Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intestinal microbiota fuelling metabolic inflammation

Abstract

Low-grade inflammation is the hallmark of metabolic disorders such as obesity, type 2 diabetes and nonalcoholic fatty liver disease. Emerging evidence indicates that these disorders are characterized by alterations in the intestinal microbiota composition and its metabolites, which translocate from the gut across a disrupted intestinal barrier to affect various metabolic organs, such as the liver and adipose tissue, thereby contributing to metabolic inflammation. Here, we discuss some of the recently identified mechanisms that showcase the role of the intestinal microbiota and barrier dysfunction in metabolic inflammation. We propose a concept by which the gut microbiota fuels metabolic inflammation and dysregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut barrier breach in metabolic diseases in mouse models.
Fig. 2: Multiple ‘gastrointestinal hits’ contribute to metabolic diseases.

Similar content being viewed by others

References

  1. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000). In 28,263 healthy postmenopausal women, high-sensitivity C-reactive protein was the strongest predictor of the risk of cardiovascular events.

    Article  CAS  PubMed  Google Scholar 

  3. Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Tilg, H. & Moschen, A. R. Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol. Metab. 19, 371–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 569, 260–264 (2019).

    Article  CAS  Google Scholar 

  8. Pickup, J. C., Mattock, M. B., Chusney, G. D. & Burt, D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40, 1286–1292 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Festa, A., D’Agostino, R., Jr, Tracy, R. P. & Haffner, S. M. Insulin Resistance Atherosclerosis Study. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51, 1131–1137 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Freeman, D. J. et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51, 1596–1600 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Thorand, B. et al. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: results from the MONICA Augsburg cohort study, 1984-1998. Arch. Intern. Med. 163, 93–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Park, S. H. et al. Insulin resistance and C-reactive protein as independent risk factors for non-alcoholic fatty liver disease in non-obese Asian men. J. Gastroenterol. Hepatol. 19, 694–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Haukeland, J. W. et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol. 44, 1167–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yoneda, M. et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J. Gastroenterol. 42, 573–582 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Chiang, C. H., Huang, C. C., Chan, W. L., Chen, J. W. & Leu, H. B. The severity of non-alcoholic fatty liver disease correlates with high sensitivity C-reactive protein value and is independently associated with increased cardiovascular risk in healthy population. Clin. Biochem. 43, 1399–1404 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann, E. et al. C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients. J. Hepatol. 55, 660–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Pihlajamaki, J. et al. Serum interleukin 1 receptor antagonist as an independent marker of non-alcoholic steatohepatitis in humans. J. Hepatol. 56, 663–670 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. Liang, H. et al. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects. PLOS ONE 13, e0195810 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kubes, P. & Mehal, W. Z. Sterile inflammation in the liver. Gastroenterology 143, 1158–1172 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Ertunc, M. E. & Hotamisligil, G. S. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 57, 2099–2114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995). The first description and characterization of adiponectin, a key adipokine in humans.

    Article  CAS  PubMed  Google Scholar 

  26. Tilg, H. & Moschen, A. R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993). The first study to prove a key role for TNF in obesity and insulin resistance in rodent models.

    Article  CAS  PubMed  Google Scholar 

  28. Kern, P. A. et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest. 95, 2111–2119 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).

    CAS  PubMed  Google Scholar 

  30. Moschen, A. R. et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut 59, 1259–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    CAS  PubMed  Google Scholar 

  32. du Plessis, J. et al. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology 149, 635–648 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. O’Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors — redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Schroeder, B. O. & Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012). This paper provides a mechanistic basis for how a Western-type diet might affect the prevalence of immune-mediated disorders such as inflammatory bowel disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bischoff, S. C. et al. Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Volynets, V. et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig. Dis. Sci. 57, 1932–1941 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Mooradian, A. D., Morley, J. E., Levine, A. S., Prigge, W. F. & Gebhard, R. L. Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 29, 221–224 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 24, 1526–1531 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. U S A 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). This study provides evidence that the obese microbiome in rodents has an increased capacity to harvest energy from the diet and that this trait is transmissible.

    Article  PubMed  Google Scholar 

  50. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Aron-Wisnewsky, J. et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68, 70–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). The first large human study from China demonstrating a gut microbiome signature in T2D.

    Article  CAS  PubMed  Google Scholar 

  55. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013). The first European study presenting evidence for compositional and functional changes in the metagenomes of women with T2D.

    Article  CAS  PubMed  Google Scholar 

  56. Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062 (2017). The first large study in a NAFLD population demonstrating a gut microbiome signature, especially in cases associated with advanced fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Allin, K. H. et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Udayappan, S. D. et al. Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLOS ONE 12, e0181693 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Natividad, J. M. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 9, 2802 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Udayappan, S. et al. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2, 16009 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018). A randomized clinical study demonstrating a beneficial effect of dietary fibres in subjects with T2D by modulating the gut microbiota.

    Article  CAS  PubMed  Google Scholar 

  64. Houghton, D. et al. Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia 61, 1700–1711 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Kolodziejczyk, A. A., Zheng, D., Shibolet, O. & Elinav, E. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11, e9302 (2018).

    PubMed Central  Google Scholar 

  67. Boursier, J. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63, 764–775 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Mouzaki, M. et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58, 120–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Del Chierico, F. et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65, 451–464 (2017).

    Article  PubMed  CAS  Google Scholar 

  70. Tilg, H., Cani, P. D. & Mayer, E. A. Gut microbiome and liver diseases. Gut 65, 2035–2044 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Soderborg, T. K. et al. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat. Commun. 9, 4462 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359–365 (2017). This study provides evidence on how oral bacteria might colonize the intestinal tract and drive immune-mediated inflammatory disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fiordaliso, M. et al. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30, 163–167 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Li, Z. et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37, 343–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007). Landmark study demonstrating how endotoxins might affect metabolic disorders and associated inflammation.

    Article  CAS  PubMed  Google Scholar 

  79. Stenman, L. K., Holma, R. & Korpela, R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J. Gastroenterol. 18, 923–929 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin, X., Yu, C. H., Lv, G. C. & Li, Y. M. Increased intestinal permeability in pathogenesis and progress of nonalcoholic steatohepatitis in rats. World J. Gastroenterol. 13, 1732–1736 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101 (2012). This study shows that a high-fat diet or Western-style diet in healthy human subjects leads to endotoxaemia.

    Article  CAS  PubMed  Google Scholar 

  82. Teixeira, T. F. et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin. Nutr. 31, 735–740 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Brignardello, J. et al. Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function. Aliment. Pharmacol. Ther. 32, 1307–1314 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Genser, L. et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J. Pathol. 246, 217–230 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Laurans, L. et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 24, 1113–1120 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Luther, J. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol. Gastroenterol. Hepatol. 1, 222–232 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yuan, J. et al. Endotoxemia unrequired in the pathogenesis of pediatric nonalcoholic steatohepatitis. J. Gastroenterol. Hepatol. 29, 1292–1298 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Miele, L. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49, 1877–1887 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Strowski, M. Z. & Wiedenmann, B. Probiotic carbohydrates reduce intestinal permeability and inflammation in metabolic diseases. Gut 58, 1044–1045 (2009).

    Article  PubMed  Google Scholar 

  90. Giorgio, V. et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig. Liver Dis. 46, 556–560 (2014).

    Article  PubMed  Google Scholar 

  91. Damms-Machado, A. et al. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am. J. Clin. Nutr. 105, 127–135 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Brown, E. M., Sadarangani, M. & Finlay, B. B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luck, H. et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21, 527–542 (2015). This study shows that a gut-specific anti-inflammatory agent (5-aminosalicyclic acid) improves bowel inflammation and metabolic parameters by reducing intestinal permeability and endotoxaemia.

    Article  CAS  PubMed  Google Scholar 

  96. Garidou, L. et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 22, 100–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Johnson, A. M. et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLOS ONE 10, e0122195 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Monteiro-Sepulveda, M. et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22, 113–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Ma, T. Y. et al. TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G367–G376 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Winer, D. A., Luck, H., Tsai, S. & Winer, S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 23, 413–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Martinez-Lopez, M. et al. Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity 50, 446–461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kruglov, A. A. et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342, 1243–1246 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Upadhyay, V. et al. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat. Immunol. 13, 947–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pamir, N., McMillen, T. S., Edgel, K. A., Kim, F. & LeBoeuf, R. C. Deficiency of lymphotoxin-α does not exacerbate high-fat diet-induced obesity but does enhance inflammation in mice. Am. J. Physiol. Endocrinol. Metab. 302, E961–E971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Darnaud, M. et al. Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. Gastroenterology 154, 1009–1023 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Fatkhullina, A. R. et al. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 49, 943–957 (2018). This paper shows that inactivation of the IL-23–IL-22 signalling pathway deteriorates atherosclerosis by affecting intestinal barrier function, dysbiosis and expansion of pathogenic bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aden, K. et al. Epithelial IL-23R signaling licenses protective IL-22 responses in intestinal inflammation. Cell Rep. 16, 2208–2218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ngo, V. L. et al. A cytokine network involving IL-36γ, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc. Natl Acad. Sci. USA 115, E5076–E5085 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mohammed, N., Tang, L., Jahangiri, A., de Villiers, W. & Eckhardt, E. Elevated IgG levels against specific bacterial antigens in obese patients with diabetes and in mice with diet-induced obesity and glucose intolerance. Metabolism 61, 1211–1214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Dalmas, E. et al. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 63, 1966–1977 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Fabbrini, E. et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145, 366–374 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Sumarac-Dumanovic, M. et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int. J. Obes. 33, 151–156 (2009).

    Article  CAS  Google Scholar 

  117. Harley, I. T. et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 59, 1830–1839 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Zuniga, L. A. et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol. 185, 6947–6959 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Everard, A. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 5, 5648 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010). In this study, it is shown that mice deficient in TLR5 develop hyperphagia and several features of metabolic syndrome, including obesity, hypertension, dyslipidaemia and insulin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wen, H. et al. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stienstra, R. et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl Acad. Sci. USA 108, 15324–15329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Denou, E. et al. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ahuja, M. et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 25, 635–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ding, S. et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLOS ONE 5, e12191 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ghoshal, S., Witta, J., Zhong, J., de Villiers, W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 50, 90–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Laugerette, F. et al. Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J. Nutr. Biochem. 22, 53–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018). This study demonstrates the relevance of hyperglycaemia in regulation of the intestinal barrier and associated systemic inflammation.

    Article  CAS  PubMed  Google Scholar 

  132. Sellmann, C. et al. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J. Nutr. Biochem. 26, 1183–1192 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Elia, M., Goren, A., Behrens, R., Barber, R. W. & Neale, G. Effect of total starvation and very low calorie diets on intestinal permeability in man. Clin. Sci. 73, 205–210 (1987).

    Article  CAS  Google Scholar 

  135. Suzuki, T. & Hara, H. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr. Metab. 7, 19 (2010).

    Article  CAS  Google Scholar 

  136. Tropini, C. et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell 173, 1742–1754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008). In this study, antibiotic therapy improved systemic metabolic dysfunction and deletion of Cd14 in ob/ob mice mimicked the effects achieved by antibiotics.

    Article  CAS  PubMed  Google Scholar 

  138. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Li, D. et al. Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats. Pharmacogn. Mag. 13, 677–682 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Ghosh, S. S., Bie, J., Wang, J. & Ghosh, S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice-role of intestinal permeability and macrophage activation. PLOS ONE 9, e108577 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67, 891–901 (2017).

    Article  PubMed  CAS  Google Scholar 

  144. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, Y. et al. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G32–G41 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, K. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 26, 222–235 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Krumbeck, J. A. et al. Probiotic bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6, 121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Guo, C. et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45, 802–816 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Golden, J. M. et al. Ursodeoxycholic acid protects against intestinal barrier breakdown by promoting enterocyte migration via EGFR- and COX-2-dependent mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G259–G271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  CAS  Google Scholar 

  153. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    CAS  PubMed  Google Scholar 

  154. Wei, X. et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe 11, 140–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Muccioli, G. G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6, 392 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Sun, L. et al. A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese. Diabetes Care 33, 1925–1932 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pussinen, P. J., Havulinna, A. S., Lehto, M., Sundvall, J. & Salomaa, V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34, 392–397 (2011). This paper shows that patients with diabetes have higher systemic endotoxin activity compared with non-diabetic individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Camargo, A. et al. Postprandial endotoxemia may influence the development of type 2 diabetes mellitus: from the CORDIOPREV study. Clin. Nutr. 38, 529–538 (2018).

    Article  PubMed  CAS  Google Scholar 

  160. Mehta, N. N. et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59, 172–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22, 2416–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Pang, J. et al. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 46, 175–182 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Luche, E. et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol. Metab. 2, 281–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ye, D. et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 61, 1058–1067 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Amar, J. et al. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 87, 1219–1223 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Fabbiano, S. et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 28, 907–921 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fei, N. & Zhao, L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7, 880–884 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Yang, Q., Vijayakumar, A. & Kahn, B. B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 19, 654–672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hergott, C. B. et al. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood 127, 2460–2471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chan, K. L. et al. Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Rep. 18, 2415–2426 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Schertzer, J. D. et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 60, 2206–2215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cavallari, J. F. et al. Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metab. 25, 1063–1074 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhu, W. et al. Gut microbial metabolite tmao enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016). In this study, TMAO was characterized as a major gut-derived metabolite affecting platelet hyper-reactivity, suggesting a major role for the gastrointestinal tract in the pathogenesis of thrombosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Brown, J. M. & Hazen, S. L. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 66, 343–359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Shan, Z. et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am. J. Clin. Nutr. 106, 888–894 (2017).

    CAS  PubMed  Google Scholar 

  180. Tang, W. H. et al. Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin. Chem. 63, 297–306 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Chen, Y. M. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, P. et al. Plasma concentration of trimethylamine-N-oxide and risk of gestational diabetes mellitus. Am. J. Clin. Nutr. 108, 603–610 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Brown, J. M. & Hazen, S. L. Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol. 16, 171–181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tang, W. H. & Hazen, S. L. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl. Res. 179, 108–115 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Perry, R. J. et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018). In this study, the authors identify phenylacetic acid, a microbial product, as a trigger of hepatic steatosis, providing further evidence for a role of the gut microbiota in this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961 (2018). Here, imidazole propionate, a microbial metabolite derived from histidine, is shown to circulate at increased concentrations in patients with type 2 diabetes and contribute to insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  190. Amar, J. et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLOS ONE 8, e54461 (2013). In this population-based study, the authors suggest a relationship between circulating blood microbiota, atherosclerosis and cardiovascular complications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Potgieter, M., Bester, J., Kell, D. B. & Pretorius, E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol. Rev. 39, 567–591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Paisse, S. et al. Comprehensive description of blood microbiome from healthy donors assessed by 16 S targeted metagenomic sequencing. Transfusion 56, 1138–1147 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Schierwagen, R. et al. Circulating microbiome in blood of different circulatory compartments. Gut https://doi.org/10.1136/gutjnl-2018-316227 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Lelouvier, B. et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology 64, 2015–2027 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Puri, P. et al. The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology 67, 1284–1302 (2018). This paper shows that heavy alcohol consumption affects intestinal barrier function and is associated with the appearance of a circulating microbiome.

    Article  CAS  PubMed  Google Scholar 

  196. Zulian, A. et al. Adipose tissue microbiota in humans: an open issue. Int. J. Obes. 40, 1643–1648 (2016).

    Article  CAS  Google Scholar 

  197. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Zegarra-Ruiz, D. F. et al. A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 25, 113–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Nakamoto, N. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat. Microbiol. 4, 492–503 (2019).

    Article  PubMed  CAS  Google Scholar 

  200. Nathan, D. M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 328, 1676–1685 (1993).

    Article  CAS  PubMed  Google Scholar 

  201. Diehl, A. M. & Day, C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med. 377, 2063–2072 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Chambers, J. C. et al. C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. Circulation 104, 145–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Low-grade systemic inflammation in overweight children. Pediatrics 107, E13 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Johnson, A. R., Milner, J. J. & Makowski, L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol. Rev. 249, 218–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Emerging Risk Factors Collaboration, Kaptoge, S. et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    Article  CAS  Google Scholar 

  207. Emerging Risk Factors Collaboration, Kaptoge, S. et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N. Engl. J. Med. 367, 1310–1320 (2012).

    Article  Google Scholar 

  208. Nissen, S. E. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 352, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  209. Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Ridker, P. M. et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med. 344, 1959–1965 (2001).

    Article  CAS  PubMed  Google Scholar 

  211. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). A landmark clinical study demonstrating a key role for IL-1β in metabolic inflammation and associated cardiovascular complications.

    Article  CAS  PubMed  Google Scholar 

  212. Ridker, P. M. et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 391, 319–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 39, 3499–3507 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Brandsma, E. et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ. Res. 124, 94–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Yoshida, N. et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 138, 2486–2498 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Leite, A. Z. et al. Detection of increased plasma interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of type 2 diabetes patients. Front. Immunol. 8, 1107 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Johnson, A. M. & Olefsky, J. M. The origins and drivers of insulin resistance. Cell 152, 673–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Tilg, H. & Moschen, A. R. Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med. 14, 222–231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kiechl, S. et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 19, 358–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Larsen, C. M. et al. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32, 1663–1668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Netea, M. G. et al. A guiding map for inflammation. Nat. Immunol. 18, 826–831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Mehal, W. Z. The Gordian Knot of dysbiosis, obesity and NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10, 637–644 (2013).

    Article  PubMed  Google Scholar 

  230. Evans, A. S. Causation and disease: the Henle-Koch postulates revisited. Yale J. Biol. Med. 49, 175–195 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Duan, Y. et al. Inflammatory links between high fat diets and diseases. Front. Immunol. 9, 2649 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates wat inflammation through tlr signaling. Cell Metab. 22, 658–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Roager, H. M. et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68, 83–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Mardinoglu, A. et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab. 27, 559–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Yan, Y. et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154–1163 (2013).

    Article  CAS  PubMed  Google Scholar 

  238. Mitchell, S. J. et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 27, 667–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Agudelo, L. Z. et al. Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27, 378–392 (2018).

    Article  CAS  PubMed  Google Scholar 

  240. Syed, I. et al. Palmitic acid hydroxystearic acids activate gpr40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).

    Article  CAS  PubMed  Google Scholar 

  243. Geng, L. et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing fgf21 sensitivity in adipose tissues. Cell Rep. 26, 2738–2752 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Seganfredo, F. B. et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes. Rev. 18, 832–851 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. Ryan, K. K. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Labrecque, J., Laforest, S., Michaud, A., Biertho, L. & Tchernof, A. Impact of bariatric surgery on white adipose tissue inflammation. Can. J. Diabetes 41, 407–417 (2017).

    Article  PubMed  Google Scholar 

  247. Verbeek, J. et al. Roux-en-Y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut 64, 673–683 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. de Groot, P. et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut https://doi.org/10.1136/gutjnl-2019-318320 (2019).

  249. Rathinam, V. A. K., Zhao, Y. & Shao, F. Innate immunity to intracellular LPS. Nat. Immunol. 20, 527–533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vijayan, A., Rumbo, M., Carnoy, C. & Sirard, J. C. Compartmentalized antimicrobial defenses in response to flagellin. Trends Microbiol. 26, 423–435 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Wolf, A. J. & Underhill, D. M. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 18, 243–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Kanneganti, T. D. The signposts and winding roads to immunity and inflammation. Nat. Rev. Immunol. 19, 81–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Winkler, P., Ghadimi, D., Schrezenmeir, J. & Kraehenbuhl, J. P. Molecular and cellular basis of microflora-host interactions. J. Nutr. 137, 756S–772S (2007).

    Article  CAS  PubMed  Google Scholar 

  255. Kotas, M. E. & Locksley, R. M. Why innate lymphoid cells? Immunity 48, 1081–1090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kumar, V. & Ahmad, A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: new players in old game. Int. Rev. Immunol. 37, 90–110 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Satoh, M. & Iwabuchi, K. Role of natural killer T cells in the development of obesity and insulin resistance: insights from recent progress. Front. Immunol. 9, 1314 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Newton, R., Priyadharshini, B. & Turka, L. A. Immunometabolism of regulatory T cells. Nat. Immunol. 17, 618–625 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Shimizu, I., Yoshida, Y., Suda, M. & Minamino, T. DNA damage response and metabolic disease. Cell Metab. 20, 967–977 (2014).

    Article  CAS  PubMed  Google Scholar 

  261. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Grazioli, S. & Pugin, J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front. Immunol. 9, 832 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23, 324–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  264. Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Maruvada, P., Leone, V., Kaplan, L. M. & Chang, E. B. The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22, 589–599 (2017).

    Article  CAS  PubMed  Google Scholar 

  266. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Tilg and Elinav laboratories for discussions and apologize to authors whose work was not included due to space constraints. H.T. is supported by the Excellence Initiative (Competence Centres for Excellent Technologies — COMET) of the Austrian Research Promotion Agency FFG: Research Centre of Excellence in Vascular Ageing Tyrol, VASCage (K-Project No. 843536) funded by BMVIT, BMWFW, Wirtschaftsagentur Wien and Standortagentur Tirol. N.Z. is supported by a Gilead Biosciences Fellowship. T.E.A. is grateful for the support from the Austrian Science Fund (FWF, P 29379-B28), the Austrian Society of Gastroenterology and Hepatology (ÖGGH), and the European Crohn’s and Colitis Organization (ECCO). E.E. is supported by Y. and R. Ungar, the Abisch Frenkel Foundation for the Promotion of Life Sciences, the Gurwin Family Fund for Scientific Research, the Leona M. and Harry B. Helmsley Charitable Trust, the Crown Endowment Fund for Immunological Research, the estate of J. Gitlitz, the estate of L. Hershkovich, the Benoziyo Endowment Fund for the Advancement of Science, the Adelis Foundation, J.L. and V. Schwartz, A. and G. Markovitz, A. and C. Adelson, the French National Centre for Scientific Research (CNRS), D. L. Schwarz, the V. R. Schwartz Research Fellow Chair, L. Steinberg, J. N. Halpern, A. Edelheit, grants funded by the European Research Council, a Marie Curie Integration grant, the German–Israeli Foundation for Scientific Research and Development, the Israel Science Foundation, the Minerva Foundation, the Rising Tide Foundation, the Helmholtz Foundation, and the European Foundation for the Study of Diabetes. E.E. is a senior fellow of the Canadian Institute of Advanced Research (CIFAR) and an international scholar of the Bill and Melinda Gates Foundation and Howard Hughes Medical Institute (HHMI).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contribution to discussion of content, and wrote, reviewed and edited the manuscript.

Corresponding authors

Correspondence to Herbert Tilg or Eran Elinav.

Ethics declarations

Competing interests

E.E. is a paid consultant for DayTwo and BiomX. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks K. Clément, B. Jabri and O. Pedersen for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ob/ob mice

A mouse model of metabolic dysregulation and obesity that arises from increased appetite due to a leptin mutation (that renders these mice functionally leptin deficient).

Metabolic endotoxaemia

A state that favours the translocation of microbial components (such as lipopolysaccharide) to the bloodstream, which promotes metabolic disease.

Chylomicrons

Transport vesicles (so-called lipoprotein particles) for absorbed dietary lipids.

Berberine

A plant-derived alkaloid of an ancient Chinese herb, Coptis chinensis.

Low-density lipoprotein receptor-deficient mice

A mouse model of atherosclerosis caused by a targeted deletion of the gene encoding the low-density lipoprotein receptor (LDLR). In humans, homozygous mutations in LDLR cause familial hypercholesterolaemia, a disease characterized by pronounced hyperlipidaemia and accelerated atherosclerotic cardiovascular disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilg, H., Zmora, N., Adolph, T.E. et al. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 20, 40–54 (2020). https://doi.org/10.1038/s41577-019-0198-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0198-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing