Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pain and immunity: implications for host defence

Abstract

Pain is a hallmark of tissue injury, inflammatory diseases, pathogen invasion and neuropathy. It is mediated by nociceptor sensory neurons that innervate the skin, joints, bones, muscles and mucosal tissues and protects organisms from noxious stimuli. Nociceptors are sensitized by inflammatory mediators produced by the immune system, including cytokines, lipid mediators and growth factors, and can also directly detect pathogens and their secreted products to produce pain during infection. Upon activation, nociceptors release neuropeptides from their terminals that potently shape the function of innate and adaptive immune cells. For some pathogens, neuron–immune interactions enhance host protection from infection, but for other pathogens, neuron–immune signalling pathways can be exploited to facilitate pathogen survival. Here, we discuss the role of nociceptor interactions with the immune system in pain and infection and how understanding these pathways could produce new approaches to treat infectious diseases and chronic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuroimmune interactions at peripheral nerve terminals and the spinal cord in pain.
Fig. 2: Molecular mechanisms of immune-driven pain.
Fig. 3: Molecular mechanisms of microbial-driven pain.
Fig. 4: Nociceptors regulate inflammation through neural–vascular and neuro-immune interactions.

Similar content being viewed by others

References

  1. Scholz, J. & Woolf, C. J. Can we conquer pain? Nat. Neurosci. 5, 1062–1067 (2002).

    CAS  PubMed  Google Scholar 

  2. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    CAS  PubMed  Google Scholar 

  3. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiu, I. M., Pinho-Ribeiro, F. A. & Woolf, C. J. Pain and infection: pathogen detection by nociceptors. Pain 157, 1192–1193 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Pinho-Ribeiro, F. A., Verri, W. A. Jr & Chiu, I. M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 38, 5–19 (2017).

    CAS  PubMed  Google Scholar 

  7. Baral, P., Mills, K., Pinho-Ribeiro, F. A. & Chiu, I. M. Pain and itch: beneficial or harmful to antimicrobial defense? Cell Host Microbe 19, 755–759 (2016).

    CAS  PubMed  Google Scholar 

  8. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).This study demonstrates the importance of nociceptor-immune interactions in driving DC activation and cutaneous inflammation in a mouse model of psoriasis-like inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).This study shows the protective role of nociceptors in host defence against C. albicans infection in skin by activation of DCs and IL-23 production.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Engel, M. A. et al. TRPA1 and substance P mediate colitis in mice. Gastroenterology 141, 1346–1358 (2011).This study highlights that the nociceptive ion channel TRPA1 and neuropeptide substance P contribute to the development of inflammation in the gastrointestinal tract in a mouse model of colitis.

    CAS  PubMed  Google Scholar 

  11. Maruyama, K. et al. Nociceptors boost the resolution of fungal osteoinflammation via the TRP channel-CGRP-Jdp2 Axis. Cell Rep. 19, 2730–2742 (2017).

    CAS  PubMed  Google Scholar 

  12. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097 (2018).This study shows that S. pyogenes activates nociceptors through the pore-forming toxin streptolysin S, which causes neural secretion of CGRP and inhibition of neutrophil killing of bacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Ji, R. R., Xu, Z. Z. & Gao, Y. J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug  Discov. 13, 533–548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cook, A. D., Christensen, A. D., Tewari, D., McMahon, S. B. & Hamilton, J. A. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 39, 240–255 (2018).This recent review comprehensively highlights recent advances in the role of cytokine signalling and receptor expression in pain and raises the question of which cytokine mediators are directly signalling to nociceptors to drive pain.

    CAS  PubMed  Google Scholar 

  17. White, F. A., Bhangoo, S. K. & Miller, R. J. Chemokines: integrators of pain and inflammation. Nat. Rev. Drug Discov. 4, 834–844 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boettger, M. K. et al. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 58, 2368–2378 (2008).

    CAS  PubMed  Google Scholar 

  19. Richter, F. et al. Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum. 62, 3806–3814 (2010).

    CAS  PubMed  Google Scholar 

  20. Jin, X. & Gereau, R. W. 4th Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci. 26, 246–255 (2006).This study demonstrates that TNF-mediated mechanical hypersensitivity involves TNFR1 activity and subsequent p38-dependent modulation of tetrodotoxin-resistant sodium channels in nociceptor neurons.

    CAS  PubMed  Google Scholar 

  21. Cunha, T. M. et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc. Natl Acad. Sci. USA 102, 1755–1760 (2005).

    CAS  PubMed  Google Scholar 

  22. Inglis, J. J. et al. Collagen-induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheum. 56, 4015–4023 (2007).

    PubMed  Google Scholar 

  23. Zhang, L. et al. TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 152, 419–427 (2011).

    CAS  PubMed  Google Scholar 

  24. Hess, A. et al. Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).

    CAS  PubMed  Google Scholar 

  25. Ferreira, S. H., Lorenzetti, B. B., Bristow, A. F. & Poole, S. Interleukin-1β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 334, 698–700 (1988).This is the first definitive study to show the proalgesic role of IL-1β in mice.

    CAS  PubMed  Google Scholar 

  26. Ebbinghaus, M. et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 64, 3897–3907 (2012).

    CAS  PubMed  Google Scholar 

  27. Fukuoka, H., Kawatani, M., Hisamitsu, T. & Takeshige, C. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1β in the rat. Brain Res. 657, 133–140 (1994).

    CAS  PubMed  Google Scholar 

  28. Binshtok, A. M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062–14073 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thakur, M. et al. Defining the nociceptor transcriptome. Front. Mol. Neurosci. 7, 87 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Xu, X. J. et al. Nociceptive responses in interleukin-6-deficient mice to peripheral inflammation and peripheral nerve section. Cytokine 9, 1028–1033 (1997).

    CAS  PubMed  Google Scholar 

  31. Malsch, P. et al. Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J. Neurosci. 34, 9845–9856 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Vazquez, E. et al. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum. 64, 2233–2242 (2012).

    CAS  PubMed  Google Scholar 

  33. McNamee, K. E. et al. IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain 152, 1838–1845 (2011).

    CAS  PubMed  Google Scholar 

  34. Pinto, L. G. et al. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 148, 247–256 (2010).

    CAS  PubMed  Google Scholar 

  35. Richter, F. et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 64, 4125–4134 (2012).

    CAS  PubMed  Google Scholar 

  36. Krukowski, K. et al. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J. Neurosci. 36, 11074–11083 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Milligan, E. D. et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur. J. Neurosci. 21, 2136–2148 (2005).

    PubMed  Google Scholar 

  38. Shen, K. F. et al. Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp. Neurol. 247, 466–475 (2013).

    CAS  PubMed  Google Scholar 

  39. Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat. Med. 15, 802–807 (2009).

    CAS  PubMed  Google Scholar 

  40. Cook, A. D. et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Ann. Rheum. Dis. 72, 265–270 (2013).

    CAS  PubMed  Google Scholar 

  41. Saleh, R. et al. CSF-1 in inflammatory and arthritic pain development. J. Immunol. 201, 2042–2053 (2018).

    CAS  PubMed  Google Scholar 

  42. Achuthan, A. et al. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. J. Clin. Invest. 126, 3453–3466 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. 34, 421–447 (2016).

    CAS  PubMed  Google Scholar 

  44. Chen, L., Yang, G. & Grosser, T. Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat. 104–105, 58–66 (2013).

    PubMed  Google Scholar 

  45. Ferreira, S. H. Prostaglandins, aspirin-like drugs and analgesia. Nat. New Biol. 240, 200–203 (1972).

    CAS  PubMed  Google Scholar 

  46. Samad, T. A. et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 (2001).

    CAS  PubMed  Google Scholar 

  47. Baba, H., Kohno, T., Moore, K. A. & Woolf, C. J. Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J. Neurosci. 21, 1750–1756 (2001).

    CAS  PubMed  Google Scholar 

  48. Levine, J. D., Lau, W., Kwiat, G. & Goetzl, E. J. Leukotriene B4 produces hyperalgesia that is dependent on polymorphonuclear leukocytes. Science 225, 743–745 (1984).This paper demonstrates that LTB 4 directly excites nociceptors to cause hyperalgesia, which is dependent upon leukocytes but is independent of prostaglandin signalling pathways.

    CAS  PubMed  Google Scholar 

  49. Zinn, S. et al. The leukotriene B4 receptors BLT1 and BLT2 form an antagonistic sensitizing system in peripheral sensory neurons. J. Biol. Chem. 292, 6123–6134 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Denk, F., Bennett, D. L. & McMahon, S. B. Nerve growth factor and pain mechanisms. Annu. Rev. Neurosci. 40, 307–325 (2017).

    CAS  PubMed  Google Scholar 

  51. Mizumura, K. & Murase, S. Role of nerve growth factor in pain. Handb. Exp. Pharmacol. 227, 57–77 (2015).

    CAS  PubMed  Google Scholar 

  52. Halliday, D. A., Zettler, C., Rush, R. A., Scicchitano, R. & McNeil, J. D. Elevated nerve growth factor levels in the synovial fluid of patients with inflammatory joint disease. Neurochem. Res. 23, 919–922 (1998).

    CAS  PubMed  Google Scholar 

  53. Lane, N. E. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med. 363, 1521–1531 (2010).This human study demonstrates that targeting NGF with a neutralizing antibody, tanezumab, significantly improves pain outcomes in patients with knee osteoarthritis.

    CAS  PubMed  Google Scholar 

  54. Bannwarth, B. & Kostine, M. Nerve growth factor antagonists: is the future of monoclonal antibodies becoming clearer? Drugs 77, 1377–1387 (2017).

    CAS  PubMed  Google Scholar 

  55. Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. & Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36, 57–68 (2002).

    CAS  PubMed  Google Scholar 

  56. Zhang, X., Huang, J. & McNaughton, P. A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24, 4211–4223 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kerr, B. J., Souslova, V., McMahon, S. B. & Wood, J. N. A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport 12, 3077–3080 (2001).

    CAS  PubMed  Google Scholar 

  58. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).This study demonstrates that signalling from microglia to neurons via BDNF is a crucial contributor to neuropathic pain by driving a shift in the anion gradient.

    CAS  PubMed  Google Scholar 

  59. Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29, 355–384 (2013).

    CAS  PubMed  Google Scholar 

  61. Cheng, J. K. & Ji, R. R. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem. Res. 33, 1970–1978 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).This study demonstrates that TRPV1, the capsaicin receptor, is sensitized by bradykinin and NGF through their activation of PLC, which mediates PtdIns(4,5)P 2 hydrolysis and release of inhibition of TRPV1 signalling.

    CAS  PubMed  Google Scholar 

  63. Prescott, E. D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003).

    CAS  PubMed  Google Scholar 

  64. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    CAS  PubMed  Google Scholar 

  65. Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985–990 (2000).

    CAS  PubMed  Google Scholar 

  66. Zhang, X., Li, L. & McNaughton, P. A. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59, 450–461 (2008).

    PubMed  Google Scholar 

  67. Khan, A. A. et al. Tumor necrosis factor alpha enhances the sensitivity of rat trigeminal neurons to capsaicin. Neuroscience 155, 503–509 (2008).

    CAS  PubMed  Google Scholar 

  68. Fang, D. et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain 156, 1124–1144 (2015).

    CAS  PubMed  Google Scholar 

  69. Viana, F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J. Physiol. 594, 4151–4169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115, 2393–2401 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmidt, M., Dubin, A. E., Petrus, M. J., Earley, T. J. & Patapoutian, A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Alessandri-Haber, N. et al. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39, 497–511 (2003).

    CAS  PubMed  Google Scholar 

  73. Alessandri-Haber, N., Dina, O. A., Joseph, E. K., Reichling, D. & Levine, J. D. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J. Neurosci. 26, 3864–3874 (2006).

    CAS  PubMed  Google Scholar 

  74. Alessandri-Haber, N. et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci. 24, 4444–4452 (2004).

    CAS  PubMed  Google Scholar 

  75. Todaka, H., Taniguchi, J., Satoh, J., Mizuno, A. & Suzuki, M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J. Biol. Chem. 279, 35133–35138 (2004).

    CAS  PubMed  Google Scholar 

  76. Dib-Hajj, S. D., Cummins, T. R., Black, J. A. & Waxman, S. G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 33, 325–347 (2010).

    CAS  PubMed  Google Scholar 

  77. Black, J. A., Liu, S., Tanaka, M., Cummins, T. R. & Waxman, S. G. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108, 237–247 (2004).

    CAS  PubMed  Google Scholar 

  78. Strickland, I. T. et al. Changes in the expression of NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root ganglia innervating the rat knee joint in a model of chronic inflammatory joint pain. Eur. J. Pain 12, 564–572 (2008).

    CAS  PubMed  Google Scholar 

  79. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013).This study demonstrates activation of nociceptor neurons by the bacterial pathogen S. aureus via the microbial components αHL and N -formyl peptides, which contribute to mechanical and thermal hyperalgesia.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Blake, K. J. et al. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat. Commun. 9, 37 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Diogenes, A., Ferraz, C. C., Akopian, A. N., Henry, M. A. & Hargreaves, K. M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res. 90, 759–764 (2011).

    CAS  PubMed  Google Scholar 

  82. Meseguer, V. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 5, 3125 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Rudick, C. N. et al. Host-pathogen interactions mediating pain of urinary tract infection. J. Infect. Dis. 201, 1240–1249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Alpizar, Y. A. et al. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat. Commun. 8, 1059 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Xu, Z. Z. et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat. Med. 21, 1326–1331 (2015).This study demonstrates that TLR5, a TLR that binds to bacterial flagellin, is specifically expressed by a subset of A-fibre neurons that mediate neuropathic pain, which is silenced via delivery of the charged analgesic compound QX-314 with flagellin.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yissachar, N. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168, 1135–1148 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Maruyama, K. et al. The ATP transporter VNUT mediates induction of dectin-1-triggered candida nociception. iScience 6, 306–318 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fields, H. L., Rowbotham, M. & Baron, R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol. Dis. 5, 209–227 (1998).

    CAS  PubMed  Google Scholar 

  89. Steiner, I., Kennedy, P. G. & Pachner, A. R. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. 6, 1015–1028 (2007).

    CAS  PubMed  Google Scholar 

  90. Marion, E. et al. Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways. Cell 157, 1565–1576 (2014).This paper demonstrates the analgesic action of a M. ulcerans mycolactone via activation of the type II angiotensin signalling pathway in sensory neurons to drive potassium-dependent neuronal hyperpolarization.

    CAS  PubMed  Google Scholar 

  91. Lotz, M., Vaughan, J. H. & Carson, D. A. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science 241, 1218–1221 (1988).

    CAS  PubMed  Google Scholar 

  92. Sun, J., Ramnath, R. D., Zhi, L., Tamizhselvi, R. & Bhatia, M. Substance P enhances NF-κB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am. J. Physiol. Cell Physiol. 294, C1586–C1596 (2008).

    CAS  PubMed  Google Scholar 

  93. Lim, J. E., Chung, E. & Son, Y. A neuropeptide, substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNgamma. Sci. Rep. 7, 9417 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Hong, H. S. & Son, Y. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response. Biochem. Biophys. Res. Commun. 453, 179–184 (2014).

    CAS  PubMed  Google Scholar 

  95. Baliu-Pique, M., Jusek, G. & Holzmann, B. Neuroimmunological communication via CGRP promotes the development of a regulatory phenotype in TLR4-stimulated macrophages. Eur. J. Immunol. 44, 3708–3716 (2014).

    CAS  PubMed  Google Scholar 

  96. Nong, Y. H., Titus, R. G., Ribeiro, J. M. & Remold, H. G. Peptides encoded by the calcitonin gene inhibit macrophage function. J. Immunol. 143, 45–49 (1989).

    CAS  PubMed  Google Scholar 

  97. Yaraee, R., Ebtekar, M., Ahmadiani, A. & Sabahi, F. Effect of neuropeptides (SP and CGRP) on antigen presentation by macrophages. Immunopharmacol. Immunotoxicol. 27, 395–404 (2005).

    CAS  PubMed  Google Scholar 

  98. Russell, F. A., King, R., Smillie, S. J., Kodji, X. & Brain, S. D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 94, 1099–1142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Harzenetter, M. D. et al. Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. J. Immunol. 179, 607–615 (2007).This study demonstrates that CGRP signals through PKA and ICER to block TLR-dependent induction of TNF and CCL4 in macrophages.

    CAS  PubMed  Google Scholar 

  100. Gomes, R. N. et al. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia. Shock 24, 590–594 (2005).

    CAS  PubMed  Google Scholar 

  101. Jusek, G., Reim, D., Tsujikawa, K. & Holzmann, B. Deficiency of the CGRP receptor component RAMP1 attenuates immunosuppression during the early phase of septic peritonitis. Immunobiology 217, 761–767 (2012).

    CAS  PubMed  Google Scholar 

  102. Delgado, M. et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J. Biol. Chem. 273, 31427–31436 (1998).

    CAS  PubMed  Google Scholar 

  103. Martinez, C. et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J. Leukoc. Biol. 63, 591–601 (1998).

    CAS  PubMed  Google Scholar 

  104. Fernandes, E. S. et al. TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. J. Immunol. 188, 5741–5751 (2012).

    CAS  PubMed  Google Scholar 

  105. Strausbaugh, H. J. et al. Painful stimulation suppresses joint inflammation by inducing shedding of L-selectin from neutrophils. Nat. Med. 5, 1057–1061 (1999).This study shows the importance of nociceptive pathways in limiting joint inflammation by enhancing the shedding of L-selectin from circulating neutrophils, leading to reduced neutrophil recruitment.

    CAS  PubMed  Google Scholar 

  106. Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and gammadelta T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24, 417–426 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lei, J. et al. Transient receptor potential vanilloid subtype 1 inhibits inflammation and apoptosis via the release of calcitonin gene-related peptide in the heart after myocardial infarction. Cardiology 134, 436–443 (2016).

    CAS  PubMed  Google Scholar 

  108. Huang, J., Stohl, L. L., Zhou, X., Ding, W. & Granstein, R. D. Calcitonin gene-related peptide inhibits chemokine production by human dermal microvascular endothelial cells. Brain Behav. Immun. 25, 787–799 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zimmerman, B. J., Anderson, D. C. & Granger, D. N. Neuropeptides promote neutrophil adherence to endothelial cell monolayers. Am. J. Physiol. 263, G678–G682 (1992).

    CAS  PubMed  Google Scholar 

  110. Richter, J., Andersson, R., Edvinsson, L. & Gullberg, U. Calcitonin gene-related peptide (CGRP) activates human neutrophils—inhibition by chemotactic peptide antagonist BOC-MLP. Immunology 77, 416–421 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mulderry, P. K. et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience 25, 195–205 (1988).

    CAS  PubMed  Google Scholar 

  112. Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360, eaan8546 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Alving, K. et al. Association between histamine-containing mast cells and sensory nerves in the skin and airways of control and capsaicin-treated pigs. Cell Tissue Res. 264, 529–538 (1991).

    CAS  PubMed  Google Scholar 

  114. Arizono, N. et al. Anatomical variation in mast cell nerve associations in the rat small intestine, heart, lung, and skin. Similarities of distances between neural processes and mast cells, eosinophils, or plasma cells in the jejunal lamina propria. Lab. Invest. 62, 626–634 (1990).

    CAS  PubMed  Google Scholar 

  115. Stead, R. H. et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc. Natl Acad. Sci. USA 84, 2975–2979 (1987).

    CAS  PubMed  Google Scholar 

  116. Furuno, T. et al. Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3. J. Neuroimmunol. 250, 50–58 (2012).

    CAS  PubMed  Google Scholar 

  117. Jarvikallio, A., Harvima, I. T. & Naukkarinen, A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch. Dermatol. Res. 295, 2–7 (2003).

    PubMed  Google Scholar 

  118. Mollanazar, N. K., Smith, P. K. & Yosipovitch, G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin. Rev. Allergy Immunol. 51, 263–292 (2016).

    CAS  PubMed  Google Scholar 

  119. Azimi, E. et al. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight 1, e89362 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241 (2015).This study identifies MRGPRB2, the orthologue of human MRGPRX2, as a critical receptor in mast cells that responds to major secretagogues including the nociceptive neuropeptide substance P.

    CAS  PubMed  Google Scholar 

  121. Bulut, K. et al. Sensory neuropeptides and epithelial cell restitution: the relevance of SP- and CGRP-stimulated mast cells. Int. J. Colorectal Dis. 23, 535–541 (2008).

    PubMed  Google Scholar 

  122. Kim, J. H. et al. CGRP, a neurotransmitter of enteric sensory neurons, contributes to the development of food allergy due to the augmentation of microtubule reorganization in mucosal mast cells. Biomed. Res. 35, 285–293 (2014).

    CAS  PubMed  Google Scholar 

  123. Russo, A. F. CGRP as a neuropeptide in migraine: lessons from mice. Br. J. Clin. Pharmacol. 80, 403–414 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Eftekhari, S., Warfvinge, K., Blixt, F. W. & Edvinsson, L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J. Pain 14, 1289–1303 (2013).

    CAS  PubMed  Google Scholar 

  125. Mikami, N. et al. Calcitonin gene-related peptide regulates type IV hypersensitivity through dendritic cell functions. PLOS ONE 9, e86367 (2014).

    PubMed  PubMed Central  Google Scholar 

  126. Ding, W., Stohl, L. L., Wagner, J. A. & Granstein, R. D. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J. Immunol. 181, 6020–6026 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Delgado, M., Gonzalez-Rey, E. & Ganea, D. VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. FASEB J. 18, 1453–1455 (2004).

    CAS  PubMed  Google Scholar 

  128. Delgado, M., Reduta, A., Sharma, V. & Ganea, D. VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4+ T cells. J. Leukoc. Biol. 75, 1122–1130 (2004).

    CAS  PubMed  Google Scholar 

  129. Ding, W. et al. Pituitary adenylate cyclase-activating peptide and vasoactive intestinal polypeptide bias Langerhans cell Ag presentation toward Th17 cells. Eur. J. Immunol. 42, 901–911 (2012).

    CAS  PubMed  Google Scholar 

  130. de Jong, P. R. et al. TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol. 8, 491–504 (2015).

    PubMed  Google Scholar 

  131. Voedisch, S., Rochlitzer, S., Veres, T. Z., Spies, E. & Braun, A. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PLOS ONE 7, e45951 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mikami, N. et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J. Immunol. 186, 6886–6893 (2011).

    CAS  PubMed  Google Scholar 

  136. Ding, W. et al. Calcitonin gene-related peptide-exposed endothelial cells bias antigen presentation to CD4+ T cells toward a Th17 response. J. Immunol. 196, 2181–2194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Talbot, S. et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87, 341–354 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Delgado, M. VIP: a very important peptide in T helper differentiation. Trends Immunol. 24, 221–224 (2003).

    CAS  PubMed  Google Scholar 

  139. Weinstock, J. V. et al. Substance P regulates Th1-type colitis in IL-10 knockout mice. J. Immunol. 171, 3762–3767 (2003).

    CAS  PubMed  Google Scholar 

  140. Cunin, P. et al. The tachykinins substance P and hemokinin-1 favor the generation of human memory Th17 cells by inducing IL-1β, IL-23, and TNF-like 1A expression by monocytes. J. Immunol. 186, 4175–4182 (2011).

    CAS  PubMed  Google Scholar 

  141. Walters, N., Trunkle, T., Sura, M. & Pascual, D. W. Enhanced immunoglobulin A response and protection against Salmonella enterica serovar Typhimurium in the absence of the substance P receptor. Infect. Immun. 73, 317–324 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, W. W. et al. Neuropeptide regulation of adaptive immunity in the tibia fracture model of complex regional pain syndrome. J. Neuroinflamm. 15, 105 (2018).

    Google Scholar 

  143. McGillis, J. P., Humphreys, S., Rangnekar, V. & Ciallella, J. Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). I. Characterization of high-affinity CGRP receptors on murine 70Z/3 cells. Cell. Immunol. 150, 391–404 (1993).

    CAS  PubMed  Google Scholar 

  144. McGillis, J. P., Humphreys, S. & Reid, S. Characterization of functional calcitonin gene-related peptide receptors on rat lymphocytes. J. Immunol. 147, 3482–3489 (1991).

    CAS  PubMed  Google Scholar 

  145. Payan, D. G., Brewster, D. R., Missirian-Bastian, A. & Goetzl, E. J. Substance P recognition by a subset of human T lymphocytes. J. Clin. Invest. 74, 1532–1539 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Reubi, J. C., Horisberger, U., Kappeler, A. & Laissue, J. A. Localization of receptors for vasoactive intestinal peptide, somatostatin, and substance P in distinct compartments of human lymphoid organs. Blood 92, 191–197 (1998).

    CAS  PubMed  Google Scholar 

  147. Moran, M. M. & Szallasi, A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br. J. Pharmacol. 175, 2185–2203 (2018).

    CAS  PubMed  Google Scholar 

  148. Grace, P. M., Hutchinson, M. R., Maier, S. F. & Watkins, L. R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14, 217–231 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Qin, X., Wan, Y. & Wang, X. CCL2 and CXCL1 trigger calcitonin gene-related peptide release by exciting primary nociceptive neurons. J. Neurosci. Res. 82, 51–62 (2005).

    CAS  PubMed  Google Scholar 

  150. Cao, D. L., Qian, B., Zhang, Z. J., Gao, Y. J. & Wu, X. B. Chemokine receptor CXCR2 in dorsal root ganglion contributes to the maintenance of inflammatory pain. Brain Res. Bull. 127, 219–225 (2016).

    CAS  PubMed  Google Scholar 

  151. Miller, R. E. et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc. Natl Acad. Sci. USA 109, 20602–20607 (2012).

    CAS  PubMed  Google Scholar 

  152. Gao, Y. J. et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J. Neurosci. 29, 4096–4108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, Z. J., Cao, D. L., Zhang, X., Ji, R. R. & Gao, Y. J. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain 154, 2185–2197 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Jiang, B. C. et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J. Clin. Invest. 126, 745–761 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Biber, K. et al. Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J. 30, 1864–1873 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Milligan, E. D. et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 20, 2294–2302 (2004).

    CAS  PubMed  Google Scholar 

  157. Verge, G. M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20, 1150–1160 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank F. A. Pinho-Ribeiro for helpful discussions. I.M.C. receives funding from the US National Institutes of Health (NIH) under grants NCCIH DP2AT009499 and RO1AI130019, the Chan-Zuckerberg Initiative and the Harvard Stem Cell Institute. S.U. receives support from the NIH under T32 AI007061.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussion of content and the writing, review and editing of the manuscript. P.B. and S.U. contributed to researching data for the article and contributed equally to the manuscript.

Corresponding authors

Correspondence to Swalpa Udit or Isaac M. Chiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nociceptors

Sensory nerves that are activated by noxious or potentially damaging stimuli. Two classes of nerve fibres, Aδ and C fibres, make up nociceptors in humans, and nociceptors are classified according to their ability to respond to mechanical, thermal and chemical stimuli. Free nerve endings in the periphery serving as receptive sites extend from neuronal cell bodies in the dorsal root or cranial nerve ganglia.

Presynaptic nerve

Anatomically, the neuron before the synapse that delivers the chemical neurotransmitter to the postsynaptic neuron. In figure1, presynaptic refers to peripheral sensory neurons projecting from the peripheral tissues to the spinal cord whose cell bodies are located in the dorsal root ganglia. These presynaptic neurons transmit pain signals from the periphery to the spinal cord.

Dorsal root ganglia

(DRG). Structures that contain clusters of sensory neurons that reside adjacent to the spinal cord, which include nociceptors. These neurons are pseudo-unipolar in nature, meaning that they have one axon with two processes: one peripheral axonal branch that innervates the tissues of the body to receive sensory information and one axonal branch that sends nerve impulses to the spinal cord. DRG also house satellite glia and macrophages that can modulate the function of sensory neurons.

Hyperalgesia

An increased sensitivity to a normally painful mechanical or thermal stimuli.

Postsynaptic neurons

Neurons located after the synapse that receives the chemical transmitter from the presynaptic neuron. In figure1, postsynaptic refers to second-order neurons in the dorsal horn of the spinal cord that project to the brain. These neurons transmit the nociceptive signals received from presynaptic neurons.

Allodynia

A painful sensation caused by a normally innocuous stimuli. For example, mechanical allodynia can be caused by light touch or stroking.

Capsaicin

The pungent ingredient from chili peppers that elicits the burning sensation of pain. Capsaicin is a ligand that binds to the transient receptor potential subfamily V member 1 (TRPV1) ion channel on nociceptors to drive pain sensation.

Substance P

A neuropeptide of 11 amino acids in length belonging to the tachykinin family. It is formed by differential splicing of the preprotachykinin A gene (TAC1). Substance P is widely distributed throughout the nervous system but has been best appreciated as an important neurotransmitter in nociceptive pathways.

Calcitonin gene-related peptide

(CGRP). A neuropeptide formed by the alternative splicing of the calcitonin gene. It has two isoforms, α-CGRP and β-CGRP, which differ in three amino acids and are transcribed from distinct genes (CALCA and CALCB). Classically, α-CGRP has been thought to be the primary form expressed in the peripheral and central nervous systems, while β-CGRP is mainly found in the enteric nervous system. Of note, while the primary association of CGRP is with the nervous system and particularly with nociceptive signalling, expression has been reported in non-neuronal cells as well.

M2 macrophage

An alternatively activated or anti-inflammatory macrophage. Multiple anti-inflammatory cytokines such as IL-4, IL-13 or IL-10 drive M2 macrophage polarization. While M1 macrophages drive host inflammation via release of pro-inflammatory cytokines, M2 macrophages mediate the resolution of inflammation and the wound healing.

Orthodromic

The traditional direction of action potentials in nerves, running along the axon away from the neuronal soma. For a peripheral sensory neuron, orthodromic means propagation of action potentials towards central nerve terminals and the spinal cord.

Antidromic

The opposite direction of traditional nerve impulses. For a peripheral sensory neuron, antidromic refers to back-propagation of action potentials towards peripheral nerve endings.

Vasoactive intestinal peptide

(VIP). A peptide of 28 amino acids in length belonging to the glucagon/secretin family and encoded by the VIP gene in humans. VIP acts via the G protein-coupled receptors VPAC1 and VPAC2. It is broadly expressed throughout the nervous system and peripheral tissues and has been best appreciated as a neurotransmitter implicated in gastrointestinal motility.

Pituitary adenylyl cyclase-activating polypeptide

(PACAP). A peptide with close homology to vasoactive intestinal peptide (VIP) that is encoded by the ADCYAP1 gene in humans and has two biologically active forms, PACAP-27 and PACAP-38. PACAP has high affinity for three classes of G protein-coupled receptors: VPAC1, VPAC2 and PAC1. Like VIP, PACAP is broadly expressed in the nervous system and peripheral tissues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baral, P., Udit, S. & Chiu, I.M. Pain and immunity: implications for host defence. Nat Rev Immunol 19, 433–447 (2019). https://doi.org/10.1038/s41577-019-0147-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0147-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing