Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanisms underlying T cell ageing


T cell ageing has a pivotal role in rendering older individuals vulnerable to infections and cancer and in impairing the response to vaccination. Easy accessibility to peripheral human T cells as well as an expanding array of tools to examine T cell biology have provided opportunities to examine major ageing pathways and their consequences for T cell function. Here, we review emerging concepts of how the body attempts to maintain a functional T cell compartment with advancing age, focusing on three fundamental domains of the ageing process, namely self-renewal, control of cellular quiescence and cellular senescence. Understanding these critical elements in successful T cell ageing will allow the design of interventions to prevent or reverse ageing-related T cell failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Successful T cell replenishment by self-renewal.
Fig. 2: Mechanisms compromising T cell homeostasis.
Fig. 3: Activation of differentiation pathways in T cell ageing.
Fig. 4: Relationship between T cell differentiation and cellular senescence in T cell ageing.
Fig. 5: Regulation of cytokine transcription in effector T cells, TEMRA cells and senescent T cells.


  1. 1.

    Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364–378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Del Giudice, G. et al. Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech. Dis. 4, 1 (2018).

    PubMed  Google Scholar 

  4. 4.

    Lal, H. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 372, 2087–2096 (2015).

    PubMed  Google Scholar 

  5. 5.

    HIPC-CHI Signatures Project Team & HIPC-I Consortium. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci. Immunol. 2, eaal4656 (2017).

    PubMed Central  Google Scholar 

  6. 6.

    Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Palmer, D. B. The effect of age on thymic function. Front. Immunol. 4, 316 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Yanes, R. E., Gustafson, C. E., Weyand, C. M. & Goronzy, J. J. Lymphocyte generation and population homeostasis throughout life. Semin. Hematol. 54, 33–38 (2017).

    PubMed  Google Scholar 

  9. 9.

    Hamilton, S. E. & Jameson, S. C. CD8 T cell quiescence revisited. Trends Immunol. 33, 224–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Newton, R. H. et al. Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat. Immunol. 19, 838–848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Akbar, A. N. & Henson, S. M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 11, 289–295 (2011).

    CAS  PubMed  Google Scholar 

  13. 13.

    Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    CAS  PubMed  Google Scholar 

  14. 14.

    Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006).

    CAS  Google Scholar 

  15. 15.

    Ermolaeva, M., Neri, F., Ori, A. & Rudolph, K. L. Cellular and epigenetic drivers of stem cell ageing. Nat. Rev. Mol. Cell Biol. 19, 594–610 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Dixit, V. D. Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence. Semin. Immunol. 24, 321–330 (2012).

    CAS  PubMed  Google Scholar 

  17. 17.

    Bains, I., Thiebaut, R., Yates, A. J. & Callard, R. Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output. J. Immunol. 183, 4329–4336 (2009).

    CAS  PubMed  Google Scholar 

  18. 18.

    Hogan, T., Gossel, G., Yates, A. J. & Seddon, B. Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice. Proc. Natl Acad. Sci. USA 112, E6917–E6926 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    Leins, H. et al. Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood 132, 565–576 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    den Braber, I. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012). This study provides evidence for species-specific differences in T cell replenishment of mice and humans and delineates the implications for T cell homeostasis with age.

    Google Scholar 

  21. 21.

    Seddon, B. & Yates, A. J. The natural history of naive T cells from birth to maturity. Immunol. Rev. 285, 218–232 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Naylor, K. et al. The influence of age on T cell generation and TCR diversity. J. Immunol. 174, 7446–7452 (2005).

    CAS  PubMed  Google Scholar 

  23. 23.

    Westera, L. et al. Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell 14, 219–227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Busque, L., Buscarlet, M., Mollica, L. & Levine, R. L. Concise review: age-related clonal hematopoiesis: stem cells tempting the devil. Stem Cells 36, 1287–1294 (2018).

    Google Scholar 

  25. 25.

    Czesnikiewicz-Guzik, M. et al. T cell subset-specific susceptibility to aging. Clin. Immunol. 127, 107–118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wertheimer, A. M. et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192, 2143–2155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Thome, J. J. et al. Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci. Immunol. 1, eaah6506 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Whiting, C. C. et al. Large-scale and comprehensive immune profiling and functional analysis of normal human aging. PLOS ONE 10, e0133627 (2015). Extensive immune profiling in a well-characterized cohort of healthy adults.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pulko, V. et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat. Immunol. 17, 966–975 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    van der Geest, K. S. et al. Low-affinity TCR engagement drives IL-2-dependent post-thymic maintenance of naive CD4+ T cells in aged humans. Aging Cell 14, 744–753 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sprent, J. & Surh, C. D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol. 12, 478–484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Chiu, B. C., Martin, B. E., Stolberg, V. R. & Chensue, S. W. Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 191, 5793–5796 (2013). This study shows that naive CD8 + T cells in mice fail to maintain quiescence and differentiate into virtual memory T cells with age.

    CAS  PubMed  Google Scholar 

  34. 34.

    Quinn, K. M. et al. Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells. Cell Rep. 23, 3512–3524 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Jacomet, F. et al. Evidence for eomesodermin-expressing innate-like CD8+ KIR/NKG2A+ T cells in human adults and cord blood samples. Eur. J. Immunol. 45, 1926–1933 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    CAS  PubMed  Google Scholar 

  37. 37.

    Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  PubMed  Google Scholar 

  38. 38.

    Becklund, B. R. et al. The aged lymphoid tissue environment fails to support naive T cell homeostasis. Sci. Rep. 6, 30842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Thompson, H. L. et al. Lymph nodes as barriers to T cell rejuvenation in aging mice and nonhuman primates. Aging Cell 18, e12865 (2018). This study shows that ageing of the lymph node niche impairs T cell homeostasis.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zeng, M. et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 121, 998–1008 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kityo, C. et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J. Clin. Invest. 128, 2763–2773 (2018). This paper provides evidence in humans that inflammation impairs the T cell niche in lymph nodes, with negative implications for T cell homeostasis and T cell responses.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ucar, D. et al. The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J. Exp. Med. 214, 3123–3144 (2017). This study shows that age-associated epigenetic changes affect CD8 + T cells more than CD4 + T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Gustafson, C. E., Cavanagh, M. M., Jin, J., Weyand, C. M. & Goronzy, J. J. Functional pathways regulated by microRNA networks in CD8 T cell aging. Aging Cell 18, e12879 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Johnson, P. L., Yates, A. J., Goronzy, J. J. & Antia, R. Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T cell diversity with age. Proc. Natl Acad. Sci. USA 109, 21432–21437 (2012).

    CAS  PubMed  Google Scholar 

  45. 45.

    Lythe, G., Callard, R. E., Hoare, R. L. & Molina-Paris, C. How many TCR clonotypes does a body maintain? J. Theor. Biol. 389, 214–224 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Schonland, S. O. et al. Homeostatic control of T cell generation in neonates. Blood 102, 1428–1434 (2003).

    PubMed  Google Scholar 

  47. 47.

    Goronzy, J. J., Qi, Q., Olshen, R. A. & Weyand, C. M. High-throughput sequencing insights into T cell receptor repertoire diversity in aging. Genome Med. 7, 117 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Britanova, O. V. et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Warren, R. L. et al. Exhaustive T cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 21, 790–797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Laydon, D. J., Bangham, C. R. & Asquith, B. Estimating T cell repertoire diversity: limitations of classical estimators and a new approach. Phil. Trans. R. Soc. B 370, 20140291 (2015).

    PubMed  Google Scholar 

  51. 51.

    Qi, Q. et al. Diversity and clonal selection in the human T cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014). This study provides quantitative estimates of the decrease in T cell receptor richness and increase in clonality in human adults with age.

    CAS  PubMed  Google Scholar 

  52. 52.

    Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Savola, P. et al. Somatic mutations in clonally expanded cytotoxic T lymphocytes in patients with newly diagnosed rheumatoid arthritis. Nat. Commun. 8, 15869 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Klenerman, P. The (gradual) rise of memory inflation. Immunol. Rev. 283, 99–112 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Pangrazzi, L. et al. Increased IL-15 production and accumulation of highly differentiated CD8+ effector/memory T cells in the bone marrow of persons with cytomegalovirus. Front. Immunol. 8, 715 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Miron, M. et al. Human lymph nodes maintain TCF-1hi memory T cells with high functional potential and clonal diversity throughout life. J. Immunol. 201, 2132–2140 (2018).

    CAS  PubMed  Google Scholar 

  58. 58.

    Crotty, S. & Ahmed, R. Immunological memory in humans. Semin. Immunol. 16, 197–203 (2004).

    CAS  PubMed  Google Scholar 

  59. 59.

    Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003).

    CAS  PubMed  Google Scholar 

  60. 60.

    Borghans, J. A. M., Tesselaar, K. & de Boer, R. J. Current best estimates for the average lifespans of mouse and human leukocytes: reviewing two decades of deuterium-labeling experiments. Immunol. Rev. 285, 233–248 (2018).

    CAS  PubMed  Google Scholar 

  61. 61.

    Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ahmed, R. et al. Human stem cell-like memory T cells are maintained in a state of dynamic flux. Cell Rep. 17, 2811–2818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Di Benedetto, S. et al. Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology 16, 631–643 (2015).

    PubMed  Google Scholar 

  64. 64.

    Costa Del Amo, P. et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLOS Biol. 16, e2005523 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Schluns, K. S. & Lefrancois, L. Cytokine control of memory T cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    CAS  PubMed  Google Scholar 

  66. 66.

    Lees, J. R. & Farber, D. L. Generation, persistence and plasticity of CD4 T cell memories. Immunology 130, 463–470 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Kedzierska, K., Valkenburg, S. A., Doherty, P. C., Davenport, M. P. & Venturi, V. Use it or lose it: establishment and persistence of T cell memory. Front. Immunol. 3, 357 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Wallace, D. L. et al. Direct measurement of T cell subset kinetics in vivo in elderly men and women. J. Immunol. 173, 1787–1794 (2004).

    CAS  PubMed  Google Scholar 

  69. 69.

    Westera, L. et al. Closing the gap between T cell life span estimates from stable isotope-labeling studies in mice and humans. Blood 122, 2205–2212 (2013).

    CAS  PubMed  Google Scholar 

  70. 70.

    Gossel, G., Hogan, T., Cownden, D., Seddon, B. & Yates, A. J. Memory CD4 T cell subsets are kinetically heterogeneous and replenished from naive T cells at high levels. eLife 6, e23013 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Asanuma, H., Sharp, M., Maecker, H. T., Maino, V. C. & Arvin, A. M. Frequencies of memory T cells specific for varicella-zoster virus, herpes simplex virus, and cytomegalovirus by intracellular detection of cytokine expression. J. Infect. Dis. 181, 859–866 (2000).

    CAS  PubMed  Google Scholar 

  72. 72.

    Levin, M. J. et al. Decline in varicella-zoster virus (VZV)-specific cell-mediated immunity with increasing age and boosting with a high-dose VZV vaccine. J. Infect. Dis. 188, 1336–1344 (2003).

    PubMed  Google Scholar 

  73. 73.

    Klenerman, P. & Oxenius, A. T cell responses to cytomegalovirus. Nat. Rev. Immunol. 16, 367–377 (2016).

    CAS  PubMed  Google Scholar 

  74. 74.

    Yao, X. et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine 29, 5015–5021 (2011).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Moehling, K. K. et al. The effect of frailty on HAI response to influenza vaccine among community-dwelling adults ≥50 years of age. Hum. Vaccin. Immunother. 14, 361–367 (2018).

    PubMed  Google Scholar 

  76. 76.

    Van Epps, P. et al. Preexisting immunity, not frailty phenotype, predicts influenza postvaccination titers among older veterans. Clin. Vaccine Immunol. 24, e00498–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Thomasini, R. L. et al. Aged-associated cytomegalovirus and Epstein-Barr virus reactivation and cytomegalovirus relationship with the frailty syndrome in older women. PLOS ONE 12, e0180841 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Polymenis, M. & Kennedy, B. K. in Cell Division Machinery and Disease (eds Gotta, M. & Meraldi, P.) 189–208 (Springer, 2017).

  79. 79.

    Wang, J. et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148, 1001–1014 (2012).

    CAS  Google Scholar 

  80. 80.

    Chakkalakal, J. V., Jones, K. M., Basson, M. A. & Brack, A. S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nat. Med. 2, 1011–1016 (1996).

    CAS  PubMed  Google Scholar 

  82. 82.

    Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    White, J. T. et al. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 7, 11291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lee, J. Y., Hamilton, S. E., Akue, A. D., Hogquist, K. A. & Jameson, S. C. Virtual memory CD8 T cells display unique functional properties. Proc. Natl Acad. Sci. USA 110, 13498–13503 (2013).

    CAS  PubMed  Google Scholar 

  86. 86.

    Goronzy, J. J., Hu, B., Kim, C., Jadhav, R. R. & Weyand, C. M. Epigenetics of T cell aging. J. Leukoc. Biol. 104, 691–699 (2018).

    CAS  PubMed  Google Scholar 

  87. 87.

    Keenan, C. R. & Allan, R. S. Epigenomic drivers of immune dysfunction in aging. Aging Cell 18, e12878 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173, 1385–1397 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18, 363–373 (2018).

    PubMed  Google Scholar 

  90. 90.

    Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2, eaag0192 (2017). This study shows similarities in the epigenetic changes that occur with differentiation and ageing of human CD8 + T cells.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433–1436 (2017). This study shows that response patterns of mouse CD4 + T cells to stimulation exhibit increasing heterogeneity with age.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Li, G. et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518–1524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Ye, Z. et al. Regulation of miR-181a expression in T cell aging. Nat. Commun. 9, 3060 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Kim, C. et al. Activation of miR-21-regulated pathways in immune aging selects against signatures characteristic of memory T cells. Cell Rep. 25, 2148–2162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Fang, F. et al. Expression of CD39 on activated T cells impairs their survival in older individuals. Cell Rep. 14, 1218–1231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Gupta, P. K. et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLOS Pathog. 11, e1005177 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Lu, Y. et al. Systematic analysis of cell-to-cell expression variation of T lymphocytes in a human cohort identifies aging and genetic associations. Immunity 45, 1162–1175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Hu, B. et al. Transcription factor networks in aged CD4 naïve T cells bias lineage differentiation. Aging Cell (in the press).

  99. 99.

    von Kobbe, C. Cellular senescence: a view throughout organismal life. Cell. Mol. Life Sci. 75, 3553–3567 (2018).

    Google Scholar 

  100. 100.

    Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  PubMed  Google Scholar 

  101. 101.

    Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    CAS  PubMed  Google Scholar 

  103. 103.

    Chou, J. P. & Effros, R. B. T cell replicative senescence in human aging. Curr. Pharm. Des. 19, 1680–1698 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Rufer, N. et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190, 157–167 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Weng, N. P., Levine, B. L., June, C. H. & Hodes, R. J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl Acad. Sci. USA 92, 11091–11094 (1995).

    CAS  PubMed  Google Scholar 

  106. 106.

    McNally, J. P. et al. Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases. Proc. Natl Acad. Sci. USA 114, E4782–E4791 (2017).

    CAS  PubMed  Google Scholar 

  107. 107.

    Shao, L. et al. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. J. Exp. Med. 206, 1435–1449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Qi, Q. et al. Defective T memory cell differentiation after varicella zoster vaccination in older individuals. PLOS Pathog. 12, e1005892 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Liu, Y. et al. Expression of p16 INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8, 439–448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Chandra, T. et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol. Cell 47, 203–214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Zhang, R. & Adams, P. D. Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle 6, 784–789 (2007).

    CAS  PubMed  Google Scholar 

  112. 112.

    Adams, P. D. Remodeling chromatin for senescence. Aging Cell 6, 425–427 (2007).

    CAS  PubMed  Google Scholar 

  113. 113.

    Schonland, S. O. et al. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc. Natl Acad. Sci. USA 100, 13471–13476 (2003).

    PubMed  Google Scholar 

  114. 114.

    Li, Y. et al. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity 45, 903–916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl Med. 8, 331ra38 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 6, 2853–2868 (2008).

    CAS  PubMed  Google Scholar 

  117. 117.

    Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    CAS  PubMed  Google Scholar 

  118. 118.

    Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

    CAS  PubMed  Google Scholar 

  120. 120.

    Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Akbar, A. N., Henson, S. M. & Lanna, A. Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol. 37, 866–876 (2016).

    CAS  PubMed  Google Scholar 

  122. 122.

    Martens, P. B., Goronzy, J. J., Schaid, D. & Weyand, C. M. Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum. 40, 1106–1114 (1997).

    CAS  PubMed  Google Scholar 

  123. 123.

    Liuzzo, G. et al. Monoclonal T cell proliferation and plaque instability in acute coronary syndromes. Circulation 101, 2883–2888 (2000).

    CAS  PubMed  Google Scholar 

  124. 124.

    Goronzy, J. J. et al. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J. Virol. 75, 12182–12187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Pawelec, G. Age and immunity: what is “immunosenescence”? Exp. Gerontol. 105, 4–9 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Di Mitri, D. et al. Reversible senescence in human CD4+CD45RA+CD27- memory T cells. J. Immunol. 187, 2093–2100 (2011).

    PubMed  Google Scholar 

  127. 127.

    Weng, N. P., Akbar, A. N. & Goronzy, J. CD28- T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Pereira, B. I. & Akbar, A. N. Convergence of innate and adaptive immunity during human aging. Front. Immunol. 7, 445 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Gustafson, C. E. et al. Immune checkpoint function of CD85j in CD8 T cell differentiation and aging. Front. Immunol. 8, 692 (2017).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Jeng, M. Y. et al. Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1. J. Exp. Med. 215, 51–62 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Lanna, A., Henson, S. M., Escors, D. & Akbar, A. N. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat. Immunol. 15, 965–972 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Henson, S. M. et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J. Clin. Invest. 124, 4004–4016 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Lanna, A. et al. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat. Immunol. 18, 354–363 (2017). This study describes signalling pathways in terminally differentiated T cells that account for their senescence features but are different from classical senescent cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018). This study shows the benefits of depleting senescent cells in model systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Weinberg, A. & Levin, M. J. VZV T cell-mediated immunity. Curr. Top. Microbiol. Immunol. 342, 341–357 (2010).

    CAS  PubMed  Google Scholar 

  139. 139.

    Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    CAS  Google Scholar 

  141. 141.

    Winthrop, K. L. et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 66, 2675–2684 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Winthrop, K. L. et al. Herpes zoster and tofacitinib: clinical outcomes and the risk of concomitant therapy. Arthritis Rheumatol. 69, 1960–1968 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Fleischmann, R. et al. Safety and efficacy of baricitinib in elderly patients with rheumatoid arthritis. RMD Open 3, e000546 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Walters, H. E., Deneka-Hannemann, S. & Cox, L. S. Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging 8, 231–244 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl Med. 10, eaaq1564 (2018).

    PubMed  Google Scholar 

  146. 146.

    Araki, K., Youngblood, B. & Ahmed, R. The role of mTOR in memory CD8 T cell differentiation. Immunol. Rev. 235, 234–243 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Henson, S. M., Macaulay, R., Riddell, N. E., Nunn, C. J. & Akbar, A. N. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8+ T cell proliferation by distinct pathways. Eur. J. Immunol. 45, 1441–1451 (2015).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the US National Institutes of Health (R01 AR042527, R01 HL117913, R01 AI108906, R01 HL142068, and P01 HL129941 to C.M.W. and R01 AI108891, R01 AG045779, U19 AI057266, R01 AI129191, and I01 BX001669 to J.J.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Reviewer information

Nature Reviews Immunology thanks J. Lord, B. Seddon and N.-P. Weng for their contribution to the peer review of this work.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jörg J. Goronzy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



A phase in the cell cycle in which the cell is not dividing or preparing to divide but still has the ability to do so in the presence of an appropriate signal. Quiescent cells have low metabolic activity and reduced protein synthesis.


A cellular state in which an irreversible growth arrest programme has been initiated that limits the lifespan of the cell and prevents unlimited cell proliferation. It can be caused by replication-induced telomere shortening or DNA damage. In contrast to quiescent cells, senescent cells have a secretory phenotype and upregulated protein synthesis.


Refers to an impaired ability of effector T cells to carry out their functions, such as cytotoxicity and cytokine secretion, owing to chronic stimulation by antigen.

Homeostatic proliferation

A process of activation and proliferation of lymphocytes in the lymphopenic environment. T cell homeostatic proliferation is driven by T cell receptor interactions with self-peptide–MHC and T cell responses to cytokines such as IL-7, IL-15 and possibly IL-21.

Virtual memory T cells

Antigen-inexperienced memory-phenotype T cells, which may be induced by T cell receptor cross reactivity, low-affinity peptide and/or MHC ligands and certain cytokines.

Fibroblastic reticular cells

(FRCs). Specialized reticular fibroblasts located in the T cell areas of lymph nodes and other secondary lymphoid organs. They provide IL-7 for T cell survival and produce collagen-rich reticular fibres and form stromal networks and conduits that are important for the trafficking of immune cells.

TCR excision circles

Small, stable circles of DNA excised during T cell receptor gene rearrangement in the thymus.

T effector memory CD45RA cells

(TEMRA cells). Terminally differentiated antigen-specific memory T cells that re-express CD45RA. These cells have been identified in both CD4+ and CD8+ T cell compartments, have short telomeres, exhibit cell cycle arrest, express DNA damage foci and have a secretome reminiscent of senescent cells.

Memory inflation

The gradual accumulation of peptide-specific CD8+ T cells with an effector memory phenotype that occurs after the resolution of certain acute viral infections during viral latency (for example, cytomegalovirus infection). Induction in the setting of chronic antigen persistence suggests the clonal expansion is antigen driven and not mutation driven.

Stem cell-like memory T cells

A subset of memory T cells that has naive-like features and phenotypes including enhanced self-renewal and multifunctional capacity.

DNA damage responses

A cell response triggered by DNA damage such as single or double strand breaks. The DNA damage response stops cell cycle progression to enable repair before the damage is transmitted to progeny cells. Checkpoints in the mammalian DNA damage response are controlled by the phosphoinositide 3-kinase-related kinases ATM and ATR.


Pharmacological compounds that preferentially deplete senescent cells.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goronzy, J.J., Weyand, C.M. Mechanisms underlying T cell ageing. Nat Rev Immunol 19, 573–583 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing