Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving role of T-bet in resistance to infection

Abstract

The identification of T-bet as a key transcription factor associated with the development of IFNγ-producing CD4+ T cells predicted a crucial role for T-bet in cell-mediated immunity and in resistance to many intracellular infections. This idea was reinforced by initial reports showing that T-bet-deficient mice were more susceptible to pathogens that survived within the lysosomal system of macrophages. However, subsequent studies revealed IFNγ-dependent, T-bet-independent pathways of resistance to diverse classes of microorganisms that occupy other intracellular niches. Consequently, a more complex picture has emerged of how T-bet and the related transcription factor eomesodermin (EOMES) coordinate many facets of the immune response to bona fide pathogens as well as commensals. This article provides an overview of the discovery and evolutionary relationship between T-bet and EOMES and highlights the studies that have uncovered broader functions of T-bet in innate and adaptive immunity and in the development of the effector and memory T cell populations that mediate long-term resistance to infection.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: The induction and diverse target genes of T-bet.
Fig. 2: Expression of T-bet is linked to T cell trafficking behaviour.
Fig. 3: T-bet in immunity to pathogens that occupy distinct intracellular niches.
Fig. 4: Differential expression and function of T-bet and EOMES during differentiation of effector and memory T cell subsets.

Similar content being viewed by others

References

  1. Miller, J. F. & Mitchell, G. F. The thymus and the precursors of antigen reactive cells. Nature 216, 659–663 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Miller, J. F. Discovering the origins of immunological competence. Annu. Rev. Immunol. 17, 1–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Golstein, P., Wigzell, H., Blomgren, H. & Svedmyr, E. A. Cells mediating specific in vitro cytotoxicity. II. Probable autonomy of thymus-processed lymphocytes (T cells) for the killing of allogeneic target cells. J. Exp. Med. 135, 890–906 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cantor, H. & Boyse, E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T cell subclasses is a differentiative process independent of antigen. J. Exp. Med. 141, 1376–1389 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  6. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Vinuesa, C. G., Tangye, S. G., Moser, B. & Mackay, C. R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N. & Mills, K. H. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162, 1–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Umetsu, D. T., McIntire, J. J., Akbari, O., Macaubas, C. & DeKruyff, R. H. Asthma: an epidemic of dysregulated immunity. Nat. Immunol. 3, 715–720 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, X. R., Liu, C. Q., Feng, B. S. & Liu, Z. J. Dysregulation of mucosal immune response in pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 20, 3255–3264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745–751 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan, S. S. & Kyba, M. What is a master regulator? J. Stem Cell. Res. Ther. 3, 114 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Oestreich, K. J. & Weinmann, A. S. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat. Rev. Immunol. 12, 799–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wattler, S., Russ, A., Evans, M. & Nehls, M. A combined analysis of genomic and primary protein structure defines the phylogenetic relationship of new members if the T-box family. Genomics 48, 24–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bollag, R. J. et al. An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nat. Genet. 7, 383–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Herrmann, B. G., Labeit, S., Poustka, A., King, T. R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Naiche, L. A., Harrelson, Z., Kelly, R. G. & Papaioannou, V. E. T-box genes in vertebrate development. Annu. Rev. Genet. 39, 219–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Papaioannou, V. E. The T-box gene family: emerging roles in development, stem cells and cancer. Development 141, 3819–3833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Bertrand, S. & Escriva, H. Evolutionary crossroads in developmental biology: amphioxus. Development 138, 4819–4830 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, G. et al. The identification of lymphocyte-like cells and lymphoid-related genes in amphioxus indicates the twilight for the emergence of adaptive immune system. PLOS ONE 2, e206 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Horton, A. C. & Gibson-Brown, J. J. Evolution of developmental functions by the Eomesodermin, T-brain-1, Tbx21 subfamily of T-box genes: insights from amphioxus. J. Exp. Zool. 294, 112–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Boehm, T. et al. VLR-based adaptive immunity. Annu. Rev. Immunol. 30, 203–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang, J. & Malhotra, N. Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu. Rev. Immunol. 33, 505–538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Secombes, C. J. & Zou, J. Evolution of interferons and interferon receptors. Front. Immunol. 8, 209 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Russ, A. P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science 302, 1041–1043 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kallies, A. & Good-Jacobson, K. L. Transcription factor T-bet orchestrates lineage development and function in the immune system. Trends Immunol. 38, 287–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, J. et al. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur. J. Immunol. 48, 738–750 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Mathur, A. N. et al. T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood 108, 1595–1601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. & Glimcher, L. H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Djuretic, I. M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Lazarevic, V. et al. T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nat. Immunol. 12, 96–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Oestreich, K. J., Huang, A. C. & Weinmann, A. S. The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns. J. Exp. Med. 208, 1001–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iwata, S. et al. The transcription factor T-bet limits amplification of type I IFN transcriptome and circuitry in T helper 1 cells. Immunity 46, 983–991 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kao, C. et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat. Immunol. 12, 663–671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anderson, A. C. et al. T-bet, a Th1 transcription factor regulates the expression of Tim-3. Eur. J. Immunol. 40, 859–866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schulz, E. G., Mariani, L., Radbruch, A. & Hofer, T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30, 673–683 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Stienne, C. et al. Foxo3 transcription factor drives pathogenic T helper 1 differentiation by inducing the expression of Eomes. Immunity 45, 774–787 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin, Z. et al. T-bet expression and failure of GATA-3 cross-regulation lead to default production of IFN-gamma by gammadelta T cells. J. Immunol. 168, 1566–1571 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Lugo-Villarino, G., Maldonado-Lopez, R., Possemato, R., Penaranda, C. & Glimcher, L. H. T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells. Proc. Natl Acad. Sci. USA 100, 7749–7754 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lugo-Villarino, G., Ito, S., Klinman, D. M. & Glimcher, L. H. The adjuvant activity of CpG DNA requires T-bet expression in dendritic cells. Proc. Natl Acad. Sci. USA 102, 13248–13253 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klose, C. S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Kwong, B. et al. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat. Immunol. 18, 1117–1127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37, 674–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takeda, A. et al. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J. Immunol. 170, 4886–4890 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Sutherland, A. P. et al. IL-21 promotes CD8+ CTL activity via the transcription factor T-bet. J. Immunol. 190, 3977–3984 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Wiesel, M. et al. Type-I IFN drives the differentiation of short-lived effector CD8+ T cells in vivo. Eur. J. Immunol. 42, 320–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Chornoguz, O. et al. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation. J. Immunol. 198, 3939–3948 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Oh, S. & Hwang, E. S. The role of protein modifications of T-bet in cytokine production and differentiation of T helper cells. J. Immunol. Res. 2014, 589672 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. McLane, L. M. et al. Differential localization of T-bet and Eomes in CD8 T cell memory populations. J. Immunol. 190, 3207–3215 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Chang, J. T. et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34, 492–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neurath, M. F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J. Exp. Med. 195, 1129–1143 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jang, E. J., Park, H. R., Hong, J. H. & Hwang, E. S. Lysine 313 of T-box is crucial for modulation of protein stability, DNA binding, and threonine phosphorylation of T-bet. J. Immunol. 190, 5764–5770 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Zhu, J. et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37, 660–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beima, K. M. et al. T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. J. Biol. Chem. 281, 11992–12000 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Jenner, R. G. et al. The transcription factors T-bet and GATA-3 control alternative pathways of T cell differentiation through a shared set of target genes. Proc. Natl Acad. Sci. USA 106, 17876–17881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dominguez, C. X. et al. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J. Exp. Med. 212, 2041–2056 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl Acad. Sci. USA 100, 15818–15823 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brewitz, A. et al. CD8(+) T cells orchestrate pDC-XCR1(+) dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46, 205–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gerard, A. et al. Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8 T cells. Nat. Immunol. 14, 356–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harms Pritchard, G. et al. Diverse roles for T-bet in the effector responses required for resistance to infection. J. Immunol. 194, 1131–1140 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hu, J. K., Kagari, T., Clingan, J. M. & Matloubian, M. Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T cell generation. Proc. Natl Acad. Sci. USA 108, E118–E127 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. Lord, G. M. et al. T-bet is required for optimal proinflammatory CD4+ T cell trafficking. Blood 106, 3432–3439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature 385, 81–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Borges, E. et al. P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J. Exp. Med. 185, 573–578 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kum, W. W. et al. Lack of functional P-selectin ligand exacerbates Salmonella serovar typhimurium infection. J. Immunol. 182, 6550–6561 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Lindell, D. M., Lane, T. E. & Lukacs, N. W. CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8(+) T cell efficacy. Eur. J. Immunol. 38, 2168–2179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cohen, S. B. et al. CXCR3-dependent CD4(+) T cells are required to activate inflammatory monocytes for defense against intestinal infection. PLOS Pathog. 9, e1003706 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wilson, D. C., Matthews, S. & Yap, G. S. IL-12 signaling drives CD8+ T cell IFN-gamma production and differentiation of KLRG1+ effector subpopulations during Toxoplasma gondii Infection. J. Immunol. 180, 5935–5945 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Shah, S., Grotenbreg, G. M., Rivera, A. & Yap, G. S. An extrafollicular pathway for the generation of effector CD8(+) T cells driven by the proinflammatory cytokine, IL-12. eLife 4, e09017 (2015).

    Article  PubMed Central  Google Scholar 

  88. Jaakkola, I., Merinen, M., Jalkanen, S. & Hanninen, A. Ly6C induces clustering of LFA-1 (CD11a/CD18) and is involved in subtype-specific adhesion of CD8 T cells. J. Immunol. 170, 1283–1290 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hanninen, A., Jaakkola, I., Salmi, M., Simell, O. & Jalkanen, S. Ly-6C regulates endothelial adhesion and homing of CD8(+) T cells by activating integrin-dependent adhesion pathways. Proc. Natl Acad. Sci. USA 94, 6898–6903 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hall, A. O. et al. The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity 37, 511–523 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sciume, G. et al. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209, 2331–2338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jenne, C. N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206, 2469–2481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mayol, K., Biajoux, V., Marvel, J., Balabanian, K. & Walzer, T. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood 118, 4863–4871 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Fang, V. et al. Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-gamma response. Nat. Immunol. 18, 15–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Scott, P., Natovitz, P., Coffman, R. L., Pearce, E. & Sher, A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J. Exp. Med. 168, 1675–1684 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Locksley, R. M., Heinzel, F. P., Sadick, M. D., Holaday, B. J. & Gardner, K. D. Jr. Murine cutaneous leishmaniasis: susceptibility correlates with differential expansion of helper T cell subsets. Ann. Inst. Pasteur Immunol. 138, 744–749 (1987).

    Article  CAS  PubMed  Google Scholar 

  104. Cooper, A. M. et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Hess, J., Ladel, C., Miko, D. & Kaufmann, S. H. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J. Immunol. 156, 3321–3326 (1996).

    CAS  PubMed  Google Scholar 

  106. Sullivan, B. M. et al. Increased susceptibility of mice lacking T-bet to infection with Mycobacterium tuberculosis correlates with increased IL-10 and decreased IFN-gamma production. J. Immunol. 175, 4593–4602 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Ravindran, R., Foley, J., Stoklasek, T., Glimcher, L. H. & McSorley, S. J. Expression of T-bet by CD4 T cells is essential for resistance to Salmonella infection. J. Immunol. 175, 4603–4610 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Way, S. S. & Wilson, C. B. Cutting edge: immunity and IFN-gamma production during Listeria monocytogenes infection in the absence of T-bet. J. Immunol. 173, 5918–5922 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Ou, R., Zhou, S., Huang, L. & Moskophidis, D. Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J. Virol. 75, 8407–8423 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Intlekofer, A. M. et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321, 408–411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nayar, R. et al. IRF4 regulates the ratio of T-Bet to eomesodermin in CD8+ T cells responding to persistent LCMV infection. PLOS ONE 10, e0144826 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Smith, A. et al. The role of the integrin LFA-1 in T-lymphocyte migration. Immunol. Rev. 218, 135–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Harris, T. H. et al. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Oakley, M. S. et al. The transcription factor T-bet regulates parasitemia and promotes pathogenesis during Plasmodium berghei ANKA murine malaria. J. Immunol. 191, 4699–4708 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Guo, S., Cobb, D. & Smeltz, R. B. T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. J. Immunol. 182, 6179–6186 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Cobb, D. et al. T-Bet-dependent regulation of CD8+ T cell expansion during experimental Trypanosoma cruzi infection. Immunology 128, 589–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. da Matta Guedes, P. M. et al. IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis. PLOS Negl. Trop. Dis. 4, e604 (2010).

    Article  PubMed  CAS  Google Scholar 

  118. Miyazaki, Y. et al. IL-17 is necessary for host protection against acute-phase Trypanosoma cruzi infection. J. Immunol. 185, 1150–1157 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Er, J. Z., Koean, R. A. G. & Ding, J. L. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 38, e99176 (2019).

    Article  PubMed  CAS  Google Scholar 

  120. Skyberg, J. A. et al. Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain. Infect. Immun. 81, 3099–3105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Melillo, A. A., Foreman, O., Bosio, C. M. & Elkins, K. L. T-bet regulates immunity to Francisella tularensis live vaccine strain infection, particularly in lungs. Infect. Immun. 82, 1477–1490 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Torrado, E. et al. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J. Exp. Med. 212, 1449–1463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sallin, M. A. et al. Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis. Cell. Rep. 18, 3091–3104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sato, F. et al. T-bet, but not Gata3, overexpression is detrimental in a neurotropic viral infection. Sci. Rep. 7, 10496 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Weinstein, J. S. et al. STAT4 and T-bet control follicular helper T cell development in viral infections. J. Exp. Med. 215, 337–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fang, D. et al. Transient T-bet expression functionally specifies a distinct T follicular helper subset. J. Exp. Med. 215, 2705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc. Natl Acad. Sci. USA 99, 5545–5550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gerth, A. J., Lin, L. & Peng, S. L. T-bet regulates T-independent IgG2a class switching. Int. Immunol. 15, 937–944 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Xu, W. & Zhang, J. J. Stat1-dependent synergistic activation of T-bet for IgG2a production during early stage of B cell activation. J. Immunol. 175, 7419–7424 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, N., Ohnishi, N., Ni, L., Akira, S. & Bacon, K. B. CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat. Immunol. 4, 687–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Rubtsova, K., Rubtsov, A. V., Cancro, M. P. & Marrack, P. Age-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunity. J. Immunol. 195, 1933–1937 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Naradikian, M. S. et al. Cutting edge: IL-4, IL-21, and IFN-gamma interact to govern T-bet and CD11c expression in TLR-activated B cells. J. Immunol. 197, 1023–1028 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, N. S. et al. Divergent transcriptional programming of class-specific B cell memory by T-bet and RORalpha. Nat. Immunol. 13, 604–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Piovesan, D. et al. c-Myb regulates the T-bet-dependent differentiation program in B cells to coordinate antibody responses. Cell. Rep. 19, 461–470 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Mohr, E. et al. IFN-{gamma} produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine. Proc. Natl Acad. Sci. USA 107, 17292–17297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Karnell, J. L. et al. Role of CD11c(+) T-bet(+) B cells in human health and disease. Cell. Immunol. 321, 40–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Naradikian, M. S., Hao, Y. & Cancro, M. P. Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol. Rev. 269, 118–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Barnett, B. E. et al. Cutting edge: B cell-intrinsic T-bet expression is required to control chronic viral infection. J. Immunol. 197, 1017–1022 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Knox, J. J. et al. T-bet+B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2, 92943 (2017).

    Article  PubMed  Google Scholar 

  141. Chang, L. Y., Li, Y. & Kaplan, D. E. Hepatitis C viraemia reversibly maintains subset of antigen-specific T-bet+ tissue-like memory B cells. J. Viral Hepat. 24, 389–396 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Kurktschiev, P. D. et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J. Exp. Med. 211, 2047–2059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hersperger, A. R. et al. Increased HIV-specific CD8+ T cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 117, 3799–3808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ribeiro-dos-Santos, P. et al. Chronic HIV infection affects the expression of the 2 transcription factors required for CD8 T cell differentiation into cytolytic effectors. Blood 119, 4928–4938 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+T cells in HIV infection. PLOS Pathog. 10, e1004251 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Marshall, H. D. et al. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4(+) cell properties during viral infection. Immunity 35, 633–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pearce, E. L. & Shen, H. Generation of CD8 T cell memory is regulated by IL-12. J. Immunol. 179, 2074–2081 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Darrah, P. A. et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13, 843–850 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hoffmann, M. et al. Exhaustion of activated CD8 T cells predicts disease progression in primary HIV-1 infection. PLOS Pathog. 12, e1005661 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Klarquist, J. et al. Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Sci. Immunol. 3, eaas9822 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Olson, J. A., McDonald-Hyman, C., Jameson, S. C. & Hamilton, S. E. Effector-like CD8(+) T cells in the memory population mediate potent protective immunity. Immunity 38, 1250–1260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Snyder, C. M. et al. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29, 650–659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chu, H. H. et al. Continuous effector CD8(+) T cell production in a controlled persistent infection is sustained by a proliferative intermediate population. Immunity 45, 159–171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bottcher, J. P. et al. Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nat. Commun. 6, 8306 (2015).

    Article  PubMed  CAS  Google Scholar 

  158. Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Herndler-Brandstetter, D. et al. KLRG1(+) effector CD8(+) T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity 48, 716–729 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Diaz, Y. R., Rojas, R., Valderrama, L. & Saravia, N. G. T-bet, GATA-3, and Foxp3 expression and Th1/Th2 cytokine production in the clinical outcome of human infection with Leishmania (Viannia) species. J. Infect. Dis. 202, 406–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Dorfman, D. M., Hwang, E. S., Shahsafaei, A. & Glimcher, L. H. T-bet, a T cell-associated transcription factor, is expressed in Hodgkin’s lymphoma. Hum. Pathol. 36, 10–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Dorfman, D. M., Hwang, E. S., Shahsafaei, A. & Glimcher, L. H. T-bet, a T cell-associated transcription factor, is expressed in a subset of B cell lymphoproliferative disorders. Am. J. Clin. Pathol. 122, 292–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Dorfman, D. M., van den Elzen, P., Weng, A. P., Shahsafaei, A. & Glimcher, L. H. Differential expression of T-bet, a T-box transcription factor required for Th1 T cell development, in peripheral T cell lymphomas. Am. J. Clin. Pathol. 120, 866–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Dolfi, D. V. et al. Increased T-bet is associated with senescence of influenza virus-specific CD8 T cells in aged humans. J. Leukoc. Biol. 93, 825–836 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sasaki, Y. et al. Identification of a novel type 1 diabetes susceptibility gene. T-bet. Hum. Genet. 115, 177–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Svensson, A. et al. A 3′-untranslated region polymorphism in the TBX21 gene encoding T-bet is a risk factor for genital herpes simplex virus type 2 infection in humans. J. Gen. Virol. 89, 2262–2268 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Svensson, A., Nordstrom, I., Sun, J. B. & Eriksson, K. Protective immunity to genital herpes simplex [correction of simpex] virus type 2 infection is mediated by T-bet. J. Immunol. 174, 6266–6273 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Reiner for ongoing discussions. Funding support was provided by the National Institutes of Health (NIH) to all authors and the Commonwealth of Pennsylvania to C.A.H.

Reviewer information

Nature Reviews Immunology thanks V. Lazarevic, G. Lord and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.A.H. and G.H.P. contributed to researching data, discussion of content and the writing, review and editing of this manuscript. R.M.K. contributed to discussion of content and the review and editing of the manuscript.

Corresponding author

Correspondence to Christopher A. Hunter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pritchard, G.H., Kedl, R.M. & Hunter, C.A. The evolving role of T-bet in resistance to infection. Nat Rev Immunol 19, 398–410 (2019). https://doi.org/10.1038/s41577-019-0145-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0145-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing