Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Calcium signalling in T cells

Abstract

Calcium (Ca2+) signalling is of paramount importance to immunity. Regulated increases in cytosolic and organellar Ca2+ concentrations in lymphocytes control complex and crucial effector functions such as metabolism, proliferation, differentiation, antibody and cytokine secretion and cytotoxicity. Altered Ca2+ regulation in lymphocytes leads to various autoimmune, inflammatory and immunodeficiency syndromes. Several types of plasma membrane and organellar Ca2+-permeable channels are functional in T cells. They contribute highly localized spatial and temporal Ca2+ microdomains that are required for achieving functional specificity. While the mechanistic details of these Ca2+ microdomains are only beginning to emerge, it is evident that through crosstalk, synergy and feedback mechanisms, they fine-tune T cell signalling to match complex immune responses. In this article, we review the expression and function of various Ca2+-permeable channels in the plasma membrane, endoplasmic reticulum, mitochondria and endolysosomes of T cells and their role in shaping immunity and the pathogenesis of immune-mediated diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Calcium signalling in T cells.
Fig. 2: ORAI channels: major players in T cell activation.
Fig. 3: TRP channels: regulators of T cell calcium signalling.
Fig. 4: P2RXs: amplifiers of T cell receptor-mediated calcium signalling through paracrine and autocrine ATP.
Fig. 5: CaV channels: modulators of T cell calcium signalling.
Fig. 6: Organellar calcium channels: initiators and master orchestrators of calcium signalling microdomains during T cell activation.

References

  1. Vig, M. & Kinet, J. P. Calcium signaling in immune cells. Nat. Immunol. 10, 21–27 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cai, X., Wang, X., Patel, S. & Clapham, D. E. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium 57, 166–173 (2015).

    CAS  PubMed  Google Scholar 

  3. Hogan, P. G., Lewis, R. S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28, 491–533 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Feske, S., Wulff, H. & Skolnik, E. Y. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291–353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Feske, S., Skolnik, E. Y. & Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12, 532–547 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Berridge, M. J. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96, 1261–1296 (2016). This paper provides an excellent and comprehensive review on Ins(1,4,5)P 3 signalling pathways in health and disease.

    CAS  PubMed  Google Scholar 

  7. De Stefani, D., Rizzuto, R. & Pozzan, T. Enjoy the trip: calcium in mitochondria back and forth. Annu. Rev. Biochem. 85, 161–192 (2016). This is an excellent review on mitochondrial Ca 2+ signalling and its role in shaping cell signalling and cell function.

    PubMed  Google Scholar 

  8. Foskett, J. K., White, C., Cheung, K. H. & Mak, D. O. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 87, 593–658 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Raffaello, A., Mammucari, C., Gherardi, G. & Rizzuto, R. Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41, 1035–1049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiong, J. & Zhu, M. X. Regulation of lysosomal ion homeostasis by channels and transporters. Sci. China Life Sci. 59, 777–791 (2016). This review provides an excellent introduction to ion channel networks in lysosomes and their role in lysosomal function.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cahalan, M. D. & Chandy, K. G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231, 59–87 (2009). References 4 and 11 are detailed review articles that provide excellent overviews of different ions and ion channels and their role in controlling innate and adaptive immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Badou, A. et al. Critical role for the β regulatory subunits of Cav channels in T lymphocyte function. Proc. Natl Acad. Sci. USA 103, 15529–15534 (2006).

    CAS  PubMed  Google Scholar 

  13. Omilusik, K. et al. The Ca(v)1.4 calcium channel is a critical regulator of T cell receptor signaling and naive T cell homeostasis. Immunity 35, 349–360 (2011).

    CAS  PubMed  Google Scholar 

  14. Wang, H. et al. Low-voltage-activated CaV3.1 calcium channels shape T helper cell cytokine profiles. Immunity 44, 782–794 (2016). This article provides the first patch clamp evidence of T-type Ca 2+ channels in T cells and their role in cytokine production and immune function.

    CAS  PubMed  Google Scholar 

  15. Parker, I. & Smith, I. F. Recording single-channel activity of inositol trisphosphate receptors in intact cells with a microscope, not a patch clamp. J. Gen. Physiol. 136, 119–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mikoshiba, K. IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J. Neurochem. 102, 1426–1446 (2007).

    CAS  PubMed  Google Scholar 

  17. Guse, A. H. & Wolf, I. M. Ca2+ microdomains, NAADP and type 1 ryanodine receptor in cell activation. Biochim. Biophys. Acta 1863, 1379–1384 (2016).

    CAS  PubMed  Google Scholar 

  18. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011). References 18 and 19 were the first to identify the MCU, which is largely responsible for Ca 2+ uptake by mitochondria.

    PubMed  PubMed Central  Google Scholar 

  20. McCormack, J. G. & Denton, R. M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem. J. 180, 533–544 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Denton, R. M. & McCormack, J. G. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu. Rev. Physiol. 52, 451–466 (1990).

    CAS  PubMed  Google Scholar 

  22. McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).

    CAS  PubMed  Google Scholar 

  23. Hansford, R. G. Physiological role of mitochondrial Ca2+ transport. J. Bioenerg. Biomembr. 26, 495–508 (1994).

    CAS  PubMed  Google Scholar 

  24. Montero, M. et al. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2, 57–61 (2000).

    CAS  PubMed  Google Scholar 

  25. Cali, T., Brini, M. & Carafoli, E. Regulation of cell calcium and role of plasma membrane calcium ATPases. Int. Rev. Cell. Mol. Biol. 332, 259–296 (2017).

    CAS  PubMed  Google Scholar 

  26. Stafford, N., Wilson, C., Oceandy, D., Neyses, L. & Cartwright, E. J. The plasma membrane calcium ATPases and their role as major new players in human disease. Physiol. Rev. 97, 1089–1125 (2017).

    CAS  PubMed  Google Scholar 

  27. Chemaly, E. R., Troncone, L. & Lebeche, D. SERCA control of cell death and survival. Cell Calcium 69, 46–61 (2018).

    CAS  PubMed  Google Scholar 

  28. Wu, K. D., Lee, W. S., Wey, J., Bungard, D. & Lytton, J. Localization and quantification of endoplasmic reticulum Ca2+-ATPase isoform transcripts. Am. J. Physiol. 269, C775–C784 (1995).

    CAS  PubMed  Google Scholar 

  29. Chen, J. et al. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat. Immunol. 5, 651–657 (2004).

    CAS  PubMed  Google Scholar 

  30. Palty, R. et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl Acad. Sci. USA 107, 436–441 (2010). This paper is the first to identify the molecular identity of the Na + /Ca 2+ exchanger in mitochondria (NCLX), which is responsible for Ca 2+ extrusion from mitochondria.

    CAS  PubMed  Google Scholar 

  31. Nissim, B.-K. T. et al. Mitochondria control store-operated Ca2+ entry through Na+ and redox signals. EMBO J. 36, 797–815 (2017).

    Google Scholar 

  32. Sekler, I. Standing of giants shoulders the story of the mitochondrial Na+Ca2+ exchanger. Biochem. Biophys. Res. Commun. 460, 50–52 (2015).

    CAS  PubMed  Google Scholar 

  33. Xu, H. & Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 77, 57–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Paroutis, P., Touret, N. & Grinstein, S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 19, 207–215 (2004).

    CAS  Google Scholar 

  35. Christensen, K. A., Myers, J. T. & Swanson, J. A. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci. 115, 599–607 (2002).

    CAS  PubMed  Google Scholar 

  36. Morgan, A. J., Davis, L. C., Ruas, M. & Galione, A. TPC: the NAADP discovery channel? Biochem. Soc. Trans. 43, 384–389 (2015).

    CAS  PubMed  Google Scholar 

  37. Morgan, A. J., Platt, F. M., Lloyd-Evans, E. & Galione, A. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem. J. 439, 349–374 (2011).

    CAS  PubMed  Google Scholar 

  38. Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

    CAS  PubMed  Google Scholar 

  39. Putney, J. W. Jr. A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12 (1986).

    CAS  PubMed  Google Scholar 

  40. Putney, J. W. Jr. Capacitative calcium entry revisited. Cell Calcium 11, 611–624 (1990).

    CAS  PubMed  Google Scholar 

  41. Takemura, H., Hughes, A. R., Thastrup, O. & Putney, J. W. Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J. Biol. Chem. 264, 12266–12271 (1989).

    CAS  PubMed  Google Scholar 

  42. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    CAS  PubMed  Google Scholar 

  43. Prakriya, M. & Lewis, R. S. Store-operated calcium channels. Physiol. Rev. 95, 1383–1436 (2015). This is an exhaustive review that provides an outstanding overview of store-operated Ca 2+ channels, including their biophysical properties, activation, regulation and cellular function.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Trebak, M. & Putney, J. W. Jr. ORAI calcium channels. Physiology (Bethesda) 32, 332–342 (2017). This review provides a brief historical overview of store-operated Ca 2 + channels and a summary of the various native Ca 2 + channels encoded by ORAI proteins.

    CAS  Google Scholar 

  45. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brandman, O., Liou, J., Park, W. S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131, 1327–1339 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    CAS  PubMed  Google Scholar 

  49. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, S. L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl Acad. Sci. USA 103, 9357–9362 (2006).

    CAS  PubMed  Google Scholar 

  51. Mercer, J. C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat. Cell Biol. 8, 771–773 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    CAS  PubMed  Google Scholar 

  54. Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281, 20661–20665 (2006).

    CAS  PubMed  Google Scholar 

  55. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lioudyno, M. I. et al. Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc. Natl Acad. Sci. USA 105, 2011–2016 (2008).

    CAS  PubMed  Google Scholar 

  57. Feske, S. et al. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26, 2119–2126 (1996).

    CAS  PubMed  Google Scholar 

  58. Fuchs, S. et al. Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J. Immunol. 188, 1523–1533 (2012).

    CAS  PubMed  Google Scholar 

  59. Le Deist, F. et al. A primary T cell immunodeficiency associated with defective transmembrane calcium influx. Blood 85, 1053–1062 (1995).

    PubMed  Google Scholar 

  60. Picard, C. et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971–1980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vaeth, M. et al. Store-operated Ca2+ entry controls clonal expansion of T cells through metabolic reprogramming. Immunity 47, 664–679 (2017). This is an outstanding paper providing evidence for the role of SOCE in T cell metabolism and immunity through control of glycolysis and oxidative phosphorylation genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    CAS  PubMed  Google Scholar 

  63. Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269, 32327–32335 (1994).

    CAS  PubMed  Google Scholar 

  64. Lacruz, R. S. & Feske, S. Diseases caused by mutations in ORAI1 and STIM1. Ann. NY Acad. Sci. 1356, 45–79 (2015).

    CAS  PubMed  Google Scholar 

  65. Vaeth, M. & Feske, S. Ion channelopathies of the immune system. Curr. Opin. Immunol. 52, 39–50 (2018).

    CAS  PubMed  Google Scholar 

  66. Oh-Hora, M. et al. Agonist-selected T cell development requires strong T cell receptor signaling and store-operated calcium entry. Immunity 38, 881–895 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vig, M. et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat. Immunol. 9, 89–96 (2008).

    CAS  PubMed  Google Scholar 

  68. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vaeth, M. et al. ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat. Commun. 8, 14714 (2017). This paper provides the first evidence that ORAI2 channels act as negative modulators of SOCE and T cell immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaufmann, U. et al. Selective ORAI1 inhibition ameliorates autoimmune central nervous system inflammation by suppressing effector but not regulatory T cell function. J. Immunol. 196, 573–585 (2016).

    CAS  PubMed  Google Scholar 

  71. Kim, K. D. et al. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. J. Immunol. 192, 110–122 (2014).

    CAS  PubMed  Google Scholar 

  72. Wang, X. et al. Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat. Commun. 5, 3183 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Vaeth, M. et al. Store-operated Ca2+ entry in follicular T cells controls humoral immune responses and autoimmunity. Immunity 44, 1350–1364 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, K. D. et al. ORAI1 deficiency impairs activated T cell death and enhances T cell survival. J. Immunol. 187, 3620–3630 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Srikanth, S., Woo, J. S., Sun, Z. & Gwack, Y. Immunological disorders: regulation of Ca2+ signaling in T lymphocytes. Adv. Exp. Med. Biol. 993, 397–424 (2017).

    CAS  PubMed  Google Scholar 

  76. Robbs, B. K., Cruz, A. L., Werneck, M. B., Mognol, G. P. & Viola, J. P. Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol. Cell. Biol. 28, 7168–7181 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Srinivasan, M. & Frauwirth, K. A. Reciprocal NFAT1 and NFAT2 nuclear localization in CD8+ anergic T cells is regulated by suboptimal calcium signaling. J. Immunol. 179, 3734–3741 (2007).

    CAS  PubMed  Google Scholar 

  78. Desvignes, L. et al. STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection. J. Clin. Invest. 125, 2347–2362 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Tsvilovskyy, V. et al. Deletion of Orai2 augments endogenous CRAC currents and degranulation in mast cells leading to enhanced anaphylaxis. Cell Calcium 71, 24–33 (2018).

    CAS  PubMed  Google Scholar 

  80. Shuttleworth, T. J. Selective activation of distinct Orai channels by STIM1. Cell Calcium 63, 40–42 (2017).

    CAS  PubMed  Google Scholar 

  81. Desai, P. N. et al. Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci. Signal. 8, ra74 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Gonzalez-Cobos, J. C. et al. Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ. Res. 112, 1013–1025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, X. et al. Mechanisms of STIM1 activation of store-independent leukotriene C4-regulated Ca2+ channels. Mol. Cell. Biol. 33, 3715–3723 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, X. et al. Complex role of STIM1 in the activation of store-independent Orai1/3 channels. J. Gen. Physiol. 143, 345–359 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bogeski, I. et al. Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci. Signal. 3, ra24 (2010).

    PubMed  Google Scholar 

  86. Liu, S., Kiyoi, T., Takemasa, E. & Maeyama, K. Systemic lentivirus-mediated delivery of short hairpin RNA targeting calcium release-activated calcium channel 3 as gene therapy for collagen-induced arthritis. J. Immunol. 194, 76–83 (2015).

    CAS  PubMed  Google Scholar 

  87. Wenning, A. S. et al. TRP expression pattern and the functional importance of TRPC3 in primary human T cells. Biochim. Biophys. Acta 1813, 412–423 (2011).

    CAS  PubMed  Google Scholar 

  88. Philipp, S. et al. TRPC3 mediates T cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem. 278, 26629–26638 (2003).

    CAS  PubMed  Google Scholar 

  89. Beck, A., Kolisek, M., Bagley, L. A., Fleig, A. & Penner, R. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J. 20, 962–964 (2006).

    CAS  PubMed  Google Scholar 

  90. Guse, A. H. et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398, 70–73 (1999).

    CAS  PubMed  Google Scholar 

  91. Melzer, N., Hicking, G., Gobel, K. & Wiendl, H. TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. PLOS ONE 7, e47617 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    CAS  PubMed  Google Scholar 

  93. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    CAS  PubMed  Google Scholar 

  94. Weber, K. S., Hildner, K., Murphy, K. M. & Allen, P. M. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J. Immunol. 185, 2836–2846 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, X. et al. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185, 1837–1849 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chandy, K. G. et al. K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25, 280–289 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Faouzi, M., Kilch, T., Horgen, F. D., Fleig, A. & Penner, R. The TRPM7 channel kinase regulates store-operated calcium entry. J. Physiol. 595, 3165–3180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Beesetty, P. et al. Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T cell proliferation and diminished store-operated calcium entry. Sci. Rep. 8, 3023 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Romagnani, A. et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut. Nat. Commun. 8, 1917 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Desai, B. N. et al. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev. Cell 22, 1149–1162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bertin, S. et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat. Immunol. 15, 1055–1063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Samivel, R. et al. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis. Oncotarget 7, 148–160 (2016).

    PubMed  Google Scholar 

  104. Bertin, S. et al. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T cell-mediated colitis through inhibition of TRPV1. Gut 66, 1584–1596 (2017).

    CAS  PubMed  Google Scholar 

  105. Di Virgilio, F., Sarti, A. C. & Grassi, F. Modulation of innate and adaptive immunity by P2X ion channels. Curr. Opin. Immunol. 52, 51–59 (2018).

    PubMed  Google Scholar 

  106. Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L. & Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity 47, 15–31 (2017). This paper provides an excellent overview on the role of P2XR7 in regulating innate and adaptive immunity.

    PubMed  Google Scholar 

  107. Coutinho-Silva, R., Knight, G. E. & Burnstock, G. Impairment of the splenic immune system in P2X2/P2X3 knockout mice. Immunobiology 209, 661–668 (2005).

    CAS  PubMed  Google Scholar 

  108. Cockayne, D. A. et al. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J. Physiol. 567, 621–639 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Abramowski, P., Ogrodowczyk, C., Martin, R. & Pongs, O. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PLOS ONE 9, e104692 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Woehrle, T. et al. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T cell activation at the immune synapse. Blood 116, 3475–3484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ledderose, C. et al. Mitochondrial dysfunction, depleted purinergic signaling, and defective T cell vigilance and immune defense. J. Infect. Dis. 213, 456–464 (2016).

    CAS  PubMed  Google Scholar 

  112. Wang, C. M., Ploia, C., Anselmi, F., Sarukhan, A. & Viola, A. Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells. EMBO J. 33, 1354–1364 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Manohar, M. et al. ATP release and autocrine signaling through P2X4 receptors regulate gammadelta T cell activation. J. Leukoc. Biol. 92, 787–794 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Frascoli, M., Marcandalli, J., Schenk, U. & Grassi, F. Purinergic P2X7 receptor drives T cell lineage choice and shapes peripheral gammadelta cells. J. Immunol. 189, 174–180 (2012).

    CAS  PubMed  Google Scholar 

  115. Schenk, U. et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci. Signal 4, ra12 (2011).

    PubMed  Google Scholar 

  116. Vergani, A. et al. Effect of the purinergic inhibitor oxidized ATP in a model of islet allograft rejection. Diabetes 62, 1665–1675 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Vergani, A. et al. Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation 127, 463–475 (2013).

    CAS  PubMed  Google Scholar 

  118. Koo, T. Y. et al. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells. Kidney Int. 92, 415–431 (2017).

    CAS  PubMed  Google Scholar 

  119. Sharp, A. J. et al. P2X7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J. Neuroinflamm. 5, 33 (2008).

    Google Scholar 

  120. Takeda, A. et al. Crucial role of P2X7 receptor for effector T cell activation in experimental autoimmune uveitis. Jpn J. Ophthalmol. 62, 398–406 (2018).

    CAS  PubMed  Google Scholar 

  121. Salles, E. M. et al. P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria. PLOS Pathog. 13, e1006595 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Hofman, P. et al. Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res. 75, 835–845 (2015).

    CAS  PubMed  Google Scholar 

  123. Borges da Silva, H. et al. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559, 264–268 (2018).

    CAS  PubMed  Google Scholar 

  124. Chen, L. & Brosnan, C. F. Exacerbation of experimental autoimmune encephalomyelitis in P2X7R−/− mice: evidence for loss of apoptotic activity in lymphocytes. J. Immunol. 176, 3115–3126 (2006).

    CAS  PubMed  Google Scholar 

  125. Taylor, S. R. et al. Lymphocytes from P2X7-deficient mice exhibit enhanced P2X7 responses. J. Leukoc. Biol. 85, 978–986 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shinohara, Y. & Tsukimoto, M. Guanine and inosine nucleotides/nucleosides suppress murine T cell activation. Biochem. Biophys. Res. Commun. 498, 764–768 (2018).

    CAS  PubMed  Google Scholar 

  127. Lecciso, M. et al. ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front. Immunol. 8, 1918 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Badou, A., Jha, M. K., Matza, D. & Flavell, R. A. Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Front. Immunol. 4, 243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Robert, V., Triffaux, E., Savignac, M. & Pelletier, L. Singularities of calcium signaling in effector T-lymphocytes. Biochim. Biophys. Acta 1833, 1595–1602 (2013).

    CAS  PubMed  Google Scholar 

  130. Navedo, M. F. & Santana, L. F. CaV1.2 sparklets in heart and vascular smooth muscle. J. Mol. Cell Cardiol. 58, 67–76 (2013).

    CAS  PubMed  Google Scholar 

  131. Navedo, M. F., Amberg, G. C., Nieves, M., Molkentin, J. D. & Santana, L. F. Mechanisms underlying heterogeneous Ca2+ sparklet activity in arterial smooth muscle. J. Gen. Physiol. 127, 611–622 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nieves-Cintron, M., Amberg, G. C., Navedo, M. F., Molkentin, J. D. & Santana, L. F. The control of Ca2+ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proc. Natl Acad. Sci. USA 105, 15623–15628 (2008).

    CAS  PubMed  Google Scholar 

  133. Dixon, R. E. et al. Graded Ca2+/calmodulin-dependent coupling of voltage-gated CaV1.2 channels. eLife 4, e05608 (2015).

    PubMed Central  Google Scholar 

  134. Dixon, R. E., Yuan, C., Cheng, E. P., Navedo, M. F. & Santana, L. F. Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels. Proc. Natl Acad. Sci. USA 109, 1749–1754 (2012).

    CAS  PubMed  Google Scholar 

  135. Navedo, M. F., Amberg, G. C., Votaw, V. S. & Santana, L. F. Constitutively active L-type Ca2+ channels. Proc. Natl Acad. Sci. USA 102, 11112–11117 (2005).

    CAS  PubMed  Google Scholar 

  136. Bannister, R. A. & Beam, K. G. CaV1.1: the atypical prototypical voltage-gated Ca2+ channel. Biochim. Biophys. Acta 1828, 1587–1597 (2013).

    CAS  PubMed  Google Scholar 

  137. Matza, D. et al. T cell receptor mediated calcium entry requires alternatively spliced Cav1.1 channels. PLOS ONE 11, e0147379 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. Jha, M. K. et al. Defective survival of naive CD8+ T lymphocytes in the absence of the β3 regulatory subunit of voltage-gated calcium channels. Nat. Immunol. 10, 1275–1282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Jha, A. et al. Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis. Sci. Signal 8, ra103 (2015).

    PubMed  Google Scholar 

  140. Chandrasekhar, R., Alzayady, K. J., Wagner, L. E. 2nd & Yule, D. I. Unique regulatory properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. J. Biol. Chem. 291, 4846–4860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jayaraman, T., Ondriasova, E., Ondrias, K., Harnick, D. J. & Marks, A. R. The inositol 1,4,5-trisphosphate receptor is essential for T cell receptor signaling. Proc. Natl Acad. Sci. USA 92, 6007–6011 (1995).

    CAS  PubMed  Google Scholar 

  142. Jayaraman, T. & Marks, A. R. Calcineurin is downstream of the inositol 1,4,5-trisphosphate receptor in the apoptotic and cell growth pathways. J. Biol. Chem. 275, 6417–6420 (2000).

    CAS  PubMed  Google Scholar 

  143. Ouyang, K. et al. Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nat. Commun. 5, 4814 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Wolf, I. M. A. & Guse, A. H. Ca2+ microdomains in T-lymphocytes. Front. Oncol. 7, 73 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Wolf, I. M. et al. Frontrunners of T cell activation: initial, localized Ca2+ signals mediated by NAADP and the type 1 ryanodine receptor. Sci. Signal 8, ra102 (2015).

    PubMed  Google Scholar 

  146. Kunerth, S. et al. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells. J. Cell Sci. 117, 2141–2149 (2004).

    CAS  PubMed  Google Scholar 

  147. Dammermann, W. et al. NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist. Proc. Natl Acad. Sci. USA 106, 10678–10683 (2009).

    CAS  PubMed  Google Scholar 

  148. Dadsetan, S., Zakharova, L., Molinski, T. F. & Fomina, A. F. Store-operated Ca2+ influx causes Ca2+ release from the intracellular Ca2+ channels that is required for T cell activation. J. Biol. Chem. 283, 12512–12519 (2008).

    CAS  PubMed  Google Scholar 

  149. Thakur, P., Dadsetan, S. & Fomina, A. F. Bidirectional coupling between ryanodine receptors and Ca2+ release-activated Ca2+ (CRAC) channel machinery sustains store-operated Ca2+ entry in human T lymphocytes. J. Biol. Chem. 287, 37233–37244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Takeshima, H. et al. Generation and characterization of mutant mice lacking ryanodine receptor type 3. J. Biol. Chem. 271, 19649–19652 (1996).

    CAS  PubMed  Google Scholar 

  151. Davis, L. C., Platt, F. M. & Galione, A. Preferential coupling of the NAADP pathway to exocytosis in T-cells. Messenger (Los Angel) 4, 53–66 (2015).

    Google Scholar 

  152. Steen, M., Kirchberger, T. & Guse, A. H. NAADP mobilizes calcium from the endoplasmic reticular Ca2+ store in T-lymphocytes. J. Biol. Chem. 282, 18864–18871 (2007).

    CAS  PubMed  Google Scholar 

  153. Gerasimenko, J. V., Sherwood, M., Tepikin, A. V., Petersen, O. H. & Gerasimenko, O. V. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J. Cell Sci. 119, 226–238 (2006).

    CAS  PubMed  Google Scholar 

  154. Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

    CAS  PubMed  Google Scholar 

  155. Bagur, R. & Hajnoczky, G. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol. Cell 66, 780–788 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticular-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018). This is an excellent review on the intimate crosstalk between ER and mitochondrial Ca 2+ signalling networks, their structure, organization and protein composition and novel methods to study them.

    CAS  PubMed  Google Scholar 

  157. Santo-Domingo, J. & Demaurex, N. Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 1797, 907–912 (2010).

    CAS  PubMed  Google Scholar 

  158. Pathak, T. & Trebak, M. Mitochondrial Ca2+ signaling. Pharmacol. Ther. 192, 112–123 (2018).

    CAS  PubMed  Google Scholar 

  159. Quintana, A. & Hoth, M. Mitochondrial dynamics and their impact on T cell function. Cell Calcium 52, 57–63 (2012).

    CAS  PubMed  Google Scholar 

  160. Junker, C. & Hoth, M. Immune synapses: mitochondrial morphology matters. EMBO J. 30, 1187–1189 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hoth, M., Fanger, C. M. & Lewis, R. S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol. 137, 633–648 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hoth, M., Button, D. C. & Lewis, R. S. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl Acad. Sci. USA 97, 10607–10612 (2000).

    CAS  PubMed  Google Scholar 

  163. Quintana, A. et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl Acad. Sci. USA 104, 14418–14423 (2007).

    CAS  PubMed  Google Scholar 

  164. Quintana, A. et al. Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T cell activation. EMBO J. 30, 3895–3912 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ritchie, M. F., Samakai, E. & Soboloff, J. STIM1 is required for attenuation of PMCA-mediated Ca2+ clearance during T cell activation. EMBO J. 31, 1123–1133 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Verkhratsky, A., Trebak, M., Perocchi, F., Khananshvili, D. & Sekler, I. Crosslink between calcium and sodium signalling. Exp. Physiol. 103, 157–169 (2018).

    CAS  PubMed  Google Scholar 

  167. Jiang, D., Zhao, L. & Clapham, D. E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144–147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim, B., Takeuchi, A., Koga, O., Hikida, M. & Matsuoka, S. Pivotal role of mitochondrial Na+- Ca2+ exchange in antigen receptor mediated Ca2+ signalling in DT40 and A20 B lymphocytes. J. Physiol. 590, 459–474 (2012).

    CAS  PubMed  Google Scholar 

  169. Finetti, F., Onnis, A. & Baldari, C. T. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. Traffic 16, 241–249 (2015).

    CAS  PubMed  Google Scholar 

  170. Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

    CAS  PubMed  Google Scholar 

  171. Benzing, C., Rossy, J. & Gaus, K. Do signalling endosomes play a role in T cell activation? FEBS J. 280, 5164–5176 (2013).

    CAS  PubMed  Google Scholar 

  172. Brailoiu, E. et al. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J. Cell Biol. 186, 201–209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Calcraft, P. J. et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459, 596–600 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zong, X. et al. The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores. Pflugers Arch. 458, 891–899 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Galione, A. A primer of NAADP-mediated Ca2+ signalling: From sea urchin eggs to mammalian cells. Cell Calcium 58, 27–47 (2015).

    CAS  PubMed  Google Scholar 

  176. Wang, X. et al. TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372–383 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Cang, C. et al. mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152, 778–790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, X. et al. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proc. Natl Acad. Sci. USA 110, 21165–21170 (2013).

    CAS  PubMed  Google Scholar 

  179. Davis, L. C. et al. NAADP activates two-pore channels on T cell cytolytic granules to stimulate exocytosis and killing. Curr. Biol. 22, 2331–2337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Cuajungco, M. P., Silva, J., Habibi, A. & Valadez, J. A. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch. 468, 177–192 (2016).

    CAS  PubMed  Google Scholar 

  181. Cheng, X., Shen, D., Samie, M. & Xu, H. Mucolipins: intracellular TRPML1-3 channels. FEBS Lett. 584, 2013–2021 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sun, L., Hua, Y., Vergarajauregui, S., Diab, H. I. & Puertollano, R. Novel role of TRPML2 in the regulation of the innate immune response. J. Immunol. 195, 4922–4932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Venkatachalam, K., Hofmann, T. & Montell, C. Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J. Biol. Chem. 281, 17517–17527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Dong, X. P. et al. PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1, 38 (2010).

    PubMed  PubMed Central  Google Scholar 

  185. Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511–524 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. LaPlante, J. M. et al. Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol. Genet. Metab. 89, 339–348 (2006).

    CAS  PubMed  Google Scholar 

  187. Zhang, X., Li, X. & Xu, H. Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc. Natl Acad. Sci. USA 109, 11384–11389 (2012).

    CAS  PubMed  Google Scholar 

  188. Feng, X. et al. Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane. J. Biol. Chem. 289, 4262–4272 (2014).

    CAS  PubMed  Google Scholar 

  189. Zhong, X. Z. et al. Inhibition of transient receptor potential channel mucolipin-1 (TRPML1) by lysosomal adenosine involved in severe combined immunodeficiency diseases. J. Biol. Chem. 292, 3445–3455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Whitmore, K. V. & Gaspar, H. B. Adenosine deaminase deficiency - more than just an immunodeficiency. Front. Immunol. 7, 314 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Shuai, J. & Parker, I. Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. Cell Calcium 37, 283–299 (2005).

    CAS  PubMed  Google Scholar 

  192. Potier, M. & Trebak, M. New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch. 457, 405–415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Gwack, Y., Feske, S., Srikanth, S., Hogan, P. G. & Rao, A. Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42, 145–156 (2007).

    CAS  PubMed  Google Scholar 

  194. Fukushima, M., Tomita, T., Janoshazi, A. & Putney, J. W. Alternative translation initiation gives rise to two isoforms of Orai1 with distinct plasma membrane mobilities. J. Cell Sci. 125, 4354–4361 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Ruhle, B. & Trebak, M. Emerging roles for native Orai Ca2+ channels in cardiovascular disease. Curr. Top. Membr. 71, 209–235 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Willoughby, D. et al. Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci. Signal. 5, ra29 (2012). This is an article identifying the physical interaction between ORAI1 and adenylyl cyclase 8 as a determinant for Ca 2+ and cAMP signalling crosstalk.

    PubMed  Google Scholar 

  197. Zhang, W. et al. Leukotriene-C4 synthase, a critical enzyme in the activation of store-independent Orai1/Orai3 channels, is required for neointimal hyperplasia. J. Biol. Chem. 290, 5015–5027 (2015).

    CAS  PubMed  Google Scholar 

  198. Krishnamoorthy, M. et al. The channel-kinase TRPM7 regulates antigen gathering and internalization in B cells. Sci. Signal. 11, eaah6692 (2018).

    PubMed  Google Scholar 

  199. Mammucari, C. et al. Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Arch. 470, 1165–1179 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ghosh, D. et al. Calcium channels in vascular smooth muscle. Adv. Pharmacol. 78, 49–87 (2017).

    CAS  PubMed  Google Scholar 

  201. Guse, A. H. & Diercks, B. P. Integration of nicotinic acid adenine dinucleotide phosphate (NAADP)-dependent calcium signalling. J. Physiol. 596, 2735–2743 (2018).

    CAS  PubMed  Google Scholar 

  202. Huang, P. et al. P2X4 forms functional ATP-activated cation channels on lysosomal membranes regulated by luminal pH. J. Biol. Chem. 289, 17658–17667 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories is supported by grants R01HL123364, R01HL097111 and R21AG050072 from the US National Institutes of Health and grant NPRP8-110-3-021 from the Qatar National Research Fund (QNRF) to M.T.

Reviewer information

Nature Reviews Immunology thanks S. Feske and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and J.-P.K. both wrote and edited the manuscript.

Corresponding authors

Correspondence to Mohamed Trebak or Jean-Pierre Kinet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Membrane potential

(Vm). The difference in electric potential between the interior and the exterior of a biological membrane. In resting T cells, the plasma membrane potential is typically between −60 and −50 mV.

Ion channels

Transmembrane proteins that form oligomers around a central pore, which allows specific ions to flow across biological membranes. Channels conduct ions according to the electrochemical gradient of this membrane and, therefore, this process does not consume energy in the form of ATP.

Voltage-activated Ca2+ channels

(CaV channels). Ca2+ selective channels located at the plasma membrane (PM) of excitable cells, such as muscle cells and neurons, and activated in response to PM depolarization. In T cells, CaV channels might be activated by voltage-dependent or voltage-independent means.

Inositol-1,4,5-trisphosphate receptors

(InsP3Rs). Ca2+ release channels present in the endoplasmic reticulum (ER) membrane that release Ca2+ from the ER lumen to the cytosol in response to allosteric binding of Ca2+ and inositol-1,4,5-triphosphate.

Ryanodine receptors

(RYRs). Ca2+ release channels present in the endoplasmic reticulum (ER) membrane that mediate release of Ca2+ from the ER lumen to the cytosol on activation by Ca2+, nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR).

Ca2+ microdomains

Discrete sites in the cytosol localized near (within a few nanometres) the mouth of Ca2+ channels of either the plasma membrane or organellar membranes. These regions, which contain high Ca2+ concentrations, are the sites where specific Ca2+-activated effector proteins are located. Ca2+ microdomains near specific Ca2+ channels are the major means by which the ubiquitous Ca2+ ion ensures specificity of signal transduction.

Mitochondrial Ca2+ uniporter

(MCU). A mitochondrial Ca2+ selective channel complex located in the inner mitochondrial membrane that conducts Ca2+ from the cytosol to the mitochondrial matrix.

Ion pumps

Transmembrane proteins that transport ions against the electrochemical gradient of a membrane, and this function requires energy in the form of ATP hydrolysis. Examples include sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA), which pumps Ca2+ from the cytosol into the endoplasmic reticulum; and plasma membrane Ca2+ ATPase (PMCA), which pumps Ca2+ from the cytosol to the extracellular space.

Two pore channels

(TPCs). Ion channels located in the membrane of endolysosomes that are proposed to release Ca2+ and Na+ from endolysosomes to the cytosol and are activated by nicotinic acid adenine dinucleotide phosphate (NAADP) and by phosphoinositide species localized in the endolysosomal membrane, such as phosphatidylinositol-3,5-bisphosphate.

Transient receptor potential mucolipin channels

(TRPML channels). Non-selective cation channels located on the surface of endolysosomes that release Ca2+ and Na+ from these organelles into the cytosol. TRPML channels are activated by phosphoinositide species localized in the endolysosomal membrane, such as phosphatidylinositol-3,5-bisphosphate.

Store-operated Ca2+ entry

(SOCE). The most ubiquitous Ca2+ influx pathway in non-excitable cells, which is activated when endoplasmic reticulum Ca2+ stores are depleted. It is mediated by plasma membrane ORAI Ca2+ channels activated by direct binding of stromal interaction molecule (STIM) proteins.

Ca2+ release-activated Ca2+

(CRAC). The biophysical manifestation of store-operated Ca2+ entry and ORAI channels measured by whole-cell patch clamp electrophysiology. CRAC currents are highly Ca2+ selective.

Immune synapse

The nanoscale interface of interaction between a lymphocyte and an antigen-presenting cell.

Nuclear factor of activated T cells

(NFAT). An important family of transcription factors that are Ca2+ activated. Ca2+–calmodulin activates the phosphatase calcineurin, which then dephosphorylates NFAT, causing its import into the nucleus to mediate gene transcription of many cytokines, transcription factors and metabolic genes.

Patch clamp electrophysiology

A laboratory technique used to measure ionic currents through specific channels from single living cells or from a patch of cell membrane. Under the voltage clamp configuration, controlled (clamped) voltage values are applied to the cell membrane by the experimenter, and the resulting currents are measured.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trebak, M., Kinet, JP. Calcium signalling in T cells. Nat Rev Immunol 19, 154–169 (2019). https://doi.org/10.1038/s41577-018-0110-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0110-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing