Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune mechanisms of hypertension

Abstract

Hypertension affects 30% of adults and is the leading risk factor for heart attack and stroke. Traditionally, hypertension has been regarded as a disorder of two systems that are involved in the regulation of salt–water balance and cardiovascular function: the renin–angiotensin–aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, current treatments that aim to limit the influence of the RAAS or SNS on blood pressure fail in ~40% of cases, which suggests that other mechanisms must be involved. This Review summarizes the clinical and experimental evidence supporting a contribution of immune mechanisms to the development of hypertension. In this context, we highlight the immune cell subsets that are postulated to either promote or protect against hypertension through modulation of cardiac output and/or peripheral vascular resistance. We conclude with an appraisal of knowledge gaps still to be addressed before immunomodulatory therapies might be applied to at least a subset of patients with hypertension.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of research linking immunity and hypertension.
Fig. 2: Pro-hypertensive actions of B cells.
Fig. 3: Immune and non-immune mechanisms of hypertension.

Similar content being viewed by others

References

  1. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, 1269–1324 (2018).

    CAS  PubMed  Google Scholar 

  2. Iadecola, C. et al. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension 68, e67–e94 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016). This recent report indicates that hypertension is a leading risk factor for global disease burden.

    Google Scholar 

  4. Cai, A. & Calhoun, D. A. Resistant hypertension: an update of experimental and clinical findings. Hypertension 70, 5–9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Calhoun, D. A. et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51, 1403–1419 (2008).

    CAS  PubMed  Google Scholar 

  6. Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Koroskenyi, K., Juba, F. & Vajda, G. Human vascular antigen complement consumption test of hypertensive patients (preliminary report). Experientia 17, 91–92 (1961).

    CAS  PubMed  Google Scholar 

  8. Ebringer, A. & Doyle, A. E. Raised serum IgG levels in hypertension. Br. Med. J. 2, 146–148 (1970). This study is one of the earliest to detect increased antibody levels in patients with hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Suryaprabha, P., Padma, T. & Brahmaji Rao, U. Increased serum IgG levels in essential hypertension. Immunol. Lett. 8, 143–145 (1984).

    CAS  PubMed  Google Scholar 

  10. Hilme, E., Herlitz, H., Soderstrom, T. & Hansson, L. Increased secretion of immunoglobulins in malignant hypertension. J. Hypertens. 7, 91–95 (1989).

    CAS  PubMed  Google Scholar 

  11. White, F. N. & Grollman, A. Autoimmune factors associated with infarction of the kidney. Nephron 1, 93–102 (1964).

    CAS  PubMed  Google Scholar 

  12. Okuda, T. & Grollman, A. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells. Tex. Rep. Biol. Med. 25, 257–264 (1967).

    CAS  PubMed  Google Scholar 

  13. Olsen, F. Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol. Microbiol. Scand. C. 88, 1–5 (1980).

    CAS  PubMed  Google Scholar 

  14. Khraibi, A. A., Smith, T. L., Hutchins, P. M., Lynch, C. D. & Dusseau, J. W. Thymectomy delays the development of hypertension in Okamoto spontaneously hypertensive rats. J. Hypertens. 5, 537–541 (1987).

    CAS  PubMed  Google Scholar 

  15. Bataillard, A., Freiche, J. C., Vincent, M., Sassard, J. & Touraine, J. L. Antihypertensive effect of neonatal thymectomy in the genetically hypertensive LH rat. Thymus 8, 321–330 (1986).

    CAS  PubMed  Google Scholar 

  16. Svendsen, U. G. Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol. Microbiol. Scand. A 84, 523–528 (1976).

    CAS  PubMed  Google Scholar 

  17. Guzik, T. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007). This paradigm-shifting paper reports on research that reignited the study of immunity and inflammation in hypertension with a demonstration that mice lacking B cells and T cells have reduced hypertensive responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Crowley, S. D. et al. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1089–R1097 (2010). This important report shows that immunodeficient SCID mice lacking B cells and T cells are protected from hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mattson, D. L. et al. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R407–R414 (2013). This study is the first to show that immunodeficiency in rats prevents salt-sensitive hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rudemiller, N., Lund, H., Jacob, H. J., Geurts, A. M. & Mattson, D. L. CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63, 559–564 (2014).

    CAS  PubMed  Google Scholar 

  21. De Miguel, C., Guo, C., Lund, H., Feng, D. & Mattson, D. L. Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. Am. J. Physiol. Renal Physiol. 300, F734–F742 (2011).

    PubMed  Google Scholar 

  22. Tian, N. et al. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. Am. J. Physiol. Heart Circ. Physiol. 292, H1018–H1025 (2007).

    CAS  PubMed  Google Scholar 

  23. Mattson, D. L., James, L., Berdan, E. A. & Meister, C. J. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension 48, 149–156 (2006).

    CAS  PubMed  Google Scholar 

  24. Quiroz, Y. et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am. J. Physiol. Renal Physiol. 281, F38–F47 (2001). This early study shows that immunosuppressants can modulate hypertension.

    CAS  PubMed  Google Scholar 

  25. Sanders, P. W. & Wang, P.-X. Activation of the Fas/Fas ligand pathway in hypertensive renal disease in Dahl/Rapp rats. BMC Nephrol. 3, 1 (2002).

    PubMed  PubMed Central  Google Scholar 

  26. Saleh, M. A. et al. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J. Clin. Invest. 125, 1189–1202 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Sriramula, S., Haque, M., Majid, D. S. A. & Francis, J. Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51, 1345–1351 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Trott, D. W. et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014). This study implicates oligoclonal CD8 + T cells as the main T cell subset involved in promoting hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Y. et al. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat. Commun. 8, 14037 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shao, J. et al. Imbalance of T cell subsets in angiotensin II-infused hypertensive rats with kidney injury. Hypertension 42, 31–38 (2003).

    CAS  PubMed  Google Scholar 

  32. Ji, Q. et al. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis. Markers 2017, 7146290 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Kamat, N. V. et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-gamma−/− and interleukin-17A−/− mice. Hypertension 65, 569–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, J. et al. Tumor necrosis factor-alpha produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension 64, 1275–1281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, J. et al. A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ. Res. 110, 1604–1617 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Madhur, M. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010). This study introduces IL-17 as a contributing factor in experimental hypertension.

    CAS  PubMed  Google Scholar 

  37. Saleh, M. A., Norlander, A. E. & Madhur, M. S. Inhibition of interleukin 17-A but not interleukin-17F signaling lowers blood pressure and reduces end-organ inflammation in angiotensin II-induced hypertension. JACC Basic Transl Sci. 1, 606–616 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Ye, J. et al. Interleukin 22 promotes blood pressure elevation and endothelial dysfunction in angiotensin II-treated mice. J. Am. Heart Assoc. 6, e005875 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Norlander, A. E. et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight 2, 92801 (2017).

    PubMed  Google Scholar 

  41. Norlander, A. E. et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68, 167–174 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, Y.-L. et al. Gamma delta T cells and their potential for immunotherapy. Int. J. Biol. Sci. 10, 119–135 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Caillon, A. et al. γδ T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation 135, 2155–2162 (2017). This study implicates γδ T cells in the development of experimental hypertension.

    CAS  PubMed  Google Scholar 

  44. Chan, C. T. et al. Antibodies in the pathogenesis of hypertension. Biomed. Res. Int. 2014, 504045 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Mathis, K. W. et al. Preventing autoimmunity protects against the development of hypertension and renal injury. Hypertension 64, 792–800 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Taylor, E. B., Barati, M. T., Powell, D. W., Turbeville, H. R. & Ryan, M. J. Plasma cell depletion attenuates hypertension in an experimental model of autoimmune disease. Hypertension 71, 719–728 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan, C. T. et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 66, 1023–1033 (2015). This study is the first to show that B cells are required for the development of experimental hypertension.

    CAS  PubMed  Google Scholar 

  48. Dingwell, L. S. et al. B-cell deficiency lowers blood pressure in mice. Hypertension 73, 561–570 (2019).

    CAS  PubMed  Google Scholar 

  49. Tanigaki, K. et al. Fcγ receptors and ligands and cardiovascular disease. Circ. Res. 116, 368–384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sundgren, N. C. et al. IgG receptor FcgammaRIIB plays a key role in obesity-induced hypertension. Hypertension 65, 456–462 (2015).

    CAS  PubMed  Google Scholar 

  51. Zhu, F. et al. Correlation between HLA-DRB1, HLA-DQB1 polymorphism and autoantibodies against angiotensin AT(1) receptors in Chinese patients with essential hypertension. Clin. Cardiol. 34, 302–308 (2011).

    PubMed  Google Scholar 

  52. Liao, Y.-H. et al. Autoantibodies against AT1-receptor and alpha1-adrenergic receptor in patients with hypertension. Hypertens. Res. 25, 641–646 (2002).

    CAS  PubMed  Google Scholar 

  53. Fu, M. L. et al. Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J. Hypertens. 18, 945–953 (2000).

    CAS  PubMed  Google Scholar 

  54. Sun, Y. et al. Influence of autoantibodies against AT1 receptor and AGTR1 polymorphisms on candesartan-based antihypertensive regimen: results from the study of optimal treatment in hypertensive patients with anti-AT1-receptor autoantibodies trial. J. Am. Soc. Hypertens. 8, 21–27 (2014).

    PubMed  Google Scholar 

  55. Wei, F. et al. Candesartan versus imidapril in hypertension: a randomised study to assess effects of anti-AT1 receptor autoantibodies. Heart 97, 479–484 (2011).

    PubMed  Google Scholar 

  56. Wenzel, K. et al. Potential relevance of alpha(1)-adrenergic receptor autoantibodies in refractory hypertension. PLOS ONE 3, e3742 (2008).

    PubMed  PubMed Central  Google Scholar 

  57. Luther, H. P., Homuth, V. & Wallukat, G. Alpha 1-adrenergic receptor antibodies in patients with primary hypertension. Hypertension 29, 678–682 (1997).

    CAS  PubMed  Google Scholar 

  58. Wallukat, G., Blasig, I. E., Morwinski, R., Herrmann, H. J. & Rohde, E. The sera of spontaneously hypertensive rats contain agonistic auto-antibodies against the beta 1-adrenoceptor. J. Hypertens. 13, 1031–1036 (1995).

    CAS  PubMed  Google Scholar 

  59. Jahns, R. et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J. Clin. Invest. 113, 1419–1429 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, Z. et al. A novel autoantibody in patients with primary hypertension: antibody against L-type Ca2+ channel. Chin. Med. J. 121, 1513–1517 (2008).

    PubMed  Google Scholar 

  61. Bao, X. et al. Elevated serum complement C3 levels are associated with prehypertension in an adult population. Clin. Exp. Hypertens. 39, 42–49 (2017).

    CAS  PubMed  Google Scholar 

  62. Regal, J. F. et al. The complement system in hypertension and renal damage in the Dahl SS rat. Physiol. Rep. 6, e13655 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Ruan, C.-C. et al. Complement-mediated inhibition of adiponectin regulates perivascular inflammation and vascular injury in hypertension. FASEB J. 31, 1120–1129 (2017).

    CAS  PubMed  Google Scholar 

  64. Sumida, T. et al. Complement C1q-induced activation of beta-catenin signalling causes hypertensive arterial remodelling. Nat. Commun. 6, 6241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruan, C.-C. et al. Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. Arterioscler. Thromb. Vasc. Biol. 35, 598–606 (2015).

    CAS  PubMed  Google Scholar 

  66. Ruan, C.-C. et al. Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone acetate-salt hypertensive rats. Arterioscler. Thromb. Vasc. Biol. 30, 2568–2574 (2010).

    CAS  PubMed  Google Scholar 

  67. Chen, X.-H. et al. Deficiency of complement C3a and C5a receptors prevents angiotensin II-induced hypertension via regulatory T cells. Circ. Res. 122, 970–983 (2018).

    CAS  PubMed  Google Scholar 

  68. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010). This paradigm-shifting study shows that T cell activation in hypertension requires the costimulatory CD80/CD86–CD28 axis, which thereby implicates the involvement of classical antigen presentation.

    PubMed  PubMed Central  Google Scholar 

  69. Kirabo, A. et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Invest. 124, 4642–4656 (2014). This study indicates that isolevuglandin-modified proteins can function as neoantigens to activate T cells and promote the development of hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Salomon, R. G. & Bi, W. Isolevuglandin adducts in disease. Antioxid. Redox Signal. 22, 1703–1718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Barbaro, N. R. et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 21, 1009–1020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiao, L. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117, 547–557 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, J. et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J. Clin. Invest. 126, 50–67 (2016).

    PubMed  Google Scholar 

  74. Zhao, H. et al. Angiotensin II induces TSLP via an AT1 receptor/NF-KappaB pathway, promoting Th17 differentiation. Cell. Physiol. Biochem. 30, 1383–1397 (2012).

    CAS  PubMed  Google Scholar 

  75. Abumiya, T., Masuda, J., Kawai, J., Suzuki, T. & Ogata, J. Heterogeneity in the appearance and distribution of macrophage subsets and their possible involvement in hypertensive vascular lesions in rats. Lab. Invest. 75, 125–136 (1996).

    CAS  PubMed  Google Scholar 

  76. Mervaala, E. M. et al. Monocyte infiltration and adhesion molecules in a rat model of high human renin hypertension. Hypertension 33, 389–395 (1999).

    CAS  PubMed  Google Scholar 

  77. Bush, E. et al. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension 36, 360–363 (2000).

    CAS  PubMed  Google Scholar 

  78. Haller, H. et al. Monocyte infiltration and c-fms expression in hearts of spontaneously hypertensive rats. Hypertension 25, 132–138 (1995).

    CAS  PubMed  Google Scholar 

  79. Liu, Y. et al. Quantitation of perivascular monocytes and macrophages around cerebral blood vessels of hypertensive and aged rats. J. Cereb. Blood Flow Metab. 14, 348–352 (1994).

    CAS  PubMed  Google Scholar 

  80. Eng, E. et al. Renal proliferative and phenotypic changes in rats with two-kidney, one-clip Goldblatt hypertension. Am. J. Hypertens. 7, 177–185 (1994).

    CAS  PubMed  Google Scholar 

  81. De Ciuceis, C. et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler. Thromb. Vasc. Biol. 25, 2106–2113 (2005).

    PubMed  Google Scholar 

  82. Ko, E. A. et al. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 292, H1789–H1795 (2007).

    CAS  PubMed  Google Scholar 

  83. Wenzel, P. et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 124, 1370–1381 (2011). This study shows that depletion of monocytes protects against angiotensin II-induced hypertension.

    CAS  PubMed  Google Scholar 

  84. Kossmann, S. et al. Angiotensin II-induced vascular dysfunction depends on interferon-gamma-driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler. Thromb. Vasc. Biol. 33, 1313–1319 (2013).

    CAS  PubMed  Google Scholar 

  85. Kossmann, S. et al. Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J. Biol. Chem. 289, 27540–27550 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore, J. P. et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309, H906–H917 (2015).

    CAS  PubMed  Google Scholar 

  87. Hulsmans, M. et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215, 423–440 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chan, C. T. et al. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice. Hypertension 60, 1207–1212 (2012).

    CAS  PubMed  Google Scholar 

  89. Machnik, A. et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 55, 755–761 (2010).

    CAS  PubMed  Google Scholar 

  90. Muller, D. N., Wilck, N., Haase, S., Kleinewietfeld, M. & Linker, R. A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat. Rev. Immunol. 19, 243–254 (2019).

    Article  PubMed  Google Scholar 

  91. Katsuki, M., Hirooka, Y., Kishi, T. & Sunagawa, K. Decreased proportion of Foxp3+CD4+ regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J. Hypertens. 33, 773–783 (2015).

    CAS  PubMed  Google Scholar 

  92. Tipton, A. J., Baban, B. & Sullivan, J. C. Female spontaneously hypertensive rats have a compensatory increase in renal regulatory T cells in response to elevations in blood pressure. Hypertension 64, 557–564 (2014). This study shows that there are sex differences in T reg cell populations during hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Majeed, B. et al. Interleukin-2/anti-interleukin-2 immune complex expands regulatory T cells and reduces angiotensin II-induced aortic stiffening. Int. J. Hypertens. 2014, 126365 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Kasal, D. A. et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59, 324–330 (2012).

    CAS  PubMed  Google Scholar 

  95. Barhoumi, T. et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57, 469–476 (2011). This study shows that injection of T reg cells can prevent the development of experimental hypertension.

    CAS  PubMed  Google Scholar 

  96. Matrougui, K. et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am. J. Pathol. 178, 434–441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kvakan, H. et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119, 2904–2912 (2009).

    CAS  PubMed  Google Scholar 

  98. Emmerson, A. et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J. Clin. Invest. 128, 3088–3101 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Wang, H.-X. et al. CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodeling via IL-10 signaling in mice. Cardiovasc. Res. 115, 83–93 (2018).

    Google Scholar 

  100. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Olofsson, P. S. et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat. Biotechnol. 34, 1066–1071 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shah, K. H. et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ. Res. 117, 858–869 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Altara, R. et al. Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovasc. Res. 114, 1578–1594 (2018).

    CAS  PubMed  Google Scholar 

  104. Chiasson, V. L. et al. Myeloid-derived suppressor cells ameliorate cyclosporine A-induced hypertension in mice. Hypertension 71, 199–207 (2018).

    CAS  PubMed  Google Scholar 

  105. Czesnikiewicz-Guzik, M. et al. Th1-type immune responses to Porphyromonas gingivalis antigens exacerbate angiotensin II-dependent hypertension and vascular dysfunction. Br. J. Pharmacol. https://doi.org/10.1111/bph.14536 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hui, J. et al. Association of cytomegalovirus infection with hypertension risk: a meta-analysis. Wien. Klin. Wochenschr. 128, 586–591 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Harrison, D. G., Vinh, A., Lob, H. & Madhur, M. S. Role of the adaptive immune system in hypertension. Curr. Opin. Pharmacol. 10, 203–207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Marketou, M. E. et al. TLR2 and TLR4 gene expression in peripheral monocytes in nondiabetic hypertensive patients: the effect of intensive blood pressure-lowering. J. Clin. Hypertens. (Greenwich). 14, 330–335 (2012).

    CAS  Google Scholar 

  109. Fanelli, C. et al. Innate and adaptive immunity are progressively activated in parallel with renal injury in the 5/6 renal ablation model. Sci. Rep. 7, 3192 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Zhang, Y. et al. TAK-242, a toll-like receptor 4 antagonist, protects against aldosterone-induced cardiac and renal injury. PLOS ONE 10, e0142456 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Bomfim, G. F. et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. 122, 535–543 (2012). This study implicates the innate immune response in the development of hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pushpakumar, S. et al. Toll-like receptor 4 deficiency reduces oxidative stress and macrophage mediated inflammation in hypertensive kidney. Sci. Rep. 7, 6349 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Familtseva, A. et al. Toll-like receptor 4 mutation suppresses hyperhomocysteinemia-induced hypertension. Am. J. Physiol. Cell Physiol. 311, C596–C606 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Jiang, Y. et al. Resistin induces hypertension and insulin resistance in mice via a TLR4-dependent pathway. Sci. Rep. 6, 22193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hernanz, R. et al. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. Br. J. Pharmacol. 172, 3159–3176 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bomfim, G. F. et al. Toll-like receptor 4 inhibition reduces vascular inflammation in spontaneously hypertensive rats. Life Sci. 122, 1–7 (2015).

    CAS  PubMed  Google Scholar 

  117. Sollinger, D. et al. Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension. Cardiovasc. Res. 101, 464–472 (2014).

    CAS  PubMed  Google Scholar 

  118. Tipton, A. J. & Sullivan, J. C. Sex differences in T cells in hypertension. Clin. Ther. 36, 1882–1900 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Schneider, S. et al. Obesity-associated hypertension is ameliorated in patients with TLR4 single nucleotide polymorphism (SNP) rs4986790. J. Inflamm. (Lond.) 12, 57 (2015).

    Google Scholar 

  120. Mao, S. et al. Hypomethylation of the Toll-like receptor-2 gene increases the risk of essential hypertension. Mol. Med. Rep. 16, 964–970 (2017).

    CAS  PubMed  Google Scholar 

  121. Li, J., Huang, L., Wang, S. & Zhang, Z. Increased serum levels of high mobility group protein B1 and calprotectin in pre-eclampsia. Int. J. Gynaecol. Obstet. 142, 37–41 (2018).

    CAS  PubMed  Google Scholar 

  122. Nair, A. R., Ebenezer, P. J., Saini, Y. & Francis, J. Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Exp. Cell Res. 335, 238–247 (2015).

    CAS  PubMed  Google Scholar 

  123. McCarthy, C. G. et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc. Res. 107, 119–130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dange, R. B., Agarwal, D., Teruyama, R. & Francis, J. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J. Neuroinflamm. 12, 31 (2015).

    Google Scholar 

  125. Marques, F. Z., Mackay, C. R. & Kaye, D. M. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat. Rev. Cardiol. 15, 20–32 (2018).

    PubMed  Google Scholar 

  126. Yang, T. et al. Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340 (2015). This early study shows links between the gut microbiome and hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Marques, F. Z. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135, 964–977 (2017). This study shows that diet-induced modulation of the gut microbiome regulates experimental hypertension.

    CAS  PubMed  Google Scholar 

  128. Kim, S. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 132, 701–718 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhu, Q. et al. Mesenchymal stem cell transplantation inhibited high salt-induced activation of the NLRP3 inflammasome in the renal medulla in Dahl S rats. Am. J. Physiol. Renal Physiol. 310, F621–F627 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Krishnan, S. M. et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br. J. Pharmacol. 173, 752–765 (2016). This study implicates the NLRP3 inflammasome in the development of experimental hypertension.

    CAS  PubMed  Google Scholar 

  131. Ling, L. et al. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J. Hypertens. 36, 1104–1114 (2018).

    CAS  PubMed  Google Scholar 

  132. Ren, X.-S. et al. NLRP3 gene deletion attenuates angiotensin II-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling. Cell. Physiol. Biochem. 44, 2269–2280 (2017).

    CAS  PubMed  Google Scholar 

  133. Sun, H.-J. et al. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis. 8, e3074 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Gan, W. et al. The SGK1 inhibitor EMD638683, prevents angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim. Biophys. Acta 1864, 1–10 (2018).

    CAS  Google Scholar 

  135. Wang, M.-L. et al. Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. J. Neuroinflamm. 15, 95 (2018).

    Google Scholar 

  136. Avolio, E. et al. Role of brain neuroinflammatory factors on hypertension in the spontaneously hypertensive rat. Neuroscience 375, 158–168 (2018).

    CAS  PubMed  Google Scholar 

  137. Qi, J. et al. NF-kappaB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and caspase-1. Cardiovasc. Toxicol. 16, 345–354 (2016).

    CAS  PubMed  Google Scholar 

  138. Gong, W. et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am. J. Physiol. Renal Physiol. 310, F1081–F1088 (2016).

    CAS  PubMed  Google Scholar 

  139. Krishnan, S. M. et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage and dysfunction in salt-sensitive hypertension. Cardiovasc. Res. 115, 776–787 (2018).

    Article  PubMed Central  Google Scholar 

  140. Qi, J. et al. Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovasc. Toxicol. 16, 298–306 (2016).

    CAS  PubMed  Google Scholar 

  141. Rabkin, S. W. The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat. Rev. Cardiovasc. Med. 6, 192–199 (2009).

    CAS  Google Scholar 

  142. Kunnas, T., Maatta, K. & Nikkari, S. T. NLR family pyrin domain containing 3 (NLRP3) inflammasome gene polymorphism rs7512998 (C>T) predicts aging-related increase of blood pressure, the TAMRISK study. Immun. Ageing 12, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Omi, T. et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur. J. Hum. Genet. 14, 1295–1305 (2006).

    CAS  PubMed  Google Scholar 

  144. Xu, L. et al. The NLRP3 rs10754558 polymorphism is a risk factor for preeclampsia in a Chinese Han population. J. Matern. Fetal Neonatal Med. 32, 1792–1799 (2018).

    PubMed  Google Scholar 

  145. Krishnan, S. M., Sobey, C. G., Latz, E., Mansell, A. & Drummond, G. R. IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br. J. Pharmacol. 171, 5589–5602 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mazzali, M. et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38, 1101–1106 (2001).

    CAS  PubMed  Google Scholar 

  147. Prager, P. et al. P2Y1 receptor signaling contributes to high salt-induced priming of the NLRP3 inflammasome in retinal pigment epithelial cells. PLOS ONE 11, e0165653 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Ip, W. K. E. & Medzhitov, R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6, 6931 (2015).

    CAS  PubMed  Google Scholar 

  149. Palygin, O. et al. Real-time electrochemical detection of ATP and H(2)O(2) release in freshly isolated kidneys. Am. J. Physiol. Renal Physiol. 305, F134–F141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Menzies, R. I. et al. Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats. Kidney Int. 88, 1079–1087 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ji, X. et al. P2X7 deficiency attenuates hypertension and renal injury in deoxycorticosterone acetate-salt hypertension. Am. J. Physiol. Renal Physiol. 303, F1207–F1215 (2012).

    CAS  PubMed  Google Scholar 

  152. Ji, X. et al. P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. Hypertens. Res. 35, 173–179 (2012).

    CAS  PubMed  Google Scholar 

  153. Small, H. Y., Migliarino, S., Czesnikiewicz-Guzik, M. & Guzik, T. J. Hypertension: focus on autoimmunity and oxidative stress. Free Radic. Biol. Med. 125, 104–115 (2018).

    CAS  PubMed  Google Scholar 

  154. LaMarca, B. et al. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension 54, 905–909 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Herse, F. et al. Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension 53, 393–398 (2009).

    CAS  PubMed  Google Scholar 

  156. Bu, D.-X. & Lichtman, A. H. T cells and blood vessels: costimulation turns up the pressure. Circulation 122, 2495–2498 (2010).

    PubMed  PubMed Central  Google Scholar 

  157. Itani, H. A. et al. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ. Res. 118, 1233–1243 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Pons, H. et al. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 304, F289–F299 (2013). This study implicates HSP70 as an antigenic stimulus that activates the immune system during experimental hypertension.

    CAS  PubMed  Google Scholar 

  159. Kranzhofer, R., Browatzki, M., Schmidt, J. & Kubler, W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem. Biophys. Res. Commun. 257, 826–828 (1999).

    CAS  PubMed  Google Scholar 

  160. Scheidegger, K. J., Butler, S. & Witztum, J. L. Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. J. Biol. Chem. 272, 21609–21615 (1997).

    CAS  PubMed  Google Scholar 

  161. Vega, A., El Bekay, R., Chacon, P., Ventura, I. & Monteseirin, J. Angiotensin II induces CD62L shedding in human neutrophils. Atherosclerosis 209, 344–351 (2010).

    CAS  PubMed  Google Scholar 

  162. Coppo, M. et al. Angiotensin II upregulates renin-angiotensin system in human isolated T lymphocytes. Regul. Pept. 151, 1–6 (2008).

    CAS  PubMed  Google Scholar 

  163. Hoch, N. E. et al. Regulation of T cell function by endogenously produced angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R208–R216 (2009).

    CAS  PubMed  Google Scholar 

  164. Silva-Filho, J. L. et al. AT1 receptor-mediated angiotensin II activation and chemotaxis of T lymphocytes. Mol. Immunol. 48, 1835–1843 (2011).

    CAS  PubMed  Google Scholar 

  165. Coppo, M. et al. Ang II upregulation of the T-lymphocyte renin-angiotensin system is amplified by low-grade inflammation in human hypertension. Am. J. Hypertens. 24, 716–723 (2011).

    CAS  PubMed  Google Scholar 

  166. Sun, X.-N. et al. T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma. Circ. Res. 120, 1584–1597 (2017).

    CAS  PubMed  Google Scholar 

  167. Kadoya, H. et al. Excess aldosterone is a critical danger signal for inflammasome activation in the development of renal fibrosis in mice. FASEB J. 29, 3899–3910 (2015).

    CAS  PubMed  Google Scholar 

  168. Usher, M. G. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Invest. 120, 3350–3364 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Herrada, A. A. et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J. Immunol. 184, 191–202 (2010).

    CAS  PubMed  Google Scholar 

  170. Bienvenu, L. A. et al. Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology 153, 3416–3425 (2012).

    CAS  PubMed  Google Scholar 

  171. Rickard, A. J. et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54, 537–543 (2009).

    CAS  PubMed  Google Scholar 

  172. Case, A. J. & Zimmerman, M. C. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J. Physiol. 594, 527–536 (2016).

    CAS  PubMed  Google Scholar 

  173. Wahle, M. et al. Failure of catecholamines to shift T cell cytokine responses toward a Th2 profile in patients with rheumatoid arthritis. Arthritis Res. Ther. 8, R138 (2006).

    PubMed  PubMed Central  Google Scholar 

  174. Hou, N. et al. A novel chronic stress-induced shift in the Th1 to Th2 response promotes colon cancer growth. Biochem. Biophys. Res. Commun. 439, 471–476 (2013).

    CAS  PubMed  Google Scholar 

  175. Case, A. J. & Zimmerman, M. C. Redox-regulated suppression of splenic T-lymphocyte activation in a model of sympathoexcitation. Hypertension 65, 916–923 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Marvar, P. J. et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ. Res. 107, 263–270 (2010). This study shows the importance of centrally mediated blood pressure responses in the peripheral inflammation associated with hypertension. It is also the first study to show that blood pressure is a primary determinant of peripheral inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Carnevale, D. et al. The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension. Immunity 41, 737–752 (2014). This important study shows that placental growth factor-mediated sympathetic stimulation of the spleen contributes to experimental hypertension.

    CAS  PubMed  Google Scholar 

  178. Carnevale, D. et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat. Commun. 7, 13035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Yvonne, D. et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34, 113–117 (1999).

    Google Scholar 

  180. Loperena, R. et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 114, 1547–1563 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Mikolajczyk, T. P. et al. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus. Lupus 25, 18–27 (2016).

    CAS  PubMed  Google Scholar 

  182. Urbanski, K. et al. CD14+CD16++ ‘nonclassical’ monocytes are associated with endothelial dysfunction in patients with coronary artery disease. Thromb. Haemost. 117, 971–980 (2017).

    PubMed  Google Scholar 

  183. Huan, T. et al. A meta-analysis of gene expression signatures of blood pressure and hypertension. PLOS Genet. 11, e1005035 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Huan, T. et al. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol. Syst. Biol. 11, 799 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. Bravo, Y., Quiroz, Y., Ferrebuz, A., Vaziri, N. D. & Rodriguez-Iturbe, B. Mycophenolate mofetil administration reduces renal inflammation, oxidative stress, and arterial pressure in rats with lead-induced hypertension. Am. J. Physiol. Renal Physiol. 293, F616–F623 (2007).

    CAS  PubMed  Google Scholar 

  186. Lembo, G. From clinical observations to molecular mechanisms and back to patients: the successful circuit of the CANTOS study. Cardiovasc. Res. 114, e3–e5 (2018).

    CAS  PubMed  Google Scholar 

  187. Herrera, J., Ferrebuz, A., MacGregor, E. G. & Rodriguez-Iturbe, B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J. Am. Soc. Nephrol. 17, S218–S225 (2006). This paper reports that immunosuppression reduces hypertension in patients with autoimmune disorders.

    CAS  PubMed  Google Scholar 

  188. Zhao, Q. et al. Association between anti-TNF therapy for rheumatoid arthritis and hypertension: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 94, e731 (2015).

    CAS  Google Scholar 

  189. Leslie, M. Restraining immunity could lower high blood pressure. Science 359, 966–967 (2018).

    CAS  PubMed  Google Scholar 

  190. Kinder, A. J. et al. The treatment of inflammatory arthritis with methotrexate in clinical practice: treatment duration and incidence of adverse drug reactions. Rheumatology 44, 61–66 (2005).

    CAS  PubMed  Google Scholar 

  191. Varatharajan, N. et al. Methotrexate: long-term safety and efficacy in an Australian consultant rheumatology practice. Intern. Med. J. 39, 228–236 (2009).

    CAS  PubMed  Google Scholar 

  192. Wright, J. T. J. et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015).

    CAS  PubMed  Google Scholar 

  193. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  194. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2018).

    PubMed  Google Scholar 

  195. Pollow, D. P. et al. Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension. Hypertension 64, 384–390 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Lob, H. E. et al. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 55, 277–283 (2010).

    CAS  PubMed  Google Scholar 

  197. Marko, L. et al. Interferon-gamma signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension 60, 1430–1436 (2012).

    CAS  PubMed  Google Scholar 

  198. Amador, C. A. et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 63, 797–803 (2014).

    CAS  PubMed  Google Scholar 

  199. Venegas-Pont, M. et al. Tumor necrosis factor-alpha antagonist etanercept decreases blood pressure and protects the kidney in a mouse model of systemic lupus erythematosus. Hypertension 56, 643–649 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang, A. et al. Renin-dependent hypertension in mice requires the NLRP3-inflammasome. J. Hypertens (Los Angel.) 3, 1–6 (2014).

    Google Scholar 

  201. Zhang, J. et al. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 co-transporter in the nephron. Cell Metab. 23, 360–368 (2016).

    CAS  PubMed  Google Scholar 

  202. McMaster, W. G., Kirabo, A., Madhur, M. S. & Harrison, D. G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 116, 1022–1033 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Mikolajczyk, T. P. et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T cell accumulation, and vascular dysfunction in hypertension. FASEB J. 30, 1987–1999 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Sandberg, K., Ji, H. & Hay, M. Sex-specific immune modulation of primary hypertension. Cell. Immunol. 294, 95–101 (2015).

    CAS  PubMed  Google Scholar 

  205. Okamoto, K. & Aoki, K. Development of a strain of spontaneously hypertensive rats. Jpn Circ. J. 27, 282–293 (1963).

    CAS  PubMed  Google Scholar 

  206. Dahl, L. K., Heine, M. & Tassinari, L. Effects of chronia excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J. Exp. Med. 115, 1173–1190 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Bachmann, S., Peters, J., Engler, E., Ganten, D. & Mullins, J. Transgenic rats carrying the mouse renin gene—morphological characterization of a low-renin hypertension model. Kidney Int. 41, 24–36 (1992).

    CAS  PubMed  Google Scholar 

  208. Yuhara, M. et al. Participation of the sympathetic nervous system in hypertension in rats with subtotal renal ablation. J. Hypertens. 7, 443–446 (1989).

    CAS  PubMed  Google Scholar 

  209. Pickering, T. G. Renovascular hypertension: etiology and pathophysiology. Semin. Nucl. Med. 19, 79–88 (1989).

    CAS  PubMed  Google Scholar 

  210. Sealy, W. C., De Maria, W. & Harris, J. Studies of the development and nature of the hypertension in experimental coarctation of the aorta. Surg. Gynecol. Obstet. 90, 193–198 (1950).

    CAS  PubMed  Google Scholar 

  211. Simon, G., Abraham, G. & Cserep, G. Pressor and subpressor angiotensin II administration. Two experimental models of hypertension. Am. J. Hypertens. 8, 645–650 (1995).

    CAS  PubMed  Google Scholar 

  212. Basting, T. & Lazartigues, E. DOCA-salt hypertension: an update. Curr. Hypertens. Rep. 19, 32 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Pollock, D. M., Polakowski, J. S., Divish, B. J. & Opgenorth, T. J. Angiotensin blockade reverses hypertension during long-term nitric oxide synthase inhibition. Hypertension 21, 660–666 (1993).

    CAS  PubMed  Google Scholar 

  214. Kennedy, A. J., Ellacott, K. L. J., King, V. L. & Hasty, A. H. Mouse models of the metabolic syndrome. Dis. Model. Mech. 3, 156–166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).

    PubMed  Google Scholar 

  216. Ji, H. et al. Sex-specific T cell regulation of angiotensin II-dependent hypertension. Hypertension 64, 573–582 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Zimmerman, M. A., Baban, B., Tipton, A. J., O’Connor, P. M. & Sullivan, J. C. Chronic ANG II infusion induces sex-specific increases in renal T cells in Sprague-Dawley rats. Am. J. Physiol. Renal Physiol. 308, F706–F712 (2015).

    CAS  PubMed  Google Scholar 

  218. Czesnikiewicz-Guzik, M. et al. T cell subset-specific susceptibility to aging. Clin. Immunol. 127, 107–118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Rais, M., Wilson, R. M., Urbanski, H. F. & Messaoudi, I. Androgen supplementation improves some but not all aspects of immune senescence in aged male macaques. Geroscience 39, 373–384 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Khan, S. I. et al. Y-chromosome lineage determines cardiovascular organ T cell infiltration in the stroke-prone spontaneously hypertensive rat. FASEB J. 32, 2747–2756 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

G.R.D., A.V. and C.G.S. are supported by grants and/or fellowships from the National Health and Medical Research Council of Australia (APP1143674, APP1144243 and APP1079467). T.J.G. is supported by a European Research Council Consolidator Grant (726318) and the PLAQUEFIGHT/ERA CVD JTC2017 project.

Reviewer information

Nature Reviews Immunology thanks D. Carnevale, M. S. Madhur and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussing its content and writing and editing.

Corresponding author

Correspondence to Grant R. Drummond.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Sympathetic nervous system

(SNS). The division of the autonomic nervous system that is involved in maintaining or increasing blood pressure through the release of catecholamines such as noradrenaline and adrenaline.

Renin–angiotensin–aldosterone system

(RAAS). A multifactorial hormone system involving the renin-induced generation of angiotensin II and subsequently aldosterone, which regulates blood pressure and fluid balance.

Hypothalamus

A small region of the brain that integrates central and peripheral inputs to modulate autonomic nerve function, including those circuits of the sympathetic nervous system that control blood pressure.

Rostral ventrolateral medulla

A brain region involved in basal and reflex control of blood pressure. It functions as a primary regulator of the sympathetic nervous system via catecholaminergic and glutaminergic projections to sympathetic preganglionic neurons.

Endothelial dysfunction

The decreased endothelial production and/or availability of nitric oxide and/or an imbalance in the relative contribution of endothelium-derived relaxing and contracting factors.

Severe combined immunodeficient mice

(SCID mice). Mice genetically immunodeficient owing to impaired development of B cells and T cells.

Renal arteriolar rarefaction

A decreased density of arterioles within the kidneys.

Fcγ receptors

(FcγRs). Members of a superfamily of immunoglobulin receptors comprising several subtypes that bind to IgG with differing affinities to evoke a range of immune responses, including phagocytosis of opsonized microorganisms, induction of antibody-dependent cell-mediated cytotoxicity, cell activation and cytokine release.

Macrophage polarization

M1 and M2 macrophage polarization states are classifications historically used to define macrophages activated in vitro as pro-inflammatory (when ‘classically’ activated with IFNγ and lipopolysaccharide) or anti-inflammatory (when ‘alternatively’ activated with IL-4 or IL-10), respectively. However, in vivo macrophages are highly specialized, transcriptomically dynamic and extremely heterogeneous with regard to their phenotypes and functions, which are continuously shaped by their tissue microenvironment. Therefore, the M1 or M2 classification is too simplistic to explain the true nature of in vivo macrophages, although these terms are still often used to indicate whether the macrophages in question are more pro-inflammatory or anti-inflammatory.

Fcgr2b −/− mice

Mice lacking the Fcgr2b gene, which encodes a subtype of inhibitory Fcγ receptor (FcγR) that is expressed on B cells, myeloid dendritic cells and endothelial cells and has a role in immune tolerance.

Isolevuglandin-modified proteins

Modified proteins formed by the reaction of isolevuglandins with lysyl residues that may function as danger-associated molecular patterns or neoantigens.

Invariant natural killer T cells

(iNKT cells). A subset of natural killer T cells expressing an invariant T cell receptor α-chain. These cells respond rapidly to danger signals and pro-inflammatory cytokines and promote activation of T cells, B cells, dendritic cells and macrophages.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous group of immune cells of myeloid lineage, which markedly expand in pathological situations and inhibit the effector function of lymphocytes.

Pre-eclampsia

A disorder of pregnancy involving increased blood pressure.

Hyperuricaemia

Increased levels of uric acid in the blood.

Urolithiasis

Kidney stone disease.

Noradrenergic drive

The process of promoting activation of sympathetic nerves to release noradrenaline (norepinephrine).

Vagus–splenic nerve drive

The process of promoting activation of the left efferent branch of the vagus nerve to the noradrenergic splenic nerve.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drummond, G.R., Vinh, A., Guzik, T.J. et al. Immune mechanisms of hypertension. Nat Rev Immunol 19, 517–532 (2019). https://doi.org/10.1038/s41577-019-0160-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0160-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing