Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation

Abstract

B cells face multiple restrictions on glucose and energy metabolism. Their lineage-determining transcription factors repress glucose uptake and pentose phosphate pathway activity, while their low numbers of mitochondria and small cytoplasmic volume set narrow limits for mitochondrial ATP production and autophagy as alternative energy sources. During activation, B cells can balance temporary increases of energy expenditure. However, permanent hyperactivation of kinases, for instance, downstream of an autoreactive B cell receptor (BCR) or a transforming oncogene, can cause energy stress and cell death. Here, I propose that B cell-intrinsic restriction of ATP represents a safeguard to eliminate autoreactive or pre-malignant B cells. If the metabolic gatekeepers are compromised, influx of additional glucose may fuel permanent increases in metabolic demands and pathological B cell proliferation, driven by an autoreactive BCR or a transforming oncogene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gatekeeper I: control of glucose membrane transport.
Fig. 2: Gatekeeper II: control of ATP consumption by inhibitory phosphatases.
Fig. 3: Gatekeeper III: regulation of intracellular ROS by the PPP and mitochondrial dynamics.

Similar content being viewed by others

References

  1. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Klein, F. et al. Tracing the pre-B to immature B cell transition in human leukemia cells reveals a coordinated sequence of primary and secondary IGK gene rearrangement, IGK deletion, and IGL gene rearrangement. J. Immunol. 174, 367–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene (RAG-1). Cell 59, 1035–1048 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Kitagawa, Y. et al. Prevalent involvement of illegitimate V(D)J recombination in chromosome 9p21 deletions in lymphoid leukemia. J. Biol. Chem. 277, 46289–46297 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Tsai, A. G. et al. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135, 1130–1142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swaminathan, S. et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat. Immunol. 16, 766–774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2001).

    Article  Google Scholar 

  9. Ramiro, A. R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Pasqualucci, L. et al. AID is required for germinal center-derived lymphomagenesis. Nat. Genet. 40, 108–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Klemm, L. et al. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 16, 232–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jankovic, M. et al. 53BP1 alters the landscape of DNA rearrangements and suppresses AID-induced B cell lymphoma. Mol. Cell 49, 623–631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Compagno, M. et al. Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature 542, 489–493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cazzaniga, G. et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood 118, 5559–5564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gale, K. B. et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc. Natl Acad. Sci. USA 94, 13950–13954 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukemia in children. Lancet 354, 1499–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Biernaux, C. et al. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86, 3118–3122 (1995).

    CAS  PubMed  Google Scholar 

  18. Bose, S. et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92, 3362–3367 (1998).

    CAS  PubMed  Google Scholar 

  19. Takagi, M. et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood 117, 2887–2890 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Osmond, D. G. Proliferation kinetics and the lifespan of B cells in central and peripheral lymphoid organs. Curr. Opin. Immunol. 3, 179–185 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Waters, L. R. et al. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5, 99–109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dufort, F. J. et al. Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J. Immunol. 179, 4953–4957 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Cho, S. H. et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Akkaya, M. et al. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 19, 871–884 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, T. et al. Glucose transporter 1-mediated glucose uptake is limiting for B cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis. Cell Death Dis. 5, e1470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542, 479–483 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, S. et al. Let-7 suppresses B cell activation through restricting the availability of necessary nutrients. Cell Metab. 27, 393–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Shojaee, S. et al. PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nat. Med. 22, 379–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Z. et al. Signalling thresholds and negative B cell selection in acute lymphoblastic leukemia. Nature 521, 357–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan, L. N. & Müschen, M. B cell identity as a metabolic barrier against malignant transformation. Exp. Hematol. 53, 1–6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martín-Lorenzo, A. Loss of Pax5 exploits Sca1-BCR-ABLp190 susceptibility to confer the metabolic shift essential for pre-B ALL. Cancer Res. 78, 2669–2679 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. McFadden, K. et al. Metabolic stress is a barrier to Epstein-Barr virus-mediated B cell immortalization. Proc. Natl Acad. Sci. USA 113, E782–E790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhatt, A. P. et al. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc. Natl Acad. Sci. USA 109, 11818–11823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, Z. et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med. 23, 79–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Xiao, G. et al. B-cell-specific diversion of glucose carbon utilization reveals a unique vulnerability in B cell malignancies. Cell 173, 470–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Müschen, M. Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nat. Rev. Cancer 18, 103–116 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Zhang, C. S. et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112–116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167–1175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie, H. et al. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17, 113–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Butturini, A. M. et al. Obesity and outcome in pediatric acute lymphoblastic leukemia. J. Clin. Oncol. 25, 2063–2069 (2007).

    Article  PubMed  Google Scholar 

  46. Gelelete, C. B. et al. Overweight as a prognostic factor in children with acute lymphoblastic leukemia. Obesity 19, 1908–1911 (2011).

    Article  PubMed  Google Scholar 

  47. Orgel, E. et al. Obesity is associated with residual leukemia following induction therapy for childhood B-precursor acute lymphoblastic leukemia. Blood 124, 3932–3938 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Weiser, M. A. et al. Relation between the duration of remission and hyperglycemia during induction chemotherapy for acute lymphocytic leukemia with a hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone/methotrexate-cytarabine regimen. Cancer 100, 1179–1185 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Castillo, J. J. et al. Obesity is associated with increased relative risk of diffuse large B cell lymphoma: a meta-analysis of observational studies. Clin. Lymphoma Myeloma Leuk. 14, 122–130 (2014).

    Article  PubMed  Google Scholar 

  50. Mitri, J., Castillo, J. & Pittas, A. G. Diabetes and risk of non-Hodgkin’s lymphoma: a metaanalysis of observed studies. Diabetes Care 31, 2391–2397 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boyle, T. et al. Physical activity, obesity and survival in diffuse large B cell and follicular lymphoma cases. Br. J. Haematol. 178, 442–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Larsson, S. C. & Wolk, A. Obesity and risk of non-Hodgkin’s lymphoma: a meta-analysis. Int. J. Cancer. 121, 1564–1570 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Willett, E. V. et al. Non-Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph Consortium. Int. J. Cancer. 122, 2062–2070 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. André, M. P. E. et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J. Clin. Oncol. 35, 1786–1794 (2017).

    Article  PubMed  Google Scholar 

  55. Arai, S. et al. Obesity-associated autoantibody production requires AIM to retain the immunoglobulin M immune complex on follicular dendritic cells. Cell Rep. 3, 1187–1198 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, B. et al. Being overweight or obese and risk of developing rheumatoid arthritis among women: a prospective cohort study. Ann. Rheum. Dis. 73, 1914–1922 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Bennett, B. D. et al. A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 6, 1170–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Lam, Q. L. et al. Leptin signaling maintains B cell homeostasis via induction of Bcl-2 and Cyclin D1. Proc. Natl Acad. Sci. USA 107, 13812–13817 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lourenço, E. V. et al. Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation. Proc. Natl Acad. Sci. USA 113, 10637–10642 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Rongvaux, A. et al. Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J. Immunol. 181, 4685–4695 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Revollo, J. R. et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brentano, F. et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum. 56, 2829–2839 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Takao, S. et al. Targeting the vulnerability to NAD+ depletion in B cell acute lymphoblastic leukemia. Leukemia 32, 616–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Katerndahl, C. D. S. et al. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat. Immunol. 18, 694–704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schjerven, H. et al. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre-B ALL. J. Exp. Med. 214, 793–814 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fretz, J. A. et al. Altered metabolism and lipodystrophy in the early B cell factor 1-deficient mouse. Endocrinology 151, 1611–1621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Griffin, M. J. et al. Early B cell factor-1 (EBF1) is a key regulator of metabolic and inflammatory signaling pathways in mature adipocytes. J. Biol. Chem. 288, 35925–35939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Foley, S. B. et al. Expression of BCR/ABL p210 from a knockin allele enhances bone marrow engraftment without inducing neoplasia. Cell Rep. 17, 51–60 (2013).

    Article  CAS  Google Scholar 

  70. Van Nieuwenhove, E. et al. A kindred with mutant IKAROS and autoimmunity. J. Allergy Clin. Immunol. 142, 699–702 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Wojcik, H. et al. Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis. Eur. J. Immunol. 37, 1022–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Hoshino, A. et al. Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J. Allergy Clin. Immunol. 140, 223–231 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Papaemmanuil, E. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trevino, L. R. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Olofsson, L. E. CCAAT/enhancer binding protein alpha (C/EBPalpha) in adipose tissue regulates genes in lipid and glucose metabolism and a genetic variation in C/EBPalpha is associated with serum levels of triglycerides. J. Clin. Endocrinol. Metab. 93, 4880–4886 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Akasaka, T. et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B cell precursor acute lymphoblastic leukemia (BCPALL). Blood 109, 3451–3461 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ryoo, H. et al. Identification of functional nucleotide and haplotype variants in the promoter of the CEBPE gene. J. Hum. Genet. 58, 600–603 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Okada, Y. et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat. Genet. 44, 511–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 92, 41–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lahoud, M. H. et al. Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs. Genome Res. 11, 1327–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Cichocki, F. et al. ARID5B regulates metabolic programming in human adaptive NK cells. J. Exp. Med. 215, 2379–2395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Olefsky, J. M. Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J. Clin. Invest. 56, 1499–1508 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marke, R. et al. Tumor suppressor IKZF1 mediates glucocorticoid resistance in B cell precursor acute lymphoblastic leukemia. Leukemia 30, 1599–1603 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Kaspers, G. J. et al. Different cellular drug resistance profiles in childhood lymphoblastic and non-lymphoblastic leukemia: a preliminary report. Leukemia 8, 1224–1229 (1994).

    CAS  PubMed  Google Scholar 

  85. Geng, H. et al. Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia. Cancer Cell 27, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feldhahn, N. et al. Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. J. Exp. Med. 201, 1837–1852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Khalil, A. M., Cambier, J. C. & Shlomchik, M. J. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336, 1178–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Daëron, M. et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3, 635–646 (1993).

    Article  Google Scholar 

  90. Shojaee, S. Erk negative feedback control enables pre-B cell transformation and represents a therapeutic target in acute lymphoblastic leukemia. Cancer Cell 28, 114–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hug, E. et al. Inducible expression of hyperactive Syk in B cells activates Blimp-1-dependent terminal differentiation. Oncogene 33, 3730–3741 (2017).

    Article  CAS  Google Scholar 

  92. Trageser, D. et al. Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function. J. Exp. Med. 206, 1739–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kharabi Masouleh, B. et al. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 111, E2219–E2228 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Getahun, A. et al. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J. Exp. Med. 213, 751–769 (2006).

    Article  CAS  Google Scholar 

  95. Kersseboom, R. et al. Constitutive activation of Bruton’s tyrosine kinase induces the formation of autoreactive IgM plasma cells. Eur. J. Immunol. 40, 2643–2654 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Negro, R. et al. Overexpression of the autoimmunity-associated phosphatase PTPN22 promotes survival of antigen-stimulated CLL cells by selectively activating AKT. Blood 119, 6278–6287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Hebbring, S. J. et al. Genetic evidence of PTPN22 effects on chronic lymphocytic leukemia. Blood 121, 237–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schickel, J. N. et al. PTPN22 inhibition resets defective human central B cell tolerance. Sci. Immunol. 1, aaf7153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Doughty, C. A. et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107, 4458–4465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wheeler, M. L. & Defranco, A. L. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J. Immunol. 189, 4405–4416 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Ros, S. & Schulze, A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 1, 8–12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mouton, V. et al. Heart 6-phosphofructo-2-kinase activation by insulin requires PKB, but not SGK3. Biochem. J. 431, 267–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Adams, W. C. et al. Anabolism-associated mitochondrial stasis driving lymphocyte differentiation over self-renewal. Cell Rep. 17, 3142–3152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jellusova, J. et al. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18, 303–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, H. & Chan, D. C. Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab. 26, 39–48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kashatus, J. A. et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57, 537–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Serasinghe, M. N. et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57, 521–536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Duy, C. et al. BCL6 is critical for the development of a diverse primary B cell repertoire. J. Exp. Med. 207, 1209–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nemazee, D. Mechanisms of central tolerance for B xcells. Nat. Rev. Immunol. 17, 281–294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Avery, D. T. et al. Germline-activating mutations in PIK3CD compromise B cell development and function. J. Exp. Med. 215, 2073–2095 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Deau, M. C. et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J. Clin. Invest. 124, 3923–3928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Anzelon, A. N., Wu, H. & Rickert, R. C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat. Immunol. 4, 287–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Browne, C. D. et al. Suppression of phosphatidylinositol 3,4,5-trisphosphate production is a key determinant of B cell anergy. Immunity 31, 749–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmitz, R. et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N. Engl. J. Med. 378, 1396–1407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Miletic, A. V. et al. Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases. J. Exp. Med. 207, 2407–2420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Caro, P. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547–560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bordt, E. A. et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev. Cell 40, 583–594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nemazee, D. A. & Bürki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  CAS  PubMed  Google Scholar 

  122. Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Samuels, J. et al. Impaired early B cell tolerance in patients with rheumatoid arthritis. J. Exp. Med. 201, 1659–1667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Müschen, M. Rationale for targeting the pre-B cell receptor signaling pathway in acute lymphoblastic leukemia. Blood 125, 3688–3693 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Young, R. M. & Staudt, L. M. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Discov. 12, 229–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kojima, H. et al. Differentiation stage-specific requirement in hypoxia-inducible factor-1alpha-regulated glycolytic pathway during murine B cell development in bone marrow. J. Immunol. 184, 154–163 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Price, M. J. et al. Progressive upregulation of oxidative metabolism facilitates plasmablast differentiation to a T-independent antigen. Cell Rep. 23, 3152–3159 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Martinez-Martin, N. et al. A switch from canonical to noncanonical autophagy shapes B cell responses. Science 355, 641–647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, M. et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20, 503–510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Clarke, A. J. et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann. Rheum. Dis. 74, 912–920 (2015).

    Article  PubMed  Google Scholar 

  131. Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tsui, C. et al. Protein kinase C-β dictates B cell fate by regulating mitochondrial remodeling, metabolic reprogramming, and heme biosynthesis. Immunity 48, 1144–1159 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Patke, A. et al. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J. Exp. Med. 203, 2551–2562 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pelanda, R. & Torres, R. M. Central B-cell tolerance: where selection begins. Cold Spring Harb. Perspect. Biol. 4, a007146 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sokol, R. J. et al. Human macrophage development: a morphometric study. J. Anat. 151, 27–35 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Boesen, A. M. Stereologic analysis of the ultrastructure in isolated human T and non-T lymphoid cells. II. Data on blasts in ALL; correlation with immunologic studies and FAB-morphology. Virchows Arch. B 42, 303–314 (1983).

    Article  CAS  PubMed  Google Scholar 

  137. Iwama, Y. & Eguchi, M. Quantitative evaluation of leukemic mitochondria with a computer-controlled image analyser. Virchows Arch. B 51, 375–384 (1986).

    Article  CAS  PubMed  Google Scholar 

  138. Robin, E. D. & Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136, 507–513 (1988).

    Article  CAS  PubMed  Google Scholar 

  139. Siebeneicher, H. et al. Identification and optimization of the first highly selective GLUT1 inhibitor BAY-876. Chem. Med. Chem. 11, 2261–2271 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Liu, Y. et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther. 11, 1672–1682 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl Med. 3, 94ra70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Huffman, J. W. et al. 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Bioorg. Med. Chem. 7, 2905–2914 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Kaltenmeier, C. T. et al. Tumor cell-selective inhibitor of mitogen-activated protein kinase phosphatases sensitizes breast cancer cells to lymphokine-activated killer cell activity. J. Pharmacol. Exp. Ther. 361, 39–50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chung, V. et al. Safety, tolerability, and preliminary activity of LB-100, an inhibitor of protein phosphatase 2A, in patients with relapsed solid tumors: An open-label, dose escalation, first-in-human, phase I trial. Clin. Cancer Res. 23, 3277–3284 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks L. N. Chan, Z. Chen, S. Shojaee, S. Swaminathan, G. Xiao, T. Sadras, G. Deb and other current and former members of his laboratory as well as E. Meffre (New Haven, CT), T. G. Graeber (Los Angeles, CA), A. Weiss and C. A. Lowell (San Francisco, CA), H. Jumaa (Ulm, Germany), A. Melnick (New York, NY) and N. Bottini (La Jolla, CA) for critical discussions and encouragement. M.M. is a Howard Hughes Medical Institute Faculty Scholar (HHMI-55108547) and acknowledges support by the Leukemia and Lymphoma Society (Scholar Award 1479–11), the Wellcome Trust (Senior Investigator Award WT101880) and the US National Cancer Institute (Outstanding Investigator Award R35CA197628).

Reviewer information

Nature Reviews Immunology thanks R. Chiarle, M. Luftig and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.M. developed the metabolic gatekeeper concept, researched the data and wrote the manuscript.

Corresponding author

Correspondence to Markus Müschen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müschen, M. Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nat Rev Immunol 19, 337–348 (2019). https://doi.org/10.1038/s41577-019-0154-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0154-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing