a ligand for triggering receptor expressed on myeloid cells-1 signaling. Front. Immunol. 8, 917 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Nguyen-Lefebvre, A. T. et al. The innate immune receptor TREM-1 promotes liver injury and fibrosis. J. Clin. Invest. 128, 4870–4883 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ho, C. C. et al. TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am. J. Respir. Crit. Care Med. 177, 763–770 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Bailey, C. C., DeVaux, L. B. & Farzan, M. The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J. Biol. Chem. 290, 26033–26042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015). This study demonstrates that TREM2 acts as a lipid-sensing receptor to sustain microglial response to Aβ accumulation in a mouse model of AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Cannon, J. P., O’Driscoll, M. & Litman, G. W. Specific lipid recognition is a general feature of CD300 and TREM molecules. Immunogenetics 64, 39–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C. & Sheng, M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91, 328–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Yuan, P. et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90, 724–739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213, 667–675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Paloneva, J. et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J. Exp. Med. 198, 669–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cantoni, C. et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 129, 429–447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stefano, L. et al. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J. Neurochem. 110, 284–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Rayaprolu, S. et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol. Neurodegener. 8, 19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cady, J. et al. TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71, 449–453 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Idzko, M., Ferrari, D. & Eltzschig, H. K. Nucleotide signalling during inflammation. Nature 509, 310–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rossol, M. et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 3, 1329 (2012).

    Article  PubMed  CAS  Google Scholar 

  144. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marques, P. E. et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56, 1971–1982 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Dorward, D. A. et al. Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome. Thorax 72, 928–936 (2017).

    Article  PubMed  Google Scholar 

  147. Cardini, S. et al. Genetic ablation of the Fpr1 gene confers protection from smoking-induced lung emphysema in mice. Am. J. Respir. Cell Mol. Biol. 47, 332–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Su, S. B. et al. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med. 189, 395–402 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lee, H. Y., Oh, E., Kim, S. D., Seo, J. K. & Bae, Y. S. Oxidized low-density lipoprotein-induced foam cell formation is mediated by formyl peptide receptor 2. Biochem. Biophys. Res. Commun. 443, 1003–1007 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Eklund, K. K., Niemi, K. & Kovanen, P. T. Immune functions of serum amyloid A. Crit. Rev. Immunol. 32, 335–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Di Pietro, N., Formoso, G. & Pandolfi, A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vasc. Pharmacol. 84, 1–7 (2016).

    Article  CAS  Google Scholar 

  152. Greenspan, P., Yu, H., Mao, F. & Gutman, R. L. Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein. J. Lipid Res. 38, 101–109 (1997).

    CAS  PubMed  Google Scholar 

  153. Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314, 1792–1795 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009). Chen et al. and Elliott et al. show that ATP and UTP can promote the recruitment of macrophages and neutrophils through the activation of P2Y2 receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cekic, C. & Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16, 177–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Myrtek, D. & Idzko, M. Chemotactic activity of extracellular nucleotideson human immune cells. Purinergic Signal. 3, 5–11 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ferrari, D. et al. Activation of human eosinophils via P2 receptors: novel findings and future perspectives. J. Leukoc. Biol. 79, 7–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Stachon, P. et al. Extracellular ATP Induces vascular inflammation and atherosclerosis via purinergic receptor Y2 in Mice. Arterioscler. Thromb. Vasc. Biol. 36, 1577–1586 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Dorsam, R. T. & Kunapuli, S. P. Central role of the P2Y12 receptor in platelet activation. J. Clin. Invest. 113, 340–345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, D. et al. Roles of purinergic receptor P2Y, G protein-coupled 12 in the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb. Vasc. Biol. 32, e81–e89 (2012).

    CAS  PubMed  Google Scholar 

  161. Olszak, I. T. et al. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J. Clin. Invest. 105, 1299–1305 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee, G. S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Munoz-Planillo, R. et al. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Moran, M. M., McAlexander, M. A., Biro, T. & Szallasi, A. Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov. 10, 601–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L. & Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity 47, 15–31 (2017).

    Article  PubMed  CAS  Google Scholar 

  166. Brennan, T. V., Rendell, V. R. & Yang, Y. Innate immune activation by tissue injury and cell death in the setting of hematopoietic stem cell transplantation. Front. Immunol. 6, 101 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Knowles, H. et al. Transient receptor potential melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc. Natl Acad. Sci. USA 108, 11578–11583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yamamoto, S. et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med. 14, 738–747 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J. Neurosci. 32, 3931–3941 (2012). Yamamoto et al. and Haraguchi et al. demonstrate that TRPM2 controls ROS-induced Ca 2+ influx and the production of the chemokine CXCL2, both in vitro and in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhong, Z. et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun. 4, 1611 (2013).

    Article  PubMed  CAS  Google Scholar 

  171. Fernandes, E. S., Fernandes, M. A. & Keeble, J. E. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br. J. Pharmacol. 166, 510–521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hoffmeister, C. et al. Participation of the TRPV1 receptor in the development of acute gout attacks. Rheumatology 53, 240–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Moilanen, L. J., Hamalainen, M., Lehtimaki, L., Nieminen, R. M. & Moilanen, E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice-potential role for transient receptor potential ankyrin 1 in gout. PLOS ONE 10, e0117770 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Hiroi, T. et al. Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc. Res. 97, 271–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Gelderblom, M. et al. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke. Stroke 45, 3395–3402 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Caceres, A. I. et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl Acad. Sci. USA 106, 9099–9104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Savio, L. E. B., de Andrade Mello, P., da Silva, C. G. & Coutinho-Silva, R. The P2X7 receptor in inflammatory diseases: angel or demon? Front. Pharmacol. 9, 52 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Kurashima, Y. et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat. Commun. 3, 1034 (2012).

    Article  PubMed  CAS  Google Scholar 

  179. Shiratori, M., Tozaki-Saitoh, H., Yoshitake, M., Tsuda, M. & Inoue, K. P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J. Neurochem. 114, 810–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Karmakar, M., Katsnelson, M. A. & Dubyak, G. R. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1beta secretion in response to ATP. Nat. Commun. 7, 10555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Riteau, N. et al. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am. J. Respir. Crit. Care Med. 182, 774–783 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Vergani, A. et al. Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation 127, 463–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 10, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007). This study shows that HMGB1 can bind to endogenous DNA and augment DNA-induced TLR9 activation and cytokine release.

    Article  CAS  PubMed  Google Scholar 

  185. Babelova, A. et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J. Biol. Chem. 284, 24035–24048 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bertheloot, D. & Latz, E. HMGB1, IL-1alpha, IL-33 and S100 proteins: dual-function alarmins. Cell Mol. Immunol. 14, 43–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zarember, K. A. & Godowski, P. J. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J. Immunol. 168, 554–561 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Ma, F. et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol. 194, 1545–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Liu, Q. et al. Cytosolic sensors of viral RNA are involved in the production of interleukin-6 via toll-like receptor 3 signaling in human glomerular endothelial cells. Kidney Blood Press. Res. 44, 62–71 (2019).

    Article  PubMed  CAS  Google Scholar 

  191. Lotfi, R. et al. Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J. Immunol. 183, 5023–5031 (2009). This study shows that ROS can oxidize and inactivate HMGB1 in order to control inflammation.

    Article  CAS  PubMed  Google Scholar 

  192. Bamboat, Z. M. et al. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Invest. 120, 559–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kong, D., Shen, Y. & Liu, G. PKA regulatory IIalpha subunit is essential for PGD2-mediated resolution of inflammation. J. Exp. Med. 213, 2209–2226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, Y. et al. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity 46, 393–404 (2017). This study demonstrates that inflammasome activation inhibits cGAS signalling through the caspase-1-mediated cleavage of cGAS.

    Article  CAS  PubMed  Google Scholar 

  195. Trenk, D., Kristensen, S. D., Hochholzer, W. & Neumann, F. J. High on-treatment platelet reactivity and P2Y12 antagonists in clinical trials. Thromb. Haemost. 109, 834–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Bartlett, R., Stokes, L. & Sluyter, R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol. Rev. 66, 638–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Coll, R. C. et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol. 15, 556–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. He, H. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 9, 2550 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Huang, Y. et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol. Med. 10, e8689 (2018). Coll et al. (2015), Coll et al. (2019), He et al., Jiang et al. amd Huang et al. describe several compounds that target NLRP3 and show potent therapeutic effects for NLRP3-related diseases in mouse models.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Vincent, J. et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat. Commun. 8, 750 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018). This is the first study to show that STING-targeted small-molecule inhibitors attenuate pathological features of autoimmune disease in mice.

    Article  CAS  PubMed  Google Scholar 

  204. Land, W. G. The role of damage-associated molecular patterns in human diseases: part I — promoting inflammation and immunity. Sultan Qaboos Univ. Med. J. 15, e9–e21 (2015).

    PubMed  PubMed Central  Google Scholar 

  205. Land, W. G. Damage-Associated Molecular Patterns in Human Diseases: Volume 1. Injury-Induced Innate Immune Responses (Springer, 2018).

  206. Rubartelli, A. & Sitia, R. Stress as an intercellular signal: the emergence of stress-associated molecular patterns (SAMP). Antioxid. Redox Signal. 11, 2621–2629 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Shao, Y. et al. Lysophospholipids and their receptors serve as conditional DAMPs and DAMP receptors in tissue oxidative and inflammatory injury. Antioxid. Redox Signal. 28, 973–986 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Xiahou, Z. et al. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury. Nat. Commun. 8, 950 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Pradeu, T. & Cooper, E. L. The danger theory: 20 years later. Front. Immunol. 3, 287 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  213. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Riddell, J. R. et al. Peroxiredoxin 1 controls prostate cancer growth through Toll-like receptor 4-dependent regulation of tumor vasculature. Cancer Res. 71, 1637–1646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key research and development program of China (grant 2019YFA0508503), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB29030102), the National Natural Science Foundation of China (grants 31770991, 91742202, 81525013, 81722022, 81788101, 81821001) and the Young Talent Support Program and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and editing the review. T.G. and L.L. share first authorship.

Corresponding authors

Correspondence to Wei Jiang or Rongbin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks Michael Lotze and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pattern recognition receptors

(PRRs). A group of germ-line-encoded innate immune sensors that can initiate an innate immune response by detecting highly conserved molecules typical of pathogens. In addition to their well-established roles in pathogen recognition, several PRRs can also recognize endogenous ligands released by distressed or damaged cells and initiate sterile immune responses.

Ischaemia–reperfusion injury

(IRI). Tissue injury that occurs when blood flow returns to tissue after a period of ischaemia, which is accompanied by inflammatory cell infiltration, ROS production and cytokine release. It can occur in various organ systems, including the brain, heart and kidneys, leading to stroke, myocardial infarction and acute kidney injury, respectively.

β2-Glycoprotein I

An abundant plasma glycoprotein, also known as apolipoprotein H, that can bind to negatively charged molecules, including phospholipids, DNA and lipoproteins. It plays an important role in a variety of physiological processes, such as coagulation, apoptosis, lipid metabolism, angiogenesis and the production of antiphospholipid autoantibodies.

Pyroptosis

An inflammatory form of programmed cell death initiated by inflammasome assembly and caspase-1 or caspase-11 (in humans, caspase-1, caspase-4 or caspase-5) activation. The activated caspases cleave gasdermin D (GSDMD), generating an N-terminal GSDMD fragment that can form pores on lipid membranes and induce cell death directly.

Inflammasome

A cytosolic multiprotein complex consisting of a sensor molecule, the adaptor protein ASC and cysteine protease pro-caspase-1. To date, several pattern recognition receptors, including NLRP1, NLRP3, NLRP6, NLRC4, AIM2, IFI16 and pyrin, have been found to act as sensor molecules to trigger the assembly of inflammasomes in response to microbial infection or noninfectious agonists.

Alu-RNA

RNA transcripts that are transcribed from Alu elements, the most abundant repetitive elements in primate genomes. Alu-RNA can exist in two forms: free Alu-RNA is synthesized by RNA polymerase III, whereas embedded Alu-RNA is synthesized by RNA polymerase II and can be embedded in mRNAs. Both of these forms play an important role in the post-transcriptional regulation of gene expression. In addition, the level of free Alu-RNA can increase dramatically under cell stress conditions, which may be sensed by innate immune sensors.

Non-canonical NLRP3 inflammasome

In contrast to canonical inflammasome assembly, the NLRP3 inflammasome can also be activated through a non-canonical pathway that requires mouse caspase 11 (the human counterparts are caspase 4 and 5).

Aicardi–Goutières syndrome

(AGS). An inheritable neuroinflammatory disease that leads to microcephaly and intellectual disability with extraneurological vasculitic skin lesions. This condition is driven by chronic IFN signalling caused by mutations in genes involved in DNA degradation and metabolism or RNA editing and recognition.

Exosomes

Small extracellular vesicles (with a diameter between 30 nm and 100 nm) that are produced by various types of cells, such as mesenchymal stem cells, tumour cells and dendritic cells. Several endogenous molecules, including DNA, RNA, lipids and proteins, are sorted to exosomes and are delivered from donor cells to recipient cells, a process that plays a critical role in both healthy and diseased conditions.

5-AZA-2′deoxycytidine

A deoxycytidine analogue that can incorporate into DNA strands and inhibit DNA methyltransferase activity, resulting in global DNA demethylation. It can reactivate tumour suppressor genes silenced by aberrant DNA methylation and is used in the treatment of malignancies.

Ataxia telangiectasia

(AT). An autosomal recessive disease caused by mutations of ataxia telangiectasia mutated (ATM), a kinase that plays a central role in the DNA repair pathway. It affects several body systems, including the nervous system and the immune system, and leads to susceptibility to various types of cancer.

Senescence-associated secretory phenotype

(SASP). A characteristic feature of senescent cells, which refers to the secretion of inflammatory cytokines, chemokines, extracellular matrix proteins and growth factors. It not only serves as a marker of senescence but also participates in the senescence process.

Advanced glycation end products

(AGEs). A heterogeneous group of compounds, including proteins, lipids and nucleic acids, that are formed with reducing sugars via a non-enzymatic glycosylation reaction. AGEs play crucial roles in ageing and in the pathogenesis of various chronic and degenerative diseases, such as diabetes, chronic kidney disease, atherosclerosis and Alzheimer disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, T., Liu, L., Jiang, W. et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20, 95–112 (2020). https://doi.org/10.1038/s41577-019-0215-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0215-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing