Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Patrolling the vascular borders: platelets in immunity to infection and cancer

Abstract

Platelets are small anucleate cellular fragments that are released by megakaryocytes and safeguard vascular integrity through a process termed ‘haemostasis’. However, platelets have important roles beyond haemostasis as they contribute to the initiation and coordination of intravascular immune responses. They continuously monitor blood vessel integrity and tightly coordinate vascular trafficking and functions of multiple cell types. In this way platelets act as ‘patrolling officers of the vascular highway’ that help to establish effective immune responses to infections and cancer. Here we discuss the distinct biological features of platelets that allow them to shape immune responses to pathogens and tumour cells, highlighting the parallels between these responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disturbance of platelet homeostasis in cancer and infectious diseases.
Fig. 2: Platelet–endothelial cell interaction during infection and cancer.
Fig. 3: Platelet interaction with invasive pathogens and cancer cells.
Fig. 4: Platelets coordinate leukocyte trafficking across vessel walls and modulate leukocyte functions.

Similar content being viewed by others

References

  1. Zhang, X., Zhuchenko, O., Kuspa, A. & Soldati, T. Social amoebae trap and kill bacteria by casting DNA nets. Nat. Commun. 7, 10938 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Chen, G., Zhuchenko, O. & Kuspa, A. Immune-like phagocyte activity in the social amoeba. Science 317, 678–681 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Monahan-earley, R., Dvorak, A. M. & Aird, W. C. Evolutionary origins of the blood vascular system and endothelium. J. Thromb. Haemost. 11, 46–66 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Cines, B. D. B. et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders by. Blood 91, 3527–3561 (1998).

    PubMed  CAS  Google Scholar 

  5. Levin, J. The evolution of mammalian platelets. in Platelets 3rd edn (ed. Michelson, A. D.) 3–25 (Academic Press, 2013).

  6. Semple, J. W., Italiano, J. E. & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011). In this review, the authors comprehensively outline some of the key properties of platelets that enable them to contribute to immunity.

    PubMed  CAS  Google Scholar 

  7. Kapur, R., Zufferey, A., Boilard, E. & Semple, J. W. Nouvelle cuisine: platelets served with inflammation. J. Immunol. 194, 5579–5587 (2015).

    PubMed  CAS  Google Scholar 

  8. Nurden, A. T. The biology of the platelet with special reference to inflammation, wound healing and immunity. Front. Biosci. Landmark 23, 726–751 (2018).

    CAS  Google Scholar 

  9. Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V. & Sood, A. K. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell 33, 965–983 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Hotchkiss, R. S. & Moldawer, L. L. Parallels between cancer and infectious disease. N. Engl. J. Med. 371, 380–383 (2014).

    PubMed  Google Scholar 

  11. Jacqueline, C. et al. Infections and cancer: the ‘fifty shades of immunity’ hypothesis. BMC Cancer 17, 1–11 (2017).

    Google Scholar 

  12. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating suppression and promotion. Science 331, 1565–1570 (2011).

    PubMed  CAS  Google Scholar 

  13. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    PubMed  CAS  Google Scholar 

  14. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    PubMed  CAS  Google Scholar 

  15. Dvorak, H. F. Tumours: wounds that do not heal–redux. Cancer Immunol. Res. 3, 1–11 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Haas, S. et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17, 422–434 (2015).

    PubMed  CAS  Google Scholar 

  17. Lefrançais, E. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109 (2017). In this study, the authors provide evidence that the lungs are primary sites of terminal platelet production.

    PubMed  PubMed Central  Google Scholar 

  18. Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502, 232–236 (2013). In this study, the authors identify a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression with enhanced propensity for short-term and long-term reconstitution of platelets.

    PubMed  CAS  Google Scholar 

  19. Shin, J. Y., Hu, W., Naramura, M. & Park, C. Y. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J. Exp. Med. 211, 217–231 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Grinenko, T. et al. Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. J. Exp. Med. 211, 209–215 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Nakamura-Ishizu, A. et al. Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Rep. 25, 1772–1785.e6 (2018).

    PubMed  CAS  Google Scholar 

  22. Hill, R. J., Warren, M. K. & Levin, J. Stimulation of thrombopoiesis in mice by human recombinant interleukin 6. J. Clin. Invest. 85, 1242–1247 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Bailey, S. E. R., Ukoumunne, O. C., Shephard, E. & Hamilton, W. How useful is thrombocytosis in predicting an underlying cancer in primary care? A systematic review. Fam. Pract. 34, 4–10 (2017).

    PubMed  Google Scholar 

  24. Varki, A. Review in translational hematology Trousseau’ s syndrome: multiple definitions and multiple mechanisms. Blood 110, 1723–1729 (2010).

    Google Scholar 

  25. McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Nishimura, S. et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J. Cell Biol. 209, 453–466 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Machlus, K. R. et al. CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood 127, 921–926 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Massberg, S. et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994–1008 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang, L. et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J. Exp. Med. 209, 2165–2181 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Chang, H. Y. et al. Quantifying platelet margination in diabetic blood flow. Biophys. J. 115, 1371–1382 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Wong, C. H. Y., Jenne, C. N., Petri, B., Chrobok, N. L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14, 785–792 (2013). This study identifies a novel surveillance mechanism by which platelets survey macrophages that rapidly converts to a critical host response to blood-borne bacteria.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen, J. & López, J. A. Interactions of platelets with subendothelium and endothelium. Microcirculation 12, 235–246 (2005).

    PubMed  CAS  Google Scholar 

  34. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014). The authors demonstrate that neutrophils scan the inflamed vasculature for activated platelets and show that the neutrophils’ bipolarity allows the integration of signals from the endothelium and the circulation.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Weinbaum, S., Tarbell, J. M. & Damiano, E. R. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9, 121–167 (2007).

    PubMed  CAS  Google Scholar 

  36. Becker, B. F., Jacob, M., Leipert, S., Salmon, A. H. J. & Chappell, D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br. J. Clin. Pharmacol. 80, 389–402 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Andonegui, G. et al. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic gram-negative bacterial infection. J. Clin. Invest. 119, 1921–1930 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Zullo, J. A. et al. Exocytosis of endothelial lysosome-related organelles hair-triggers a patchy loss of glycocalyx at the onset of sepsis. Am. J. Pathol. 186, 248–258 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Kalagara, T. et al. The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood Adv. 2, 2347–2357 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).

    PubMed  CAS  Google Scholar 

  41. Wagner, D. D. & Frenette, P. S. The vessel wall and its interactions. Blood 111, 5271–5281 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Atkinson, B. T. et al. Laser-induced endothelial cell activation supports fibrin formation. Blood 116, 4675–4683 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    PubMed  CAS  Google Scholar 

  44. Denis, M. M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122, 379–391 (2005). In this study, the authors identify signal-dependent pre-mRNA splicing in anucleate platelets.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Lindemann, S. et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis. J. Cell Biol. 154, 485–490 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Hottz, E. D. et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 122, 3405–3414 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Weis, S. M. & Cheresh, D. A. Tumour angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17, 1359–1370 (2011).

    PubMed  CAS  Google Scholar 

  48. Kim, Y. J., Borsig, L., Varki, N. M. & Varki, A. P-selectin deficiency attenuates tumour growth and metastasis. Proc. Natl Acad. Sci. USA 95, 9325–9330 (1998).

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Qi, C. et al. P-selectin-mediated platelet adhesion promotes tumour growth. Oncotarget 6, 6584–6596 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Brooks, P., Clark, R. & Cheresh, D. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571 (1994).

    PubMed  CAS  Google Scholar 

  51. Sipkins, D. A. et al. Detection of tumour angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat. Med. 4, 623–626 (1998).

    PubMed  CAS  Google Scholar 

  52. Contrino, J., Hair, G., Kreutzer, D. L. & Rickles, F. R. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat. Med. 2, 209 (1996).

    PubMed  CAS  Google Scholar 

  53. Weis, S. M. & Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497–504 (2005).

    PubMed  CAS  Google Scholar 

  54. Kisucka, J. et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc. Natl Acad. Sci. USA 103, 855–860 (2006).

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Ho-Tin-Noé, B., Goerge, T. & Wagner, D. D. Platelets: guardians of tumour vasculature. Cancer Res. 69, 5623–5626 (2009). The authors provide a comprehensive review of activated platelets as crucial regulators of tumour vascular homeostasis preventing tumour haemorrhage.

    PubMed  Google Scholar 

  56. Italiano, J. E. et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood 111, 1227–1233 (2008). The authors demonstrate that separate packaging of angiogenesis regulators into pharmacologically and morphologically distinct populations of α-granules in megakaryocytes and platelets provides a mechanism by which platelets can locally stimulate or inhibit angiogenesis.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Kuznetsov, H. S. et al. Identification of luminal breast cancers that establish a tumour-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov. 2, 1150–1165 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Klement, G. et al. Platelets actively sequester angiogenesis regulators. Blood 113, 2835–2842 (2009). This study identifies the ability of platelets to selectively take up angiogenesis regulators in cancer-bearing hosts.

    PubMed  CAS  Google Scholar 

  59. Medzhitov, R. & Janeway Jr., C. A. Decoding the pattern of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    PubMed  CAS  Google Scholar 

  60. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  61. Aslam, R. et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumour necrosis factor-α production in vivo. Blood 107, 637–641 (2005).

    PubMed  Google Scholar 

  62. Shiraki, R. et al. Expression of Toll-like receptors on human platelets. Thromb. Res. 113, 379–385 (2004).

    PubMed  CAS  Google Scholar 

  63. Koupenova, M., Clancy, L., Corkrey, H. A. & Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 122, 337–351 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Yeaman, M. R. Platelets: at the nexus of antimicrobial defence. Nat. Rev. Microbiol. 12, 426–437 (2014). This review provides a comprehensive overview of the antimicrobial roles of platelets, which are mediated both directly and indirectly to integrate innate and adaptive immune responses to pathogens.

    PubMed  CAS  Google Scholar 

  65. Mebius, M. M. et al. Interference with the host haemostatic system by schistosomes. PLOS Pathog. 9, 1–8 (2013).

    Google Scholar 

  66. McMorran, B. J. et al. New insights into the protective power of platelets in malaria infection. Commun. Integr. Biol. 6, e23653 1–4 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Assinger, A. Platelets and infection - an emerging role of platelets in viral infection. Front. Immunol. 5, 10–12 (2014).

    Google Scholar 

  68. Boilard, E. et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 123, 2854–2863 (2014).

    PubMed  CAS  Google Scholar 

  69. Zapata, J. C., Cox, D. & Salvato, M. S. The role of platelets in the pathogenesis of viral hemorrhagic fevers. PLOS Negl. Trop. Dis. 8, e2858 1–12 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Zahn, A., Jennings, N., Ouwehand, W. H. & Allain, J. P. Hepatitis C virus interacts with human platelet glycoprotein VI. J. Gen. Virol. 87, 2243–2251 (2006).

    PubMed  CAS  Google Scholar 

  71. Gavrilovskaya, I. N., Gorbunova, E. E. & Mackow, E. R. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J. Virol. 84, 4832–4839 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Koupenova, M. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124, 791–802 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Auerbach, D. J. et al. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. Proc. Natl Acad. Sci. USA 109, 9569–9574 (2012).

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Von Hundelshausen, P. & Weber, C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res. 100, 27–40 (2007).

    Google Scholar 

  75. Cocchi, F. et al. Identification the major HIV-suppressive factors produced by. Science 270, 1811–1815 (1995).

    PubMed  CAS  Google Scholar 

  76. Kraemer, B. F. et al. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLOS Pathog. 7, e1002355 1–9 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Wilson, S. S., Wiens, M. E. & Smith, J. G. Antiviral mechanisms of human defensins. J. Mol. Biol. 425, 4965–4980 (2013).

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Shannon, O. Platelet interaction with bacterial toxins and secreted products. Platelets 26, 302–308 (2015).

    PubMed  CAS  Google Scholar 

  79. Waller, A. K. et al. Staphylococcus aureus lipoteichoic acid inhibits platelet activation and thrombus formation via the Paf receptor. J. Infect. Dis. 208, 2046–2057 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. White, J. G. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets 16, 121–131 (2005).

    PubMed  CAS  Google Scholar 

  81. Gaertner, F. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 171, 1368–1382 (2017). This study shows that platelets use their ability to migrate to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria.

    PubMed  CAS  Google Scholar 

  82. Ali, R. A., Wuescher, L. M., Dona, K. R. & Worth, R. G. Platelets mediate host defence against Staphylococcus aureus through direct bactericidal activity and by enhancing macrophage activities. J. Immunol. 198, 344–351 (2017).

    PubMed  CAS  Google Scholar 

  83. Fitzgerald, J. R., Foster, T. J. & Cox, D. The interaction of bacterial pathogens with platelets. Nat. Rev. Microbiol. 4, 445–457 (2006).

    PubMed  CAS  Google Scholar 

  84. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).

    PubMed  CAS  Google Scholar 

  85. Shannon, O., Uekötter, A. & Flock, J.-I. Extracellular fibrinogen binding protein, Efb, from Staphylococcus aureus as an antiplatelet agent in vivo. Thromb. Haemost. 93, 927–931 (2005).

    PubMed  CAS  Google Scholar 

  86. Veloso, T. R. et al. Prophylaxis of experimental endocarditis with antiplatelet and antithrombin agents: a role for long-term prevention of infective endocarditis in humans? J. Infect. Dis. 211, 72–79 (2015).

    PubMed  CAS  Google Scholar 

  87. Sexton, T. R. et al. Ticagrelor reduces thromboinflammatory markers in patients with pneumonia. JACC Basic to Transl. Sci. 3, 435–449 (2018). In this study, the authors show that patients with pneumonia receiving ticagrelor required less supplemental oxygen and lung function test results trended towards improvement.

    Google Scholar 

  88. McDonald, B., Urrutia, R., Yipp, B. G., Jenne, C. N. & Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324–333 (2012).

    PubMed  CAS  Google Scholar 

  89. McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Clemetson, K. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood 96, 4046–4054 (2000).

    PubMed  CAS  Google Scholar 

  91. Sauter, R. J. et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis. Circulation 138, 1720–1735 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Subramaniam, S. et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 129, 2291–2302 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Sarris, M. & Sixt, M. Navigating in tissue mazes: chemoattractant interpretation in complex environments. Curr. Opin. Cell Biol. 36, 93–102 (2015).

    PubMed  CAS  Google Scholar 

  94. Lowenhaupt, R. W., Miller, M. A. & Glueck, H. I. Platelet migration and chemotaxis demonstrated in vitro. Thromb. Res. 3, 477–487 (1973).

    Google Scholar 

  95. Kraemer, B. F. et al. PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). J. Mol. Med. 88, 1277–1288 (2010).

    PubMed  CAS  Google Scholar 

  96. Pitchford, S. C. et al. Allergen induces the migration of platelets to lung tissue in allergic asthma. Am. J. Respir. Crit. Care Med. 177, 604–612 (2008).

    PubMed  CAS  Google Scholar 

  97. Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F. & Dvorak, A. M. Platelets exit venules by a transcellular pathway at sites of F–Met peptide–induced acute inflammation in guinea pigs. Int. Arch. Allergy Immunol. 116, 188–195 (1998).

    PubMed  CAS  Google Scholar 

  98. Czapiga, M., Gao, J.-L., Kirk, A. & Lekstrom-Himes, J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp. Hematol. 33, 73–84 (2005).

    PubMed  CAS  Google Scholar 

  99. Cho, M. S. et al. Role of ADP receptors on platelets in the growth of ovarian cancer. Blood 130, 1235–1242 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Cho, M. S. et al. Platelets increase the proliferation of ovarian cancer cells. Blood 120, 4869–4872 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Wong, S. Y. & Hynes, R. O. Lymphatic or hematogenous dissemination: how does a metastatic tumour cell decide? Cell Cycle 5, 812–817 (2006).

    PubMed  CAS  Google Scholar 

  102. Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumour cell dissemination in mice. Science 359, 1408–1411 (2018).

    PubMed  CAS  Google Scholar 

  103. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    PubMed  CAS  Google Scholar 

  104. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  105. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    PubMed  CAS  Google Scholar 

  106. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumour cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    PubMed  CAS  Google Scholar 

  107. Li, R. et al. Presence of intratumoural platelets is associated with tumour vessel structure and metastasis. BMC Cancer 14, 1–10 (2014).

    Google Scholar 

  108. Haemmerle, M. et al. FAK regulates platelet extravasation and tumour growth after antiangiogenic therapy withdrawal. J Clin Invest 126, 1885–1896 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Varon, D. & Shai, E. Role of platelet-derived microparticles in angiogenesis and tumour progression. Discov. Med. 8, 237–241 (2009).

    PubMed  Google Scholar 

  110. Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Boucharaba, A. et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest. 114, 1714–1725 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Patrignani, P. & Patrono, C. Aspirin and cancer. J. Am. Coll. Cardiol. 68, 967–976 (2016).

    PubMed  CAS  Google Scholar 

  113. Michael, J. V. et al. Platelet microparticles infiltrating solid tumours transfer miRNAs that suppress tumour growth. Blood 130, 567–580 (2017). The authors show platelet-derived microparticles may shuttle platelet-derived microRNA to tumour cells in solid tumours, regulating tumour cell gene expression and modulating tumour progression.

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Reymond, N., D’Água, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

    PubMed  CAS  Google Scholar 

  115. Thomas, G. M. et al. Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J. Thromb. Haemost. 13, 1310–1319 (2015). The authors demonstrate in mice that tissue factor expressed on tumour microparticles contributes to the increased incidence of cancer-associated venous thrombosis.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Hisada, Y. & Mackman, N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 130, 1499–1506 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Stark, K. et al. Distinct pathogenesis of pancreatic cancer microvesicle-associated venous thrombosis identifies new antithrombotic targets in vivo. Arterioscler. Thromb. Vasc. Biol. 38, 772–786 (2018).

    PubMed  CAS  Google Scholar 

  118. Egan, K., Cooke, N. & Kenny, D. Living in shear: platelets protect cancer cells from shear induced damage. Clin. Exp. Metastasis 31, 697–704 (2014).

    PubMed  Google Scholar 

  119. Nieswandt, B., Hafner, M., Echtenacher, B. & Männel, D. N. Lysis of tumour cells by natural killer cells in mice is impeded by platelets. Cancer Res. 59, 1295–1300 (1999).

    PubMed  CAS  Google Scholar 

  120. Placke, T. et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumour reactivity of natural killer immune cells. Cancer Res. 72, 440–448 (2012).

    PubMed  CAS  Google Scholar 

  121. Kopp, H. G., Placke, T. & Salih, H. R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumour reactivity. Cancer Res. 69, 7775–7783 (2009).

    PubMed  CAS  Google Scholar 

  122. Xu, X. R., Yousef, G. M. & Ni, H. Cancer and platelet crosstalk: opportunities and challenges of aspirin and other antiplatelet agents. Blood 131, 1777–1789 (2018).

    PubMed  CAS  Google Scholar 

  123. Hyslop, S. R. & Josefsson, E. C. Undercover agents: targeting tumours with modified platelets. Trends Cancer 3, 235–246 (2017).

    PubMed  CAS  Google Scholar 

  124. Broadley, S. P. et al. Dual-track clearance of circulating bacteria balances rapid restoration of blood sterility with induction of adaptive immunity. Cell Host Microbe 20, 36–48 (2016).

    PubMed  CAS  Google Scholar 

  125. Zeng, Z. et al. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria. Cell Host Microbe 20, 99–106 (2016).

    PubMed  CAS  Google Scholar 

  126. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    PubMed  CAS  Google Scholar 

  127. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007). In this study, the authors find that platelets support NET formation during sepsis.

    PubMed  CAS  Google Scholar 

  128. Gaertner, F. & Massberg, S. Blood coagulation in immunothrombosis—At the frontline of intravascular immunity. Semin. Immunol. 28, 561–569 (2016).

    PubMed  CAS  Google Scholar 

  129. Pamer, E. G. Immune responses to listeria monocytogenes. Nat. Rev. Immunol. 4, 812–823 (2004).

    PubMed  CAS  Google Scholar 

  130. Verschoor, A. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat. Immunol. 12, 1194–1201 (2011).

    PubMed  CAS  Google Scholar 

  131. Zufferey, A. et al. Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv. 1, 1773–1785 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Chapman, L. M. et al. Platelets present antigen in the context of MHC class I. J. Immunol. 189, 916–923 (2012).

    PubMed  CAS  Google Scholar 

  133. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    PubMed  CAS  Google Scholar 

  135. Qian, B.-Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Chen, Q., Zhang, X. H.-F. & Massagué, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Best, M. G., Wesseling, P. & Wurdinger, T. Tumour-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 78, 3407–3412 (2018).

    PubMed  CAS  Google Scholar 

  138. Wang, R. et al. Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer. Proc. Natl. Acad. Sci. 112, 14266–14271 (2015).

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Gay, L. J. & Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 11, 123–134 (2011). In this comprehensive review, the authors summarize the evidence indicating that the activation of platelets and the coagulation system have a crucial role in the metastatic progression of cancer.

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Labelle, M. & Hynes, R. O. The initial hours of metastasis: the importance of cooperative host-tumour cell interactions during hematogenous dissemination. Cancer Discov. 2, 1091–1099 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Coupland, L. A., Chong, B. H. & Parish, C. R. Platelets and P-selectin control tumour cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 72, 4662–4671 (2012).

    PubMed  CAS  Google Scholar 

  142. de Bruijne-Admiraal, L. G., Modderman, P. W., Von dem Borne, A. E. & Sonnenberg, A. P-selectin mediates Ca2+-dependent adhesion of activated platelets to many different types of leukocytes: detection by flow cytometry. Blood 80, 134–142 (1992).

    PubMed  Google Scholar 

  143. Neumann, F. J. et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 95, 2387–2394 (1997).

    PubMed  CAS  Google Scholar 

  144. Martins, P. A. et al. Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of β1 and β2 integrins. J. Leukoc. Biol. 79, 499–507 (2006).

    PubMed  Google Scholar 

  145. Pircher, J. et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat. Commun. 9, 1523 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Zuchtriegel, G. et al. Platelets guide leukocytes to their sites of extravasation. PLOS Biol. 14, e1002459 1–28 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009).

    PubMed  CAS  Google Scholar 

  148. Grommes, J. et al. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am. J. Respir. Crit. Care Med. 185, 628–636 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Vajen, T. et al. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci. Rep. 8, 1–11 (2018).

    CAS  Google Scholar 

  150. Xiang, B. et al. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat. Commun. 4, 2657 (2013).

    PubMed  Google Scholar 

  151. Lax, S. et al. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L1016–L1029 ajplung.00023.2017 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Rayes, J. et al. The podoplanin-CLEC-2 axis inhibits inflammation in sepsis. Nat. Commun. 8, 2239 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Hitchcock, J. R. et al. Inflammation drives thrombosis after salmonella infection via CLEC-2 on platelets. J. Clin. Invest. 125, 4429–4446 (2015). The authors report that infection-driven thrombosis follows local inflammation, upregulation of podoplanin and platelet activation.

    PubMed  PubMed Central  Google Scholar 

  154. Coffelt, S. B., Wellenstein, M. D. & De Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    PubMed  CAS  Google Scholar 

  155. Tran, D. Q. et al. GARP (LRRC32) is essential for the surface expression of latent TGF- on platelets and activated FOXP3+ regulatory T cells. Proc. Natl Acad. Sci. USA 106, 13445–13450 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Rachidi, S. et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci. Immunol. 2, eaai7911 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).

    Google Scholar 

  158. Gros, A. et al. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood 126, 1017–1026 (2015).

    PubMed  CAS  Google Scholar 

  159. Ho-Tin-Noé, B., Boulaftali, Y. & Camerer, E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood 131, 277–288 (2018).

    PubMed  Google Scholar 

  160. Boulaftali, Y. et al. Platelet ITAM signaling is critical for vascular integrity in infammation. J. Clin. Invest. 123, 908–916 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  161. Herzog, B. H. et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502, 105 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Iannacone, M. et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc. Natl. Acad. Sci. 105, 629–634 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Kleinschnitz, C. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 115, 2323–2330 (2007).

    PubMed  CAS  Google Scholar 

  164. Im, J. H. et al. Coagulation facilitates tumour cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res. 64, 8613–8619 (2004).

    PubMed  CAS  Google Scholar 

  165. Palumbo, J. S. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell–mediated elimination of tumour cells. Blood 105, 178–185 (2005).

    PubMed  CAS  Google Scholar 

  166. Machlus, K. R. & Italiano, J. E. The incredible journey: from megakaryocyte development to platelet formation. J. Cell Biol. 201, 785–796 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Brown, E., Carlin, L. M., Nerlov, C., Lo Celso, C. & Poole, A. W. Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels. Life Sci. Alliance 1, e201800061 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. Bender, M. et al. Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood 125, 860–868 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Junt, T. et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 317, 1767–1770 (2007).

    PubMed  CAS  Google Scholar 

  170. Stegner, D. et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat. Commun. 8, 127 (2017). The authors provide evidence that megakaryocytes are largely sessile cells in close contact with the vasculature and homogeneously distributed in the bone marrow.

    PubMed  PubMed Central  Google Scholar 

  171. Thon, J. N. et al. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat. Commun. 3, 852 (2012).

    PubMed  Google Scholar 

  172. Kile, B. T. The role of apoptosis in megakaryocytes and platelets. Br. J. Haematol. 165, 217–226 (2014).

    PubMed  CAS  Google Scholar 

  173. Olson, T. S. et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121, 5238–5249 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20, 1315–1320 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  175. Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20, 1321–1326 (2014).

    CAS  PubMed  Google Scholar 

  176. Pinho, S. et al. Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev. Cell 44, 634–641 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Hérault, A. et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 544, 53–58 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Palumbo, J. S. et al. Factor XIII transglutaminase supports hematogenous tumour cell metastasis through a mechanism dependent on natural killer cell function. J. Thromb. Haemost. 6, 812–819 (2008).

    PubMed  CAS  Google Scholar 

  179. Labelle, M., Begum, S. & Hynes, R. O. Platelets guide the formation of early metastatic niches. Proc. Natl Acad. Sci. USA 111, E3053–E3061 (2014).

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Läubli, H., Spanaus, K.-S. & Borsig, L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood 114, 4583–4591 (2009).

    PubMed  Google Scholar 

  181. Haemmerle, M. et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 8, 310 (2017). This study shows that platelets increase cancer metastasis by activating YAP1 through a RhoA signalling pathway.

    PubMed  PubMed Central  Google Scholar 

  182. Ward, Y. et al. Platelets promote metastasis via binding tumour CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep. 23, 808–822 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  183. Schumacher, D., Strilic, B., Sivaraj, K., Wettschureck, N. & Offermanns, S. Platelet-derived nucleotides promote tumour-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24, 130–137 (2013).

    CAS  PubMed  Google Scholar 

  184. Martín-Granado, V. et al. C3G promotes a selective release of angiogenic factors from activated mouse platelets to regulate angiogenesis and tumour metastasis. Oncotarget 8, 110994–111011 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by SFB914 (S.M.), SFB1123 (S.M.), SFB1312 (S.M.) and the Deutsches Zentrum für Herz-Kreislaufforschung (S.M. and F.G.). F.G. received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 747687.

Reviewer information

Nature Reviews Immunology thanks E. Josefsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Florian Gaertner or Steffen Massberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Coelomic circulation

The circulatory system of the main body cavity.

Haemolymph

Fluid that circulates in the interior of the arthropod body that is analogous to the blood in vertebrates.

Thrombopoietin

(TPO). A glycoprotein hormone produced by the liver and kidney. TPO binds to and activates TPO receptor (CD110) on haematopoietic stem and progenitor cells, which is necessary for megakaryocyte proliferation and maturation.

Ticagrelor

A reversible inhibitor of the ADP receptor subtype P2Y12 used to treat patients with acute coronary syndromes.

P2Y12

A subtype of the platelet ADP receptor family that triggers strong platelet activation.

Neutrophil extracellular traps

Web-like structures consisting of extracellular DNA strands decorated with antimicrobial proteins such as histones and neutrophil proteases.

Factor XIII

A transglutaminase that crosslinks and stabilizes the fibrin meshwork

Clopidogrel

An irreversible inhibitor of the platelet ADP receptor subtype P2Y12 used clinically to prevent thrombotic events in patients receiving percutaneous coronary intervention for coronary atherosclerosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaertner, F., Massberg, S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 19, 747–760 (2019). https://doi.org/10.1038/s41577-019-0202-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0202-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer