Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy in the renewal, differentiation and homeostasis of immune cells

Abstract

Across all branches of the immune system, the process of autophagy is fundamentally important in cellular development, function and homeostasis. Strikingly, this evolutionarily ancient pathway for intracellular recycling has been adapted to enable a high degree of functional complexity and specialization. However, although the requirement for autophagy in normal immune cell function is clear, the mechanisms involved are much less so and encompass control of metabolism, selective degradation of substrates and organelles and participation in cell survival decisions. We review here the crucial functions of autophagy in controlling the differentiation and homeostasis of multiple immune cell types and discuss the potential mechanisms involved.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of autophagy in cellular differentiation.
Fig. 2: The regulation of autophagy in lymphocytes and myeloid cells.
Fig. 3: Autophagy in myeloid cell differentiation.
Fig. 4: Autophagy in T cell differentiation.
Fig. 5: Autophagy in B cell differentiation.

Similar content being viewed by others

References

  1. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell. Biol. 19, 349–364 (2018).

    CAS  PubMed  Google Scholar 

  2. Loukil, A. et al. High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J. Cell Sci. 127, 2145–2150 (2014).

    CAS  PubMed  Google Scholar 

  3. Riffelmacher, T., Richter, F. C. & Simon, A. K. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy 14, 199–206 (2018).

    CAS  PubMed  Google Scholar 

  4. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, 2516–2521 (2014).

    Google Scholar 

  5. Xu, X. et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol. 15, 1152–1161 (2014). References 4 and 5 show that T cell memory depends on autophagy and can be improved by the induction of autophagy, which suggests the possibility of improving vaccine responses in this manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, M. et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20, 503–510 (2014). This study shows the importance of autophagy in B cell memory, which opens up the possibility of new therapeutic approaches.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Riffelmacher, T. et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity 47, 466–480 (2017). This study is a key step towards understanding what autophagy provides for immune cell differentiation, rather than what it degrades.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke, A. J., Riffelmacher, T., Braas, D., Cornall, R. J. & Simon, A. K. B1a B cells require autophagy for metabolic homeostasis and self-renewal. J. Exp. Med. 215, 399–413 (2018). This study examines why the B1 B cell subset is specifically dependent on autophagy owing to its microenvironment and metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mortensen, M. et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl Acad. Sci. USA 107, 832–837 (2010).

    CAS  PubMed  Google Scholar 

  11. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, F. et al. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116, 4806–4814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gómez-Puerto, M. C. et al. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy 12, 1804–1816 (2017).

    Google Scholar 

  14. Liu, F. et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J. Bone Miner. Res. 28, 2414–2430 (2013).

    CAS  PubMed  Google Scholar 

  15. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860–19865 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Deretic, V. & Levine, B. Autophagy balances inflammation in innate immunity. Autophagy 14, 243–251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gomes, L. C. & Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell 54, 224–233 (2014).

    CAS  PubMed  Google Scholar 

  18. Münz, C. Autophagy beyond intracellular MHC class II antigen presentation. Trends Immunol. 37, 755–763 (2016).

    PubMed  Google Scholar 

  19. Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836–841 (2010).

    CAS  PubMed  Google Scholar 

  20. Haynes, C. M., Fiorese, C. J. & Lin, Y.-F. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol. 23, 311–318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rawi, Al,S. et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147 (2011).

    PubMed  Google Scholar 

  23. Harper, J. W., Ordureau, A. & Heo, J.-M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93–108 (2018).

    CAS  PubMed  Google Scholar 

  24. Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    CAS  PubMed  Google Scholar 

  25. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  Google Scholar 

  26. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Murera, D. et al. CD4 T cell autophagy is integral to memory maintenance. Sci. Rep. 8, 5951 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell. Metab. 13, 655–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Walther, T. C. & Farese, R. V. Jr. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell. Biol. 18, 671–684 (2017).

    CAS  PubMed  Google Scholar 

  32. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  33. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ktistakis, N. T. & Tooze, S. A. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 26, 624–635 (2016).

    CAS  PubMed  Google Scholar 

  36. Galluzzi, L. et al. Molecular definitions of autophagy and related processes. EMBO J. 36, 1811–1836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    CAS  PubMed  Google Scholar 

  39. Martinez-Martin, N. et al. A switch from canonical to noncanonical autophagy shapes B cell responses. Science 355, 641–647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Afzal, S. et al. Autophagy-independent functions of UVRAG are essential for peripheral naive T cell homeostasis. Proc. Natl Acad. Sci. USA 112, 1119–1124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Botbol, Y., Patel, B. & Macian, F. Common γ-chain cytokine signaling is required for macroautophagy induction during CD4+ T cell activation. Autophagy 11, 1864–1877 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Watanabe, K., Ichinose, S., Hayashizaki, K. & Tsubata, T. Induction of autophagy by B cell antigen receptor stimulation and its inhibition by costimulation. Biochem. Biophys. Res. Commun. 374, 274–281 (2008).

    CAS  PubMed  Google Scholar 

  43. Andrade, R. M., Wessendarp, M., Gubbels, M.-J., Striepen, B. & Subauste, C. S. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J. Clin. Invest. 116, 2366–2377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  PubMed  Google Scholar 

  45. Matsuzawa, T. et al. IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol. 189, 813–818 (2012).

    CAS  PubMed  Google Scholar 

  46. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    CAS  PubMed  Google Scholar 

  47. Delgado, M. A., Elmaoued, R. A., Davis, A. S., Kyei, G. & Deretic, V. Toll-like receptors control autophagy. EMBO J. 27, 1110–1121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J., Kundu, M., Viollet, B. & Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, J. M. et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112–115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Seok, S. et al. Transcriptional regulation of autophagy by an FXR–CREB axis. Nature 516, 108–111 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell. Metab. 6, 458–471 (2007).

    CAS  PubMed  Google Scholar 

  52. Lin, S. Y. et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336, 477–481 (2012).

    CAS  PubMed  Google Scholar 

  53. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    CAS  PubMed  Google Scholar 

  54. Maiuri, M. C. et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 1–13 (2013).

    Google Scholar 

  56. Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Stem Cell 9, 298–310 (2011).

    CAS  Google Scholar 

  57. Mouttie, L. L.-E. et al. Autophagy is required for stem cell mobilization by G-CSF. Blood 125, 2933–2936 (2015).

    Google Scholar 

  58. Rožman, S. et al. The generation of neutrophils in the bone marrow is controlled by autophagy. Cell Death Differ. 22, 445–456 (2015).

    PubMed  Google Scholar 

  59. Zhang, Y., Morgan, M. J., Chen, K., Choksi, S. & Liu, Z. G. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119, 2895–2905 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jacquel, A. et al. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119, 4527–4531 (2012).

    CAS  PubMed  Google Scholar 

  61. Obba, S. et al. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11, 1114–1129 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, S. C.-C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stranks, A. J. et al. Autophagy controls acquisition of aging features in macrophages. J. Innate Immun. 7, 375–391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016). This study provides a link between homeostatic autophagy as a means of degrading engulfed cells and the autoimmune disease SLE.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 1–13 (2018).

    Google Scholar 

  66. Sieweke, M. H. & Allen, J. E. Beyond stem cells: self-renewal of differentiated macrophages. Science 342, 1242974–1242974 (2013).

    PubMed  Google Scholar 

  67. Plaza-Zabala, A., Sierra-Torre, V. & Sierra, A. Autophagy and microglia: novel partners in neurodegeneration and aging. Int. J. Mol. Sci. 18, 598–528 (2017).

    PubMed Central  Google Scholar 

  68. Ribeiro, C. M. S. et al. Receptor usage dictates HIV-1 restriction by human TRIM5a in dendritic cell subsets. Nature 540, 448–452 (2016).

    CAS  PubMed  Google Scholar 

  69. Hubbard-Lucey, V. M. et al. Autophagy gene Atg16l1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity 41, 579–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Weindel, C. G., Richey, L. J., Mehta, A. J., Shah, M. & Huber, B. T. Autophagy in dendritic cells and B cells is critical for the inflammatory state of TLR7-mediated autoimmunity. J. Immunol. 198, 1081–1092 (2017).

    CAS  PubMed  Google Scholar 

  71. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    CAS  PubMed  Google Scholar 

  72. O’Sullivan, T. E., Johnson, L. R., Kang, H. H. & Sun, J. C. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43, 331–342 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. O’Sullivan, T. E. et al. Atg5 is essential for the development and survival of innate lymphocytes. Cell Rep. 15, 1910–1919 (2016). This study elucidates the type of selective autophagy (mitophagy) that is involved in immune cell differentiation using genetic deletion of the cargo receptor BNIP3 and its ligand.

    PubMed  PubMed Central  Google Scholar 

  74. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Ann. Rev. Immunol. 21, 139–176 (2003).

    CAS  Google Scholar 

  75. Schmid, D., Pypaert, M. & Münz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007). This work shows that autophagosomes provide a route for cross-presentation of endogenous antigens on MHC class II molecules.

    CAS  PubMed  Google Scholar 

  76. Dengjel, J. et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl Acad. Sci. USA 102, 7922–7927 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Aichinger, M., Wu, C., Nedjic, J. & Klein, L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J. Exp. Med. 210, 287–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    CAS  PubMed  Google Scholar 

  79. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    CAS  PubMed  Google Scholar 

  80. Sukseree, S. et al. Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLOS ONE 7, e38933 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Google Scholar 

  84. Schuster, C. et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity 42, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Stephenson, L. M. et al. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. Autophagy 5, 625–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Arsov, I. et al. A role for autophagic protein beclin 1 early in lymphocyte development. J. Immunol. 186, 2201–2209 (2011).

    CAS  PubMed  Google Scholar 

  87. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y.-W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    CAS  PubMed  Google Scholar 

  89. Clarke, A. J. et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann. Rheum. Dis. 74, 912–920 (2015).

    PubMed  Google Scholar 

  90. Pua, H. H., Guo, J., Komatsu, M. & He, Y.-W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009).

    CAS  PubMed  Google Scholar 

  91. Puleston, D. J. & Simon, A. K. Autophagy in the immune system. Immunology 141, 1–8 (2013).

    PubMed Central  Google Scholar 

  92. Godfrey, D. I., Stankovic, S. & Baxter, A. G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    CAS  PubMed  Google Scholar 

  93. Salio, M. et al. Essential role for autophagy during invariant NKT cell development. Proc. Natl Acad. Sci. USA 111, E5678–E5687 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pei, B. et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J. Immunol. 194, 5872–5884 (2015).

    CAS  PubMed  Google Scholar 

  95. Kovacs, J. R. et al. Autophagy promotes T cell survival through degradation of proteins of the cell death machinery. Cell Death Differ. 19, 144–152 (2012).

    CAS  PubMed  Google Scholar 

  96. Vargas, T. R. et al. Selective degradation of PU.1 during autophagy represses the differentiation and antitumour activity of TH9 cells. Nat. Commun. 2017, 1–15 (2017).

    Google Scholar 

  97. Kabat, A. M. et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. eLife 5, e12444 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Jia, W., Pua, H. H., Li, Q. J. & He, Y.-W. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J. Immunol. 186, 1564–1574 (2011).

    CAS  PubMed  Google Scholar 

  99. Parekh, V. V. et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J. Immunol. 190, 5086–5101 (2013).

    CAS  PubMed  Google Scholar 

  100. McLeod, I. X., Zhou, X., Li, Q. J., Wang, F. & He, Y.-W. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7R surface expression. J. Immunol. 187, 5051–5061 (2011).

    CAS  PubMed  Google Scholar 

  101. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jia, W. & He, Y.-W. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J. Immunol. 186, 5313–5322 (2011).

    CAS  PubMed  Google Scholar 

  103. Le Texier, L. et al. Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight 1, e86850 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  105. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schlie, K. et al. Survival of effector CD8+ T cells during influenza infection is dependent on autophagy. J. Immunol. 194, 4277–4286 (2015).

    CAS  PubMed  Google Scholar 

  107. Jia, W. et al. Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1. Autophagy 11, 2335–2345 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pearce, E. L. et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Arsov, I. et al. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ. 15, 1385–1395 (2008).

    CAS  PubMed  Google Scholar 

  110. Arnold, J. et al. Autophagy is dispensable for B cell development but essential for humoral autoimmune responses. Cell Death Differ. 23, 853–864 (2016).

    CAS  PubMed  Google Scholar 

  111. Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2010).

    PubMed  Google Scholar 

  112. Chen, M., Kodali, S., Jang, A., Kuai, L. & Wang, J. Requirement for autophagy in the long-term persistence but not initial formation of memory B cells. J. Immunol. 194, 2607–2615 (2015).

    CAS  PubMed  Google Scholar 

  113. Raso, F. et al. αv integrins regulate germinal center B cell responses through noncanonical autophagy. J. Clin. Invest. 128, 4163–4178 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Acharya, M. et al. αv integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat. Commun. 7, 10917 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298–305 (2013). This is an important study that shows the role of autophagy in plasma cell homeostasis as a system that complements the unfolded protein response.

    CAS  PubMed  Google Scholar 

  116. Weindel, C. G. et al. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11, 1010–1024 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gros, F. et al. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy 8, 1054–1053 (2012).

    Google Scholar 

  118. van Loosdregt, J. et al. Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: a possible mechanism for therapeutic modulation of T cells. J. Allergy Clin. Immunol. 131, 1443–1446 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Zhang, H., Puleston, D. J. & Simon, A. K. Autophagy and immune senescence. Trends Mol. Med. 22, 671–686 (2016).

    CAS  PubMed  Google Scholar 

  120. Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell. Biol. 14, 759–774 (2013).

    CAS  PubMed  Google Scholar 

  121. Karanasios, E. et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat. Commun. 7, 12420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ge, L., Zhang, M. & Schekman, R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eL ife 3, 839–813 (2014).

    Google Scholar 

  123. Young, A. R. J. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119, 3888–3900 (2006).

    CAS  PubMed  Google Scholar 

  124. Yu, L., Chen, Y. & Tooze, S. A. Autophagy pathway: cellular and molecular mechanisms. Autophagy 14, 207–215 (2018).

    CAS  PubMed  Google Scholar 

  125. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    CAS  PubMed  Google Scholar 

  126. Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci. 116, 1679–1688 (2003).

    CAS  PubMed  Google Scholar 

  127. Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007).

    CAS  PubMed  Google Scholar 

  128. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    CAS  PubMed  Google Scholar 

  129. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Riffelmacher, T. & Simon, A. K. Mechanistic roles of autophagy in hematopoietic differentiation. FEBS J. 284, 1008–1020 (2016).

    PubMed  Google Scholar 

  131. Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Watson, A. S. et al. Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov. 1, 15008–15010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cao, Y. et al. Hierarchal autophagic divergence of hematopoietic system. J. Biol. Chem. 290, 23050–23063 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ito, K. et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156–1160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.J.C. and A.K.S. are both funded by the Wellcome Trust (104549/Z/14/Z to A.J.C. and 103830/Z/14/Z to A.K.S.).

Reviewer information

Nature Reviews Immunology thanks F. Gros, J. Martinez and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote and edited the manuscript.

Corresponding author

Correspondence to Anna Katharina Simon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Oxidative phosphorylation

(OXPHOS). The production of ATP through the oxidation of nutrients. The electron transport chain in mitochondria produces an electrochemical gradient that is used to make ATP.

Tricarboxylic acid cycle

(TCA cycle). A metabolic pathway that oxidizes acetyl-CoA derived from pyruvate to release stored energy in the form of NADH, which then enters oxidative phosphorylation. The TCA cycle is crucial for carbohydrate, protein and lipid metabolism.

Autophagy genes

Genes related to autophagy. The core machinery of autophagy is encoded by ~30 genes. The most commonly deleted genes in experimental settings include Ulk1, Ulk2, Atg3, Atg5, Becn1, Atg7 and Atg16l1, which are all essential for autophagy.

β-Oxidation

The catabolism of fatty acid molecules to produce acetyl-CoA.

LC3-associated phagocytosis

(LAP). A form of non-canonical autophagy in which LC3 is conjugated to the phagosomal membrane using some components of the autophagy pathway.

Unc51-like autophagy-activating kinase 1 complex

(ULK1 complex). The major complex controlling the initiation of autophagy, which is targeted by mechanistic target of rapamycin complex 1 (mTORC1) and 5′-AMP-activated protein kinase (AMPK).

Mechanistic target of rapamycin complex 1

(mTORC1). A complex — which consists of mTOR together with the protein raptor — that senses nutrient status and is a master regulator of protein synthesis and cell growth.

M1 macrophages and M2 macrophages

‘M1’ and ‘M2’ are classifications historically used to define macrophages activated in vitro as pro-inflammatory (when ‘classically’ activated with IFNγ and lipopolysaccharide) or anti-inflammatory (when ‘alternatively’ activated with IL-4 or IL-10), respectively. However, in vivo macrophages are highly specialized, transcriptomically dynamic and extremely heterogeneous with regard to their phenotypes and functions, which are continuously shaped by their tissue microenvironment. Therefore, the M1 or M2 classification is too simplistic to explain the true nature of in vivo macrophages, although these terms are still often used to indicate whether the macrophages in question are more pro- or anti-inflammatory.

Senescence

A process that typically occurs in aged cells. It involves the acquisition of progressive and diverse cellular phenotypes including growth arrest, telomere attrition, damaged macromolecules and the secretion of cytokines, chemokines and proteases with pro-inflammatory properties (the senescence-associated secretory phenotype), which together lead to tissue dysfunction.

Non-classical cross-presentation

The presentation of endogenous proteins, which enter the endosomal pathway, on MHC class II molecules by antigen-presenting cells.

Antibody affinity maturation

The progressive increase in antibody affinity that occurs during the immune response as the germinal centre reaction selects for B cells producing higher-affinity immunoglobulin.

Unfolded protein response

The stress response pathway that is activated by the accumulation of unfolded or defective proteins in the endoplasmic reticulum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clarke, A.J., Simon, A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol 19, 170–183 (2019). https://doi.org/10.1038/s41577-018-0095-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0095-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing